ref: 393d9d0195cfb4b4f4a092ca41e57a146dfa678a
dir: /examples/vp9_spatial_svc_encoder.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This is an example demonstrating how to implement a multi-layer * VP9 encoding scheme based on spatial scalability for video applications * that benefit from a scalable bitstream. */ #include <math.h> #include <stdarg.h> #include <stdlib.h> #include <string.h> #include <time.h> #include "../args.h" #include "../tools_common.h" #include "../video_writer.h" #include "../vpx_ports/vpx_timer.h" #include "vpx/svc_context.h" #include "vpx/vp8cx.h" #include "vpx/vpx_encoder.h" #include "../vpxstats.h" #include "vp9/encoder/vp9_encoder.h" #define OUTPUT_RC_STATS 1 static const arg_def_t skip_frames_arg = ARG_DEF("s", "skip-frames", 1, "input frames to skip"); static const arg_def_t frames_arg = ARG_DEF("f", "frames", 1, "number of frames to encode"); static const arg_def_t threads_arg = ARG_DEF("th", "threads", 1, "number of threads to use"); #if OUTPUT_RC_STATS static const arg_def_t output_rc_stats_arg = ARG_DEF("rcstat", "output_rc_stats", 1, "output rc stats"); #endif static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width"); static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height"); static const arg_def_t timebase_arg = ARG_DEF("t", "timebase", 1, "timebase (num/den)"); static const arg_def_t bitrate_arg = ARG_DEF( "b", "target-bitrate", 1, "encoding bitrate, in kilobits per second"); static const arg_def_t spatial_layers_arg = ARG_DEF("sl", "spatial-layers", 1, "number of spatial SVC layers"); static const arg_def_t temporal_layers_arg = ARG_DEF("tl", "temporal-layers", 1, "number of temporal SVC layers"); static const arg_def_t temporal_layering_mode_arg = ARG_DEF("tlm", "temporal-layering-mode", 1, "temporal layering scheme." "VP9E_TEMPORAL_LAYERING_MODE"); static const arg_def_t kf_dist_arg = ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes"); static const arg_def_t scale_factors_arg = ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)"); static const arg_def_t passes_arg = ARG_DEF("p", "passes", 1, "Number of passes (1/2)"); static const arg_def_t pass_arg = ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)"); static const arg_def_t fpf_name_arg = ARG_DEF(NULL, "fpf", 1, "First pass statistics file name"); static const arg_def_t min_q_arg = ARG_DEF(NULL, "min-q", 1, "Minimum quantizer"); static const arg_def_t max_q_arg = ARG_DEF(NULL, "max-q", 1, "Maximum quantizer"); static const arg_def_t min_bitrate_arg = ARG_DEF(NULL, "min-bitrate", 1, "Minimum bitrate"); static const arg_def_t max_bitrate_arg = ARG_DEF(NULL, "max-bitrate", 1, "Maximum bitrate"); static const arg_def_t lag_in_frame_arg = ARG_DEF(NULL, "lag-in-frames", 1, "Number of frame to input before " "generating any outputs"); static const arg_def_t rc_end_usage_arg = ARG_DEF(NULL, "rc-end-usage", 1, "0 - 3: VBR, CBR, CQ, Q"); static const arg_def_t speed_arg = ARG_DEF("sp", "speed", 1, "speed configuration"); static const arg_def_t aqmode_arg = ARG_DEF("aq", "aqmode", 1, "aq-mode off/on"); static const arg_def_t bitrates_arg = ARG_DEF("bl", "bitrates", 1, "bitrates[sl * num_tl + tl]"); #if CONFIG_VP9_HIGHBITDEPTH static const struct arg_enum_list bitdepth_enum[] = { { "8", VPX_BITS_8 }, { "10", VPX_BITS_10 }, { "12", VPX_BITS_12 }, { NULL, 0 } }; static const arg_def_t bitdepth_arg = ARG_DEF_ENUM( "d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum); #endif // CONFIG_VP9_HIGHBITDEPTH static const arg_def_t *svc_args[] = { &frames_arg, &width_arg, &height_arg, &timebase_arg, &bitrate_arg, &skip_frames_arg, &spatial_layers_arg, &kf_dist_arg, &scale_factors_arg, &passes_arg, &pass_arg, &fpf_name_arg, &min_q_arg, &max_q_arg, &min_bitrate_arg, &max_bitrate_arg, &temporal_layers_arg, &temporal_layering_mode_arg, &lag_in_frame_arg, &threads_arg, &aqmode_arg, #if OUTPUT_RC_STATS &output_rc_stats_arg, #endif #if CONFIG_VP9_HIGHBITDEPTH &bitdepth_arg, #endif &speed_arg, &rc_end_usage_arg, &bitrates_arg, NULL }; static const uint32_t default_frames_to_skip = 0; static const uint32_t default_frames_to_code = 60 * 60; static const uint32_t default_width = 1920; static const uint32_t default_height = 1080; static const uint32_t default_timebase_num = 1; static const uint32_t default_timebase_den = 60; static const uint32_t default_bitrate = 1000; static const uint32_t default_spatial_layers = 5; static const uint32_t default_temporal_layers = 1; static const uint32_t default_kf_dist = 100; static const uint32_t default_temporal_layering_mode = 0; static const uint32_t default_output_rc_stats = 0; static const int32_t default_speed = -1; // -1 means use library default. static const uint32_t default_threads = 0; // zero means use library default. typedef struct { const char *input_filename; const char *output_filename; uint32_t frames_to_code; uint32_t frames_to_skip; struct VpxInputContext input_ctx; stats_io_t rc_stats; int passes; int pass; } AppInput; static const char *exec_name; void usage_exit(void) { fprintf(stderr, "Usage: %s <options> input_filename output_filename\n", exec_name); fprintf(stderr, "Options:\n"); arg_show_usage(stderr, svc_args); exit(EXIT_FAILURE); } static void parse_command_line(int argc, const char **argv_, AppInput *app_input, SvcContext *svc_ctx, vpx_codec_enc_cfg_t *enc_cfg) { struct arg arg = { 0 }; char **argv = NULL; char **argi = NULL; char **argj = NULL; vpx_codec_err_t res; int passes = 0; int pass = 0; const char *fpf_file_name = NULL; unsigned int min_bitrate = 0; unsigned int max_bitrate = 0; char string_options[1024] = { 0 }; // initialize SvcContext with parameters that will be passed to vpx_svc_init svc_ctx->log_level = SVC_LOG_DEBUG; svc_ctx->spatial_layers = default_spatial_layers; svc_ctx->temporal_layers = default_temporal_layers; svc_ctx->temporal_layering_mode = default_temporal_layering_mode; #if OUTPUT_RC_STATS svc_ctx->output_rc_stat = default_output_rc_stats; #endif svc_ctx->speed = default_speed; svc_ctx->threads = default_threads; // start with default encoder configuration res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0); if (res) { die("Failed to get config: %s\n", vpx_codec_err_to_string(res)); } // update enc_cfg with app default values enc_cfg->g_w = default_width; enc_cfg->g_h = default_height; enc_cfg->g_timebase.num = default_timebase_num; enc_cfg->g_timebase.den = default_timebase_den; enc_cfg->rc_target_bitrate = default_bitrate; enc_cfg->kf_min_dist = default_kf_dist; enc_cfg->kf_max_dist = default_kf_dist; enc_cfg->rc_end_usage = VPX_CQ; // initialize AppInput with default values app_input->frames_to_code = default_frames_to_code; app_input->frames_to_skip = default_frames_to_skip; // process command line options argv = argv_dup(argc - 1, argv_ + 1); for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &frames_arg, argi)) { app_input->frames_to_code = arg_parse_uint(&arg); } else if (arg_match(&arg, &width_arg, argi)) { enc_cfg->g_w = arg_parse_uint(&arg); } else if (arg_match(&arg, &height_arg, argi)) { enc_cfg->g_h = arg_parse_uint(&arg); } else if (arg_match(&arg, &timebase_arg, argi)) { enc_cfg->g_timebase = arg_parse_rational(&arg); } else if (arg_match(&arg, &bitrate_arg, argi)) { enc_cfg->rc_target_bitrate = arg_parse_uint(&arg); } else if (arg_match(&arg, &skip_frames_arg, argi)) { app_input->frames_to_skip = arg_parse_uint(&arg); } else if (arg_match(&arg, &spatial_layers_arg, argi)) { svc_ctx->spatial_layers = arg_parse_uint(&arg); } else if (arg_match(&arg, &temporal_layers_arg, argi)) { svc_ctx->temporal_layers = arg_parse_uint(&arg); #if OUTPUT_RC_STATS } else if (arg_match(&arg, &output_rc_stats_arg, argi)) { svc_ctx->output_rc_stat = arg_parse_uint(&arg); #endif } else if (arg_match(&arg, &speed_arg, argi)) { svc_ctx->speed = arg_parse_uint(&arg); } else if (arg_match(&arg, &aqmode_arg, argi)) { svc_ctx->aqmode = arg_parse_uint(&arg); } else if (arg_match(&arg, &threads_arg, argi)) { svc_ctx->threads = arg_parse_uint(&arg); } else if (arg_match(&arg, &temporal_layering_mode_arg, argi)) { svc_ctx->temporal_layering_mode = enc_cfg->temporal_layering_mode = arg_parse_int(&arg); if (svc_ctx->temporal_layering_mode) { enc_cfg->g_error_resilient = 1; } } else if (arg_match(&arg, &kf_dist_arg, argi)) { enc_cfg->kf_min_dist = arg_parse_uint(&arg); enc_cfg->kf_max_dist = enc_cfg->kf_min_dist; } else if (arg_match(&arg, &scale_factors_arg, argi)) { snprintf(string_options, sizeof(string_options), "%s scale-factors=%s", string_options, arg.val); } else if (arg_match(&arg, &bitrates_arg, argi)) { snprintf(string_options, sizeof(string_options), "%s bitrates=%s", string_options, arg.val); } else if (arg_match(&arg, &passes_arg, argi)) { passes = arg_parse_uint(&arg); if (passes < 1 || passes > 2) { die("Error: Invalid number of passes (%d)\n", passes); } } else if (arg_match(&arg, &pass_arg, argi)) { pass = arg_parse_uint(&arg); if (pass < 1 || pass > 2) { die("Error: Invalid pass selected (%d)\n", pass); } } else if (arg_match(&arg, &fpf_name_arg, argi)) { fpf_file_name = arg.val; } else if (arg_match(&arg, &min_q_arg, argi)) { snprintf(string_options, sizeof(string_options), "%s min-quantizers=%s", string_options, arg.val); } else if (arg_match(&arg, &max_q_arg, argi)) { snprintf(string_options, sizeof(string_options), "%s max-quantizers=%s", string_options, arg.val); } else if (arg_match(&arg, &min_bitrate_arg, argi)) { min_bitrate = arg_parse_uint(&arg); } else if (arg_match(&arg, &max_bitrate_arg, argi)) { max_bitrate = arg_parse_uint(&arg); } else if (arg_match(&arg, &lag_in_frame_arg, argi)) { enc_cfg->g_lag_in_frames = arg_parse_uint(&arg); } else if (arg_match(&arg, &rc_end_usage_arg, argi)) { enc_cfg->rc_end_usage = arg_parse_uint(&arg); #if CONFIG_VP9_HIGHBITDEPTH } else if (arg_match(&arg, &bitdepth_arg, argi)) { enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg); switch (enc_cfg->g_bit_depth) { case VPX_BITS_8: enc_cfg->g_input_bit_depth = 8; enc_cfg->g_profile = 0; break; case VPX_BITS_10: enc_cfg->g_input_bit_depth = 10; enc_cfg->g_profile = 2; break; case VPX_BITS_12: enc_cfg->g_input_bit_depth = 12; enc_cfg->g_profile = 2; break; default: die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth); break; } #endif // CONFIG_VP9_HIGHBITDEPTH } else { ++argj; } } // There will be a space in front of the string options if (strlen(string_options) > 0) vpx_svc_set_options(svc_ctx, string_options + 1); if (passes == 0 || passes == 1) { if (pass) { fprintf(stderr, "pass is ignored since there's only one pass\n"); } enc_cfg->g_pass = VPX_RC_ONE_PASS; } else { if (pass == 0) { die("pass must be specified when passes is 2\n"); } if (fpf_file_name == NULL) { die("fpf must be specified when passes is 2\n"); } if (pass == 1) { enc_cfg->g_pass = VPX_RC_FIRST_PASS; if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 0)) { fatal("Failed to open statistics