ref: 36f796d2d04208eacadfa12363d154511acf4d43
dir: /vp9/decoder/vp9_decodemv.c/
/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decodeframe.h" #include "vpx_dsp/vpx_dsp_common.h" static PREDICTION_MODE read_intra_mode(vpx_reader *r, const vpx_prob *p) { return (PREDICTION_MODE)vpx_read_tree(r, vp9_intra_mode_tree, p); } static PREDICTION_MODE read_intra_mode_y(VP9_COMMON *cm, MACROBLOCKD *xd, vpx_reader *r, int size_group) { const PREDICTION_MODE y_mode = read_intra_mode(r, cm->fc->y_mode_prob[size_group]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->y_mode[size_group][y_mode]; return y_mode; } static PREDICTION_MODE read_intra_mode_uv(VP9_COMMON *cm, MACROBLOCKD *xd, vpx_reader *r, PREDICTION_MODE y_mode) { const PREDICTION_MODE uv_mode = read_intra_mode(r, cm->fc->uv_mode_prob[y_mode]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->uv_mode[y_mode][uv_mode]; return uv_mode; } static PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, MACROBLOCKD *xd, vpx_reader *r, int ctx) { const int mode = vpx_read_tree(r, vp9_inter_mode_tree, cm->fc->inter_mode_probs[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->inter_mode[ctx][mode]; return NEARESTMV + mode; } static int read_segment_id(vpx_reader *r, const struct segmentation *seg) { return vpx_read_tree(r, vp9_segment_tree, seg->tree_probs); } static TX_SIZE read_selected_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, TX_SIZE max_tx_size, vpx_reader *r) { FRAME_COUNTS *counts = xd->counts; const int ctx = get_tx_size_context(xd); const vpx_prob *tx_probs = get_tx_probs(max_tx_size, ctx, &cm->fc->tx_probs); int tx_size = vpx_read(r, tx_probs[0]); if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { tx_size += vpx_read(r, tx_probs[1]); if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) tx_size += vpx_read(r, tx_probs[2]); } if (counts) ++get_tx_counts(max_tx_size, ctx, &counts->tx)[tx_size]; return (TX_SIZE)tx_size; } static INLINE TX_SIZE read_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, int allow_select, vpx_reader *r) { TX_MODE tx_mode = cm->tx_mode; BLOCK_SIZE bsize = xd->mi[0]->sb_type; const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8) return read_selected_tx_size(cm, xd, max_tx_size, r); else return VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]); } static int dec_get_segment_id(const VP9_COMMON *cm, const uint8_t *segment_ids, int mi_offset, int x_mis, int y_mis) { int x, y, segment_id = INT_MAX; for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) segment_id = VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; } static void set_segment_id(VP9_COMMON *cm, int mi_offset, int x_mis, int y_mis, int segment_id) { int x, y; assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; } static void copy_segment_id(const VP9_COMMON *cm, const uint8_t *last_segment_ids, uint8_t *current_segment_ids, int mi_offset, int x_mis, int y_mis) { int x, y; for (y = 0; y < y_mis; y++) for (x = 0; x < x_mis; x++) current_segment_ids[mi_offset + y * cm->mi_cols + x] = last_segment_ids ? last_segment_ids[mi_offset + y * cm->mi_cols + x] : 0; } static int read_intra_segment_id(VP9_COMMON *const cm, int mi_offset, int x_mis, int y_mis, vpx_reader *r) { struct segmentation *const seg = &cm->seg; int segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation if (!seg->update_map) { copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map, mi_offset, x_mis, y_mis); return 0; } segment_id = read_segment_id(r, seg); set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, vpx_reader *r, int x_mis, int y_mis) { struct segmentation *const seg = &cm->seg; MODE_INFO *const mi = xd->mi[0]; int predicted_segment_id, segment_id; const int mi_offset = mi_row * cm->mi_cols + mi_col; if (!seg->enabled) return 0; // Default for disabled segmentation predicted_segment_id = cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map, mi_offset, x_mis, y_mis) : 0; if (!seg->update_map) { copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map, mi_offset, x_mis, y_mis); return predicted_segment_id; } if (seg->temporal_update) { const vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); mi->seg_id_predicted = vpx_read(r, pred_prob); segment_id = mi->seg_id_predicted ? predicted_segment_id : read_segment_id(r, seg); } else { segment_id = read_segment_id(r, seg); } set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); return segment_id; } static int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd, int segment_id, vpx_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int ctx = vp9_get_skip_context(xd); const int skip = vpx_read(r, cm->fc->skip_probs[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->skip[ctx][skip]; return skip; } } static void read_intra_frame_mode_info(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, vpx_reader *r, int x_mis, int y_mis) { MODE_INFO *const mi = xd->mi[0]; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; const BLOCK_SIZE bsize = mi->sb_type; int i; const int mi_offset = mi_row * cm->mi_cols + mi_col; mi->segment_id = read_intra_segment_id(cm, mi_offset, x_mis, y_mis, r); mi->skip = read_skip(cm, xd, mi->segment_id, r); mi->tx_size = read_tx_size(cm, xd, 1, r); mi->ref_frame[0] = INTRA_FRAME; mi->ref_frame[1] = NONE; switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, i)); mi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mi->mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 1)); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mi->mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 2)); break; default: mi->mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); } mi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mi->mode]); } static int read_mv_component(vpx_reader *r, const nmv_component *mvcomp, int usehp) { int mag, d, fr, hp; const int sign = vpx_read(r, mvcomp->sign); const int mv_class = vpx_read_tree(r, vp9_mv_class_tree, mvcomp->classes); const int class0 = mv_class == MV_CLASS_0; // Integer part if (class0) { d = vpx_read_tree(r, vp9_mv_class0_tree, mvcomp->class0); mag = 0; } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vpx_read(r, mvcomp->bits[i]) << i; mag = CLASS0_SIZE << (mv_class + 2); } // Fractional part fr = vpx_read_tree(r, vp9_mv_fp_tree, class0 ? mvcomp->class0_fp[d] : mvcomp->fp); // High precision part (if hp is not used, the default value of the hp is 1) hp = usehp ? vpx_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp) : 1; // Result mag += ((d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static INLINE void read_mv(vpx_reader *r, MV *mv, const MV *ref, const nmv_context *ctx, nmv_context_counts *counts, int allow_hp) { const MV_JOINT_TYPE joint_type = (MV_JOINT_TYPE)vpx_read_tree(r, vp9_mv_joint_tree, ctx->joints); const int use_hp = allow_hp && use_mv_hp(ref); MV diff = {0, 0}; if (mv_joint_vertical(joint_type)) diff.row = read_mv_component(r, &ctx->comps[0], use_hp); if (mv_joint_horizontal(joint_type)) diff.col = read_mv_component(r, &ctx->comps[1], use_hp); vp9_inc_mv(&diff, counts); mv->row = ref->row + diff.row; mv->col = ref->col + diff.col; } static REFERENCE_MODE read_block_reference_mode(VP9_COMMON *cm, const MACROBLOCKD *xd, vpx_reader *r) { if (cm->reference_mode == REFERENCE_MODE_SELECT) { const int ctx = vp9_get_reference_mode_context(cm, xd); const REFERENCE_MODE mode = (REFERENCE_MODE)vpx_read(r, cm->fc->comp_inter_prob[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->comp_inter[ctx][mode]; return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE } else { return cm->reference_mode; } } // Read the referncence frame static void read_ref_frames(VP9_COMMON *const cm, MACROBLOCKD *const xd, vpx_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { FRAME_CONTEXT *const fc = cm->fc; FRAME_COUNTS *counts = xd->counts; if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE; } else { const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r); // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding if (mode == COMPOUND_REFERENCE) { const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd); const int bit = vpx_read(r, fc->comp_ref_prob[ctx]); if (counts) ++counts->comp_ref[ctx][bit]; ref_frame[idx] = cm->comp_fixed_ref; ref_frame[!idx] = cm->comp_var_ref[bit]; } else if (mode == SINGLE_REFERENCE) { const int ctx0 = vp9_get_pred_context_single_ref_p1(xd); const int bit0 = vpx_read(r, fc->single_ref_prob[ctx0][0]); if (counts) ++counts->single_ref[ctx0][0][bit0]; if (bit0) { const int ctx1 = vp9_get_pred_context_single_ref_p2(xd); const int bit1 = vpx_read(r, fc->single_ref_prob[ctx1][1]); if (counts) ++counts->single_ref[ctx1][1][bit1]; ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME; } else { ref_frame[0] = LAST_FRAME; } ref_frame[1] = NONE; } else { assert(0 && "Invalid prediction mode."); } } } // TODO(slavarnway): Move this decoder version of // vp9_get_pred_context_switchable_interp() to vp9_pred_common.h and update the // encoder. // // Returns a context number for the given MB prediction signal static int dec_get_pred_context_switchable_interp(const MACROBLOCKD *xd) { // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. const MODE_INFO *const left_mi = xd->left_mi; const int left_type = left_mi ? left_mi->interp_filter : SWITCHABLE_FILTERS; const MODE_INFO *const above_mi = xd->above_mi; const int above_type = above_mi ? above_mi->interp_filter : SWITCHABLE_FILTERS; if (left_type == above_type) return left_type; else if (left_type == SWITCHABLE_FILTERS && above_type != SWITCHABLE_FILTERS) return above_type; else if (left_type != SWITCHABLE_FILTERS && above_type == SWITCHABLE_FILTERS) return left_type; else return SWITCHABLE_FILTERS; } static INLINE INTERP_FILTER read_switchable_interp_filter( VP9_COMMON *const cm, MACROBLOCKD *const xd, vpx_reader *r) { const int ctx = dec_get_pred_context_switchable_interp(xd); const INTERP_FILTER type = (INTERP_FILTER)vpx_read_tree(r, vp9_switchable_interp_tree, cm->fc->switchable_interp_prob[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->switchable_interp[ctx][type]; return type; } static void read_intra_block_mode_info(VP9_COMMON *const cm, MACROBLOCKD *const xd, MODE_INFO *mi, vpx_reader *r) { const BLOCK_SIZE bsize = mi->sb_type; int i; switch (bsize) { case BLOCK_4X4: for (i = 0; i < 4; ++i) mi->bmi[i].as_mode = read_intra_mode_y(cm, xd, r, 0); mi->mode = mi->bmi[3].as_mode; break; case BLOCK_4X8: mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, xd, r, 0); mi->bmi[1].as_mode = mi->bmi[3].as_mode = mi->mode = read_intra_mode_y(cm, xd, r, 0); break; case BLOCK_8X4: mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, xd, r, 0); mi->bmi[2].as_mode = mi->bmi[3].as_mode = mi->mode = read_intra_mode_y(cm, xd, r, 0); break; default: mi->mode = read_intra_mode_y(cm, xd, r, size_group_lookup[bsize]); } mi->uv_mode = read_intra_mode_uv(cm, xd, r, mi->mode); // Initialize interp_filter here so we do not have to check for inter block // modes in dec_get_pred_context_switchable_interp() mi->interp_filter = SWITCHABLE_FILTERS; mi->ref_frame[0] = INTRA_FRAME; mi->ref_frame[1] = NONE; } static INLINE int is_mv_valid(const MV *mv) { return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW && mv->col < MV_UPP; } static INLINE void copy_mv_pair(int_mv *dst, const int_mv *src) { memcpy(dst, src, sizeof(*dst) * 2); } static INLINE void zero_mv_pair(int_mv *dst) { memset(dst, 0, sizeof(*dst) * 2); } static INLINE int assign_mv(VP9_COMMON *cm, MACROBLOCKD *xd, PREDICTION_MODE mode, int_mv mv[2], int_mv ref_mv[2], int_mv near_nearest_mv[2], int is_compound, int allow_hp, vpx_reader *r) { int i; int ret = 1; switch (mode) { case NEWMV: { FRAME_COUNTS *counts = xd->counts; nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; for (i = 0; i < 1 + is_compound; ++i) { read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc, mv_counts, allow_hp); ret = ret && is_mv_valid(&mv[i].as_mv); } break; } case NEARMV: case NEARESTMV: { copy_mv_pair(mv, near_nearest_mv); break; } case ZEROMV: { zero_mv_pair(mv); break; } default: { return 0; } } return ret; } static int read_is_inter_block(VP9_COMMON *const cm, MACROBLOCKD *const xd, int segment_id, vpx_reader *r) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { return get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; } else { const int ctx = get_intra_inter_context(xd); const int is_inter = vpx_read(r, cm->fc->intra_inter_prob[ctx]); FRAME_COUNTS *counts = xd->counts; if (counts) ++counts->intra_inter[ctx][is_inter]; return is_inter; } } static void dec_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *best_mv, int refmv_count) { int i; // Make sure all the candidates are properly clamped etc for (i = 0; i < refmv_count; ++i) { lower_mv_precision(&mvlist[i].as_mv, allow_hp); *best_mv = mvlist[i]; } } static void fpm_sync(void *const data, int mi_row) { VP9Decoder *const pbi = (VP9Decoder *)data; vp9_frameworker_wait(pbi->frame_worker_owner, pbi->common.prev_frame, mi_row << MI_BLOCK_SIZE_LOG2); } // This macro is used to add a motion vector mv_ref list if it isn't // already in the list. If it's the second motion vector or early_break // it will also skip all additional processing and jump to Done! #define ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done) \ do { \ if (refmv_count) { \ if ((mv).as_int != (mv_ref_list)[0].as_int) { \ (mv_ref_list)[(refmv_count)] = (mv); \ refmv_count++; \ goto Done; \ } \ } else { \ (mv_ref_list)[(refmv_count)++] = (mv); \ if (early_break) \ goto Done; \ } \ } while (0) // If either reference frame is different, not INTRA, and they // are different from each other scale and add the mv to our list. #define IF_DIFF_REF_FRAME_ADD_MV_EB(mbmi, ref_frame, ref_sign_bias, \ refmv_count, mv_ref_list, Done) \ do { \ if (is_inter_block(mbmi)) { \ if ((mbmi)->ref_frame[0] != ref_frame) \ ADD_MV_REF_LIST_EB(scale_mv((mbmi), 0, ref_frame, ref_sign_bias), \ refmv_count, mv_ref_list, Done); \ if (has_second_ref(mbmi) && \ (mbmi)->ref_frame[1] != ref_frame && \ (mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \ ADD_MV_REF_LIST_EB(scale_mv((mbmi), 1, ref_frame, ref_sign_bias), \ refmv_count, mv_ref_list, Done); \ } \ } while (0) // This function searches the neighborhood of a given MB/SB // to try and find candidate reference vectors. static int dec_find_mv_refs(const VP9_COMMON *cm, const MACROBLOCKD *xd, PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, const POSITION *const mv_ref_search, int_mv *mv_ref_list, int mi_row, int mi_col, int block, int is_sub8x8, find_mv_refs_sync sync, void *const data) { const int *ref_sign_bias = cm->ref_frame_sign_bias; int i, refmv_count = 0; int different_ref_found = 0; const MV_REF *const prev_frame_mvs = cm->use_prev_frame_mvs ? cm->prev_frame->mvs + mi_row * cm->mi_cols + mi_col : NULL; const TileInfo *const tile = &xd->tile; // If mode is nearestmv or newmv (uses nearestmv as a reference) then stop // searching after the first mv is found. const int early_break = (mode != NEARMV); // Blank the reference vector list memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); i = 0; if (is_sub8x8) { // If the size < 8x8 we get the mv from the bmi substructure for the // nearest two blocks. for (i = 0; i < 2; ++i) { const POSITION *const mv_ref = &mv_ref_search[i]; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; different_ref_found = 1; if (candidate_mi->ref_frame[0] == ref_frame) ADD_MV_REF_LIST_EB( get_sub_block_mv(candidate_mi, 0, mv_ref->col, block), refmv_count, mv_ref_list, Done); else if (candidate_mi->ref_frame[1] == ref_frame) ADD_MV_REF_LIST_EB( get_sub_block_mv(candidate_mi, 1, mv_ref->col, block), refmv_count, mv_ref_list, Done); } } } // Check the rest of the neighbors in much the same way // as before except we don't need to keep track of sub blocks or // mode counts. for (; i < MVREF_NEIGHBOURS; ++i) { const POSITION *const mv_ref = &mv_ref_search[i]; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { const MODE_INFO *const candidate = xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; different_ref_found = 1; if (candidate->ref_frame[0] == ref_frame) ADD_MV_REF_LIST_EB(candidate->mv[0], refmv_count, mv_ref_list, Done); else if (candidate->ref_frame[1] == ref_frame) ADD_MV_REF_LIST_EB(candidate->mv[1], refmv_count, mv_ref_list, Done); } } // TODO(hkuang): Remove this sync after fixing pthread_cond_broadcast // on windows platform. The sync here is unnecessary if use_prev_frame_mvs // is 0. But after removing it, there will be hang in the unit test on windows // due to several threads waiting for a thread's signal. #if defined(_WIN32) && !HAVE_PTHREAD_H if (cm->frame_parallel_decode && sync != NULL) { sync(data, mi_row); } #endif // Check the last frame's mode and mv info. if (prev_frame_mvs) { // Synchronize here for frame parallel decode if sync function is provided. if (cm->frame_parallel_decode && sync != NULL) { sync(data, mi_row); } if (prev_frame_mvs->ref_frame[0] == ref_frame) { ADD_MV_REF_LIST_EB(prev_frame_mvs->mv[0], refmv_count, mv_ref_list, Done); } else if (prev_frame_mvs->ref_frame[1] == ref_frame) { ADD_MV_REF_LIST_EB(prev_frame_mvs->mv[1], refmv_count, mv_ref_list, Done); } } // Since we couldn't find 2 mvs from the same reference frame // go back through the neighbors and find motion vectors from // different reference frames. if (different_ref_found) { for (i = 0; i < MVREF_NEIGHBOURS; ++i) { const POSITION *mv_ref = &mv_ref_search[i]; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { const MODE_INFO *const candidate = xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; // If the candidate is INTRA we don't want to consider its