ref: 343acaa8f2233acfe427a8e3557efa7bae092d77
dir: /test/dct16x16_test.cc/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_entropy.h" #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { #ifdef _MSC_VER static int round(double x) { if (x < 0) return static_cast<int>(ceil(x - 0.5)); else return static_cast<int>(floor(x + 0.5)); } #endif const int kNumCoeffs = 256; const double PI = 3.1415926535898; void reference2_16x16_idct_2d(double *input, double *output) { double x; for (int l = 0; l < 16; ++l) { for (int k = 0; k < 16; ++k) { double s = 0; for (int i = 0; i < 16; ++i) { for (int j = 0; j < 16; ++j) { x = cos(PI * j * (l + 0.5) / 16.0) * cos(PI * i * (k + 0.5) / 16.0) * input[i * 16 + j] / 256; if (i != 0) x *= sqrt(2.0); if (j != 0) x *= sqrt(2.0); s += x; } } output[k*16+l] = s; } } } const double C1 = 0.995184726672197; const double C2 = 0.98078528040323; const double C3 = 0.956940335732209; const double C4 = 0.923879532511287; const double C5 = 0.881921264348355; const double C6 = 0.831469612302545; const double C7 = 0.773010453362737; const double C8 = 0.707106781186548; const double C9 = 0.634393284163646; const double C10 = 0.555570233019602; const double C11 = 0.471396736825998; const double C12 = 0.38268343236509; const double C13 = 0.290284677254462; const double C14 = 0.195090322016128; const double C15 = 0.098017140329561; void butterfly_16x16_dct_1d(double input[16], double output[16]) { double step[16]; double intermediate[16]; double temp1, temp2; // step 1 step[ 0] = input[0] + input[15]; step[ 1] = input[1] + input[14]; step[ 2] = input[2] + input[13]; step[ 3] = input[3] + input[12]; step[ 4] = input[4] + input[11]; step[ 5] = input[5] + input[10]; step[ 6] = input[6] + input[ 9]; step[ 7] = input[7] + input[ 8]; step[ 8] = input[7] - input[ 8]; step[ 9] = input[6] - input[ 9]; step[10] = input[5] - input[10]; step[11] = input[4] - input[11]; step[12] = input[3] - input[12]; step[13] = input[2] - input[13]; step[14] = input[1] - input[14]; step[15] = input[0] - input[15]; // step 2 output[0] = step[0] + step[7]; output[1] = step[1] + step[6]; output[2] = step[2] + step[5]; output[3] = step[3] + step[4]; output[4] = step[3] - step[4]; output[5] = step[2] - step[5]; output[6] = step[1] - step[6]; output[7] = step[0] - step[7]; temp1 = step[ 8] * C7; temp2 = step[15] * C9; output[ 8] = temp1 + temp2; temp1 = step[ 9] * C11; temp2 = step[14] * C5; output[ 9] = temp1 - temp2; temp1 = step[10] * C3; temp2 = step[13] * C13; output[10] = temp1 + temp2; temp1 = step[11] * C15; temp2 = step[12] * C1; output[11] = temp1 - temp2; temp1 = step[11] * C1; temp2 = step[12] * C15; output[12] = temp2 + temp1; temp1 = step[10] * C13; temp2 = step[13] * C3; output[13] = temp2 - temp1; temp1 = step[ 9] * C5; temp2 = step[14] * C11; output[14] = temp2 + temp1; temp1 = step[ 8] * C9; temp2 = step[15] * C7; output[15] = temp2 - temp1; // step 3 step[ 0] = output[0] + output[3]; step[ 1] = output[1] + output[2]; step[ 2] = output[1] - output[2]; step[ 3] = output[0] - output[3]; temp1 = output[4] * C14; temp2 = output[7] * C2; step[ 4] = temp1 + temp2; temp1 = output[5] * C10; temp2 = output[6] * C6; step[ 5] = temp1 + temp2; temp1 = output[5] * C6; temp2 = output[6] * C10; step[ 6] = temp2 - temp1; temp1 = output[4] * C2; temp2 = output[7] * C14; step[ 7] = temp2 - temp1; step[ 8] = output[ 8] + output[11]; step[ 9] = output[ 9] + output[10]; step[10] = output[ 9] - output[10]; step[11] = output[ 8] - output[11]; step[12] = output[12] + output[15]; step[13] = output[13] + output[14]; step[14] = output[13] - output[14]; step[15] = output[12] - output[15]; // step 4 output[ 0] = (step[ 0] + step[ 1]); output[ 8] = (step[ 0] - step[ 1]); temp1 = step[2] * C12; temp2 = step[3] * C4; temp1 = temp1 + temp2; output[ 4] = 2*(temp1 * C8); temp1 = step[2] * C4; temp2 = step[3] * C12; temp1 = temp2 - temp1; output[12] = 2 * (temp1 * C8); output[ 2] = 2 * ((step[4] + step[ 5]) * C8); output[14] = 2 * ((step[7] - step[ 6]) * C8); temp1 = step[4] - step[5]; temp2 = step[6] + step[7]; output[ 6] = (temp1 + temp2); output[10] = (temp1 - temp2); intermediate[8] = step[8] + step[14]; intermediate[9] = step[9] + step[15]; temp1 = intermediate[8] * C12; temp2 = intermediate[9] * C4; temp1 = temp1 - temp2; output[3] = 2 * (temp1 * C8); temp1 = intermediate[8] * C4; temp2 = intermediate[9] * C12; temp1 = temp2 + temp1; output[13] = 2 * (temp1 * C8); output[ 9] = 2 * ((step[10] + step[11]) * C8); intermediate[11] = step[10] - step[11]; intermediate[12] = step[12] + step[13]; intermediate[13] = step[12] - step[13]; intermediate[14] = step[ 8] - step[14]; intermediate[15] = step[ 9] - step[15]; output[15] = (intermediate[11] + intermediate[12]); output[ 1] = -(intermediate[11] - intermediate[12]); output[ 7] = 2 * (intermediate[13] * C8); temp1 = intermediate[14] * C12; temp2 = intermediate[15] * C4; temp1 = temp1 - temp2; output[11] = -2 * (temp1 * C8); temp1 = intermediate[14] * C4; temp2 = intermediate[15] * C12; temp1 = temp2 + temp1; output[ 5] = 2 * (temp1 * C8); } void reference_16x16_dct_2d(int16_t input[256], double output[256]) { // First transform columns for (int i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (int j = 0; j < 16; ++j) temp_in[j] = input[j * 16 + i]; butterfly_16x16_dct_1d(temp_in, temp_out); for (int j = 0; j < 16; ++j) output[j * 16 + i] = temp_out[j]; } // Then transform rows for (int i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i * 16]; butterfly_16x16_dct_1d(temp_in, temp_out); // Scale by some magic number for (int j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j]/2; } } typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, int tx_type); typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, int tx_type); typedef std::tr1::tuple<FdctFunc, IdctFunc, int, vpx_bit_depth_t> Dct16x16Param; typedef std::tr1::tuple<FhtFunc, IhtFunc, int, vpx_bit_depth_t> Ht16x16Param; void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride, int /*tx_type*/) { vp9_fdct16x16_c(in, out, stride); } void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, int /*tx_type*/) { vp9_idct16x16_256_add_c(in, dest, stride); } void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { vp9_fht16x16_c(in, out, stride, tx_type); } void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, int tx_type) { vp9_iht16x16_256_add_c(in, dest, stride, tx_type); } #if CONFIG_VP9_HIGHBITDEPTH void idct16x16_10(const tran_low_t *in, uint8_t *out, int stride) { vp9_highbd_idct16x16_256_add_c(in, out, stride, 10); } void idct16x16_12(const tran_low_t *in, uint8_t *out, int stride) { vp9_highbd_idct16x16_256_add_c(in, out, stride, 12); } void idct16x16_10_ref(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { idct16x16_10(in, out, stride); } void idct16x16_12_ref(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { idct16x16_12(in, out, stride); } void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { vp9_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 10); } void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { vp9_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 12); } #endif class Trans16x16TestBase { public: virtual ~Trans16x16TestBase() {} protected: virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; void RunAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); uint32_t max_error = 0; int64_t total_error = 0; const int count_test_block = 10000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, test_temp_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, src16, kNumCoeffs); #endif // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == VPX_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; #if CONFIG_VP9_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block, test_temp_block, pitch_)); if (bit_depth_ == VPX_BITS_8) { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, dst, pitch_)); #if CONFIG_VP9_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_VP9_HIGHBITDEPTH const uint32_t diff = bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const uint32_t diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) << "Error: 16x16 FHT/IHT has an individual round trip error > 1"; EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) << "Error: 16x16 FHT/IHT has average round trip error > 1 per block"; } void RunCoeffCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, output_ref_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, output_block, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_); ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(output_block[j], output_ref_block[j]); } } void RunMemCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, output_ref_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, output_block, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) { input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; } if (i == 0) { for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; } else if (i == 1) { for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; } fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block, output_block, pitch_)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) { EXPECT_EQ(output_block[j], output_ref_block[j]); EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; } } } void RunQuantCheck(int dc_thred, int ac_thred) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 100000; DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, output_ref_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, ref, kNumCoeffs); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, ref16, kNumCoeffs); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == VPX_BITS_8) input_block[j] = rnd.Rand8() - rnd.Rand8(); else input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; } if (i == 0) for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; if (i == 1) for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); // clear reconstructed pixel buffers vpx_memset(dst, 0, kNumCoeffs * sizeof(uint8_t)); vpx_memset(ref, 0, kNumCoeffs * sizeof(uint8_t)); #if CONFIG_VP9_HIGHBITDEPTH vpx_memset(dst16, 0, kNumCoeffs * sizeof(uint16_t)); vpx_memset(ref16, 0, kNumCoeffs * sizeof(uint16_t)); #endif // quantization with maximum allowed step sizes output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred; for (int j = 1; j < kNumCoeffs; ++j) output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred; if (bit_depth_ == VPX_BITS_8) { inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_); ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_)); #if CONFIG_VP9_HIGHBITDEPTH } else { inv_txfm_ref(output_ref_block, CONVERT_TO_BYTEPTR(ref16), pitch_, tx_type_); ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } if (bit_depth_ == VPX_BITS_8) { for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref[j], dst[j]); #if CONFIG_VP9_HIGHBITDEPTH } else { for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref16[j], dst16[j]); #endif } } } void RunInvAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, coeff, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, src16, kNumCoeffs); #endif for (int i = 0; i < count_test_block; ++i) { double out_r[kNumCoeffs]; // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == VPX_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); in[j] = src[j] - dst[j]; #if CONFIG_VP9_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; in[j] = src16[j] - dst16[j]; #endif } } reference_16x16_dct_2d(in, out_r); for (int j = 0; j < kNumCoeffs; ++j) coeff[j] = round(out_r[j]); if (bit_depth_ == VPX_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16)); #if CONFIG_VP9_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), 16)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_VP9_HIGHBITDEPTH const uint32_t diff = bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const uint32_t diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; EXPECT_GE(1u, error) << "Error: 16x16 IDCT has error " << error << " at index " << j; } } } int pitch_; int tx_type_; vpx_bit_depth_t bit_depth_; int mask_; FhtFunc fwd_txfm_ref; IhtFunc inv_txfm_ref; }; class Trans16x16DCT : public Trans16x16TestBase, public ::testing::TestWithParam<Dct16x16Param> { public: virtual ~Trans16x16DCT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); bit_depth_ = GET_PARAM(3); pitch_ = 16; fwd_txfm_ref = fdct16x16_ref; inv_txfm_ref = idct16x16_ref; mask_ = (1 << bit_depth_) - 1; #if CONFIG_VP9_HIGHBITDEPTH switch (bit_depth_) { case 10: inv_txfm_ref = idct16x16_10_ref; break; case 12: inv_txfm_ref = idct16x16_12_ref; break; default: inv_txfm_ref = idct16x16_ref; break; } #else inv_txfm_ref = idct16x16_ref; #endif } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride); } void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride); } FdctFunc