store"); } } else { enc_cfg->g_pass = VPX_RC_LAST_PASS; if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 1)) { fatal("Failed to open statistics store"); } enc_cfg->rc_twopass_stats_in = stats_get(&app_input->rc_stats); } app_input->passes = passes; app_input->pass = pass; } if (enc_cfg->rc_target_bitrate > 0) { if (min_bitrate > 0) { enc_cfg->rc_2pass_vbr_minsection_pct = min_bitrate * 100 / enc_cfg->rc_target_bitrate; } if (max_bitrate > 0) { enc_cfg->rc_2pass_vbr_maxsection_pct = max_bitrate * 100 / enc_cfg->rc_target_bitrate; } } // Check for unrecognized options for (argi = argv; *argi; ++argi) if (argi[0][0] == '-' && strlen(argi[0]) > 1) die("Error: Unrecognized option %s\n", *argi); if (argv[0] == NULL || argv[1] == 0) { usage_exit(); } app_input->input_filename = argv[0]; app_input->output_filename = argv[1]; free(argv); if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 || enc_cfg->g_h % 2) die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h); printf( "Codec %s\nframes: %d, skip: %d\n" "layers: %d\n" "width %d, height: %d,\n" "num: %d, den: %d, bitrate: %d,\n" "gop size: %d\n", vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code, app_input->frames_to_skip, svc_ctx->spatial_layers, enc_cfg->g_w, enc_cfg->g_h, enc_cfg->g_timebase.num, enc_cfg->g_timebase.den, enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist); } #if OUTPUT_RC_STATS // For rate control encoding stats. struct RateControlStats { // Number of input frames per layer. int layer_input_frames[VPX_MAX_LAYERS]; // Total (cumulative) number of encoded frames per layer. int layer_tot_enc_frames[VPX_MAX_LAYERS]; // Number of encoded non-key frames per layer. int layer_enc_frames[VPX_MAX_LAYERS]; // Framerate per layer (cumulative). double layer_framerate[VPX_MAX_LAYERS]; // Target average frame size per layer (per-frame-bandwidth per layer). double layer_pfb[VPX_MAX_LAYERS]; // Actual average frame size per layer. double layer_avg_frame_size[VPX_MAX_LAYERS]; // Average rate mismatch per layer (|target - actual| / target). double layer_avg_rate_mismatch[VPX_MAX_LAYERS]; // Actual encoding bitrate per layer (cumulative). double layer_encoding_bitrate[VPX_MAX_LAYERS]; // Average of the short-time encoder actual bitrate. // TODO(marpan): Should we add these short-time stats for each layer? double avg_st_encoding_bitrate; // Variance of the short-time encoder actual bitrate. double variance_st_encoding_bitrate; // Window (number of frames) for computing short-time encoding bitrate. int window_size; // Number of window measurements. int window_count; }; // Note: these rate control stats assume only 1 key frame in the // sequence (i.e., first frame only). static void set_rate_control_stats(struct RateControlStats *rc, vpx_codec_enc_cfg_t *cfg) { unsigned int sl, tl; // Set the layer (cumulative) framerate and the target layer (non-cumulative) // per-frame-bandwidth, for the rate control encoding stats below. const double framerate = cfg->g_timebase.den / cfg->g_timebase.num; for (sl = 0; sl < cfg->ss_number_layers; ++sl) { for (tl = 0; tl < cfg->ts_number_layers; ++tl) { const int layer = sl * cfg->ts_number_layers + tl; if (cfg->ts_number_layers == 1) rc->layer_framerate[layer] = framerate; else rc->layer_framerate[layer] = framerate / cfg->ts_rate_decimator[tl]; if (tl > 0) { rc->layer_pfb[layer] = 1000.0 * (cfg->layer_target_bitrate[layer] - cfg->layer_target_bitrate[layer - 1]) / (rc->layer_framerate[layer] - rc->layer_framerate[layer - 1]); } else { rc->layer_pfb[layer] = 1000.0 * cfg->layer_target_bitrate[layer] / rc->layer_framerate[layer]; } rc->layer_input_frames[layer] = 