mv. IF_DIFF_REF_FRAME_ADD_MV_EB(candidate, ref_frame, ref_sign_bias, refmv_count, mv_ref_list, Done); } } } // Since we still don't have a candidate we'll try the last frame. if (prev_frame_mvs) { if (prev_frame_mvs->ref_frame[0] != ref_frame && prev_frame_mvs->ref_frame[0] > INTRA_FRAME) { int_mv mv = prev_frame_mvs->mv[0]; if (ref_sign_bias[prev_frame_mvs->ref_frame[0]] != ref_sign_bias[ref_frame]) { mv.as_mv.row *= -1; mv.as_mv.col *= -1; } ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done); } if (prev_frame_mvs->ref_frame[1] > INTRA_FRAME && prev_frame_mvs->ref_frame[1] != ref_frame && prev_frame_mvs->mv[1].as_int != prev_frame_mvs->mv[0].as_int) { int_mv mv = prev_frame_mvs->mv[1]; if (ref_sign_bias[prev_frame_mvs->ref_frame[1]] != ref_sign_bias[ref_frame]) { mv.as_mv.row *= -1; mv.as_mv.col *= -1; } ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done); } } if (mode == NEARMV) refmv_count = MAX_MV_REF_CANDIDATES; else // we only care about the nearestmv for the remaining modes refmv_count = 1; Done: // Clamp vectors for (i = 0; i < refmv_count; ++i) clamp_mv_ref(&mv_ref_list[i].as_mv, xd); return refmv_count; } static void append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd, const POSITION *const mv_ref_search, PREDICTION_MODE b_mode, int block, int ref, int mi_row, int mi_col, int_mv *best_sub8x8) { int_mv mv_list[MAX_MV_REF_CANDIDATES]; MODE_INFO *const mi = xd->mi[0]; b_mode_info *bmi = mi->bmi; int n; int refmv_count; assert(MAX_MV_REF_CANDIDATES == 2); refmv_count = dec_find_mv_refs(cm, xd, b_mode, mi->ref_frame[ref], mv_ref_search, mv_list, mi_row, mi_col, block, 1, NULL, NULL); switch (block) { case 0: best_sub8x8->as_int = mv_list[refmv_count - 1].as_int; break; case 1: case 2: if (b_mode == NEARESTMV) { best_sub8x8->as_int = bmi[0].as_mv[ref].as_int; } else { best_sub8x8->as_int = 0; for (n = 0; n < refmv_count; ++n) if (bmi[0].as_mv[ref].as_int != mv_list[n].as_int) { best_sub8x8->as_int = mv_list[n].as_int; break; } } break; case 3: if (b_mode == NEARESTMV) { best_sub8x8->as_int = bmi[2].as_mv[ref].as_int; } else { int_mv candidates[2 + MAX_MV_REF_CANDIDATES]; candidates[0] = bmi[1].as_mv[ref]; candidates[1] = bmi[0].as_mv[ref]; candidates[2] = mv_list[0]; candidates[3] = mv_list[1]; best_sub8x8->as_int = 0; for (n = 0; n < 2 + MAX_MV_REF_CANDIDATES; ++n) if (bmi[2].as_mv[ref].as_int != candidates[n].as_int) { best_sub8x8->as_int = candidates[n].as_int; break; } } break; default: assert(0 && "Invalid block index."); } } static uint8_t get_mode_context(const VP9_COMMON *cm, const MACROBLOCKD *xd, const POSITION *const mv_ref_search, int mi_row, int mi_col) { int i; int context_counter = 0; const TileInfo *const tile = &xd->tile; // Get mode count from nearest 2 blocks for (i = 0; i < 2; ++i) { const POSITION *const mv_ref = &mv_ref_search[i]; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { const MODE_INFO *const candidate = xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; // Keep counts for entropy encoding. context_counter += mode_2_counter[candidate->mode]; } } return counter_to_context[context_counter]; } static void read_inter_block_mode_info(VP9Decoder *const pbi, MACROBLOCKD *const xd, MODE_INFO *const mi, int mi_row, int mi_col, vpx_reader *r) { VP9_COMMON *const cm = &pbi->common; const BLOCK_SIZE bsize = mi->sb_type; const int allow_hp = cm->allow_high_precision_mv; int_mv best_ref_mvs[2]; int ref, is_compound; uint8_t inter_mode_ctx; const POSITION *const mv_ref_search = mv_ref_blocks[bsize]; read_ref_frames(cm, xd, r, mi->segment_id, mi->ref_frame); is_compound = has_second_ref(mi); inter_mode_ctx = get_mode_context(cm, xd, mv_ref_search, mi_row, mi_col); if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) { mi->mode = ZEROMV; if (bsize < BLOCK_8X8) { vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Invalid usage of segement feature on small blocks"); return; } } else { if (bsize >= BLOCK_8X8) mi->mode = read_inter_mode(cm, xd, r, inter_mode_ctx); else // Sub 8x8 blocks use the nearestmv as a ref_mv if the b_mode is NEWMV. // Setting mode to NEARESTMV forces the search to stop after the nearestmv // has been found. After b_modes have been read, mode will be overwritten // by the last b_mode. mi->mode = NEARESTMV; if (mi->mode != ZEROMV) { for (ref = 0; ref < 1 + is_compound; ++ref) { int_mv tmp_mvs[MAX_MV_REF_CANDIDATES]; const MV_REFERENCE_FRAME frame = mi->ref_frame[ref]; int refmv_count; refmv_count = dec_find_mv_refs(cm, xd, mi->mode, frame, mv_ref_search, tmp_mvs, mi_row, mi_col, -1, 0, fpm_sync, (void *)pbi); dec_find_best_ref_mvs(allow_hp, tmp_mvs, &best_ref_mvs[ref], refmv_count); } } } mi->interp_filter = (cm->interp_filter == SWITCHABLE) ? read_switchable_interp_filter(cm, xd, r) : cm->interp_filter; if (bsize < BLOCK_8X8) { const int num_4x4_w = 1 << xd->bmode_blocks_wl; const int num_4x4_h = 1 << xd->bmode_blocks_hl; int idx, idy; PREDICTION_MODE b_mode; int_mv best_sub8x8[2]; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; b_mode = read_inter_mode(cm, xd, r, inter_mode_ctx); if (b_mode == NEARESTMV || b_mode == NEARMV) { for (ref = 0; ref < 1 + is_compound; ++ref) append_sub8x8_mvs_for_idx(cm, xd, mv_ref_search, b_mode, j, ref, mi_row, mi_col, &best_sub8x8[ref]); } if (!assign_mv(cm, xd, b_mode, mi->bmi[j].as_mv, best_ref_mvs, best_sub8x8, is_compound, allow_hp, r)) { xd->corrupted |= 1; break; } if (num_4x4_h == 2) mi->bmi[j + 2] = mi->bmi[j]; if (num_4x4_w == 2) mi->bmi[j + 1] = mi->bmi[j]; } } mi->mode = b_mode; copy_mv_pair(mi->mv, mi->bmi[3].as_mv); } else { xd->corrupted |= !assign_mv(cm, xd, mi->mode, mi->mv, best_ref_mvs, best_ref_mvs, is_compound, allow_hp, r); } } static void read_inter_frame_mode_info(VP9Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, vpx_reader *r, int x_mis, int y_mis) { VP9_COMMON *const cm = &pbi->common; MODE_INFO *const mi = xd->mi[0]; int inter_block; mi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r, x_mis, y_mis); mi->skip = read_skip(cm, xd, mi->segment_id, r); inter_block = read_is_inter_block(cm, xd, mi->segment_id, r); mi->tx_size = read_tx_size(cm, xd, !mi->skip || !inter_block, r); if (inter_block) read_inter_block_mode_info(pbi, xd, mi, mi_row, mi_col, r); else read_intra_block_mode_info(cm, xd, mi, r); } static INLINE void copy_ref_frame_pair(MV_REFERENCE_FRAME *dst, const MV_REFERENCE_FRAME *src) { memcpy(dst, src, sizeof(*dst) * 2); } void vp9_read_mode_info(VP9Decoder *const pbi, MACROBLOCKD *xd, int mi_row, int mi_col, vpx_reader *r, int x_mis, int y_mis) { VP9_COMMON *const cm = &pbi->common; MODE_INFO *const mi = xd->mi[0]; MV_REF* frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; int w, h; if (frame_is_intra_only(cm)) { read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r, x_mis, y_mis); } else { read_inter_frame_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); for (h = 0; h < y_mis; ++h) { for (w = 0; w < x_mis; ++w) { MV_REF *const mv = frame_mvs + w; copy_ref_frame_pair(mv->ref_frame, mi->ref_frame); copy_mv_pair(mv->mv, mi->mv); } frame_mvs += cm->mi_cols; } } }