fwd_txfm_; IdctFunc inv_txfm_; }; TEST_P(Trans16x16DCT, AccuracyCheck) { RunAccuracyCheck(); } TEST_P(Trans16x16DCT, CoeffCheck) { RunCoeffCheck(); } TEST_P(Trans16x16DCT, MemCheck) { RunMemCheck(); } TEST_P(Trans16x16DCT, QuantCheck) { // Use maximally allowed quantization step sizes for DC and AC // coefficients respectively. RunQuantCheck(1336, 1828); } TEST_P(Trans16x16DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } class Trans16x16HT : public Trans16x16TestBase, public ::testing::TestWithParam<Ht16x16Param> { public: virtual ~Trans16x16HT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); bit_depth_ = GET_PARAM(3); pitch_ = 16; fwd_txfm_ref = fht16x16_ref; inv_txfm_ref = iht16x16_ref; mask_ = (1 << bit_depth_) - 1; #if CONFIG_VP9_HIGHBITDEPTH switch (bit_depth_) { case VPX_BITS_10: inv_txfm_ref = iht16x16_10; break; case VPX_BITS_12: inv_txfm_ref = iht16x16_12; break; default: inv_txfm_ref = iht16x16_ref; break; } #else inv_txfm_ref = iht16x16_ref; #endif } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride, tx_type_); } void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride, tx_type_); } FhtFunc fwd_txfm_; IhtFunc inv_txfm_; }; TEST_P(Trans16x16HT, AccuracyCheck) { RunAccuracyCheck(); } TEST_P(Trans16x16HT, CoeffCheck) { RunCoeffCheck(); } TEST_P(Trans16x16HT, MemCheck) { RunMemCheck(); } TEST_P(Trans16x16HT, QuantCheck) { // The encoder skips any non-DC intra prediction modes, // when the quantization step size goes beyond 988. RunQuantCheck(429, 729); } using std::tr1::make_tuple; #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, Trans16x16DCT, ::testing::Values( make_tuple(&vp9_highbd_fdct16x16_c, &idct16x16_10, 0, VPX_BITS_10), make_tuple(&vp9_highbd_fdct16x16_c, &idct16x16_12, 0, VPX_BITS_12), make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, 0, VPX_BITS_8))); #else INSTANTIATE_TEST_CASE_P( C, Trans16x16DCT, ::testing::Values( make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, 0, VPX_BITS_8))); #endif #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, Trans16x16HT, ::testing::Values( make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 0, VPX_BITS_10), make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 1, VPX_BITS_10), make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 2, VPX_BITS_10), make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 3, VPX_BITS_10), make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 0, VPX_BITS_12), make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 1, VPX_BITS_12), make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 2, VPX_BITS_12), make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 3, VPX_BITS_12), make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8), make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8), make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8), make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8))); #else INSTANTIATE_TEST_CASE_P( C, Trans16x16HT, ::testing::Values( make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8), make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8), make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8), make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8))); #endif #if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( NEON, Trans16x16DCT, ::testing::Values( make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_neon, 0, VPX_BITS_8))); #endif #if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( SSE2, Trans16x16DCT, ::testing::Values( make_tuple(&vp9_fdct16x16_sse2, &vp9_idct16x16_256_add_sse2, 0, VPX_BITS_8))); INSTANTIATE_TEST_CASE_P( SSE2, Trans16x16HT, ::testing::Values( make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 0, VPX_BITS_8), make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 1, VPX_BITS_8), make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 2, VPX_BITS_8), make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 3, VPX_BITS_8))); #endif #if HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( SSSE3, Trans16x16DCT, ::testing::Values( make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_ssse3, 0, VPX_BITS_8))); #endif } // namespace