0; rc->layer_enc_frames[layer] = 0; rc->layer_tot_enc_frames[layer] = 0; rc->layer_encoding_bitrate[layer] = 0.0; rc->layer_avg_frame_size[layer] = 0.0; rc->layer_avg_rate_mismatch[layer] = 0.0; } } rc->window_count = 0; rc->window_size = 15; rc->avg_st_encoding_bitrate = 0.0; rc->variance_st_encoding_bitrate = 0.0; } static void printout_rate_control_summary(struct RateControlStats *rc, vpx_codec_enc_cfg_t *cfg, int frame_cnt) { unsigned int sl, tl; double perc_fluctuation = 0.0; int tot_num_frames = 0; printf("Total number of processed frames: %d\n\n", frame_cnt - 1); printf("Rate control layer stats for sl%d tl%d layer(s):\n\n", cfg->ss_number_layers, cfg->ts_number_layers); for (sl = 0; sl < cfg->ss_number_layers; ++sl) { tot_num_frames = 0; for (tl = 0; tl < cfg->ts_number_layers; ++tl) { const int layer = sl * cfg->ts_number_layers + tl; const int num_dropped = (tl > 0) ? (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer]) : (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer] - 1); tot_num_frames += rc->layer_input_frames[layer]; rc->layer_encoding_bitrate[layer] = 0.001 * rc->layer_framerate[layer] * rc->layer_encoding_bitrate[layer] / tot_num_frames; rc->layer_avg_frame_size[layer] = rc->layer_avg_frame_size[layer] / rc->layer_enc_frames[layer]; rc->layer_avg_rate_mismatch[layer] = 100.0 * rc->layer_avg_rate_mismatch[layer] / rc->layer_enc_frames[layer]; printf("For layer#: sl%d tl%d \n", sl, tl); printf("Bitrate (target vs actual): %d %f.0 kbps\n", cfg->layer_target_bitrate[layer], rc->layer_encoding_bitrate[layer]); printf("Average frame size (target vs actual): %f %f bits\n", rc->layer_pfb[layer], rc->layer_avg_frame_size[layer]); printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[layer]); printf( "Number of input frames, encoded (non-key) frames, " "and percent dropped frames: %d %d %f.0 \n", rc->layer_input_frames[layer], rc->layer_enc_frames[layer], 100.0 * num_dropped / rc->layer_input_frames[layer]); printf("\n"); } } rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; rc->variance_st_encoding_bitrate = rc->variance_st_encoding_bitrate / rc->window_count - (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / rc->avg_st_encoding_bitrate; printf("Short-time stats, for window of %d frames: \n", rc->window_size); printf("Average, rms-variance, and percent-fluct: %f %f %f \n", rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate), perc_fluctuation); if (frame_cnt != tot_num_frames) die("Error: Number of input frames not equal to output encoded frames != " "%d tot_num_frames = %d\n", frame_cnt, tot_num_frames); } vpx_codec_err_t parse_superframe_index(const uint8_t *data, size_t data_sz, uint32_t sizes[8], int *count) { // A chunk ending with a byte matching 0xc0 is an invalid chunk unless // it is a super frame index. If the last byte of real video compression // data is 0xc0 the encoder must add a 0 byte. If we have the marker but // not the associated matching marker byte at the front of the index we have // an invalid bitstream and need to return an error. uint8_t marker; marker = *(data + data_sz - 1); *count = 0; if ((marker & 0xe0) == 0xc0) { const uint32_t frames = (marker & 0x7) + 1; const uint32_t mag = ((marker >> 3) & 0x3) + 1; const size_t index_sz = 2 + mag * frames; // This chunk is marked as having a superframe index but doesn't have // enough data for it, thus it's an invalid superframe index. if (data_sz < index_sz) return VPX_CODEC_CORRUPT_FRAME; { const uint8_t marker2 = *(data + data_sz - index_sz); // This chunk is marked as having a superframe index but doesn't have // the matching marker byte at the front of the index therefore it's an // invalid chunk. if (marker != marker2) return VPX_CODEC_CORRUPT_FRAME; } { // Found a valid superframe index. uint32_t i, j; const uint8_t *x = &data[data_sz - index_sz + 1]; for (i = 0; i < frames; ++i) { uint32_t this_sz = 0; for (j = 0; j < mag; ++j) this_sz |= (*x++) << (j * 8); sizes[i] = this_sz; } *count = frames; } } return VPX_CODEC_OK; } #endif // Example pattern for spatial layers and 2 temporal layers used in the // bypass/flexible mode. The pattern corresponds to the pattern // VP9E_TEMPORAL_LAYERING_MODE_0101 (temporal_layering_mode == 2) used in // non-flexible mode. void set_frame_flags_bypass_mode(int sl, int tl, int num_spatial_layers, int is_key_frame, vpx_svc_ref_frame_config_t *ref_frame_config) { for (sl = 0; sl < num_spatial_layers; ++sl) { if (!tl) { if (!sl) { ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; } else { if (is_key_frame) { ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; } else { ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; } } } else if (tl == 1) { if (!sl) { ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; } else { ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; } } if (tl == 0) { ref_frame_config->lst_fb_idx[sl] = sl; if (sl) ref_frame_config->gld_fb_idx[sl] = sl - 1; else ref_frame_config->gld_fb_idx[sl] = 0; ref_frame_config->alt_fb_idx[sl] = 0; } else if (tl == 1) { ref_frame_config->lst_fb_idx[sl] = sl; ref_frame_config->gld_fb_idx[sl] = num_spatial_layers + sl - 1; ref_frame_config->alt_fb_idx[sl] = num_spatial_layers + sl; } } } int main(int argc, const char **argv) { AppInput app_input = { 0 }; VpxVideoWriter *writer = NULL; VpxVideoInfo info = { 0 }; vpx_codec_ctx_t codec; vpx_codec_enc_cfg_t enc_cfg; SvcContext svc_ctx; uint32_t i; uint32_t frame_cnt = 0; vpx_image_t raw; vpx_codec_err_t res; int pts = 0; /* PTS starts at 0 */ int frame_duration = 1; /* 1 timebase tick per frame */ FILE *infile = NULL; int end_of_stream = 0; int frames_received = 0; #if OUTPUT_RC_STATS VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = { NULL }; struct RateControlStats rc; vpx_svc_layer_id_t layer_id; vpx_svc_ref_frame_config_t ref_frame_config; unsigned int sl, tl; double sum_bitrate = 0.0; double sum_bitrate2 = 0.0; double framerate = 30.0; #endif struct vpx_usec_timer timer; int64_t cx_time = 0; memset(&svc_ctx, 0, sizeof(svc_ctx)); svc_ctx.log_print = 1; exec_name = argv[0]; parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg); // Allocate image buffer #if CONFIG_VP9_HIGHBITDEPTH if (!vpx_img_alloc(&raw, enc_cfg.g_input_bit_depth == 8 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016, enc_cfg.g_w, enc_cfg.g_h, 32)) { die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h); } #else if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) { die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h); } #endif // CONFIG_VP9_HIGHBITDEPTH if (!(infile = fopen(app_input.input_filename, "rb"))) die("Failed to open %s for reading\n", app_input.input_filename); // Initialize codec if (vpx_svc_init(&svc_ctx, &codec, vpx_codec_vp9_cx(), &enc_cfg) != VPX_CODEC_OK) die("Failed to initialize encoder\n"); #if OUTPUT_RC_STATS if (svc_ctx.output_rc_stat) { set_rate_control_stats(&rc, &enc_cfg); framerate = enc_cfg.g_timebase.den / enc_cfg.g_timebase.num; } #endif info.codec_fourcc = VP9_FOURCC; info.time_base.numerator = enc_cfg.g_timebase.num; info.time_base.denominator = enc_cfg.g_timebase.den; if (!(app_input.passes == 2 && app_input.pass == 1)) { // We don't save the bitstream for the 1st pass on two pass rate control writer = vpx_video_writer_open(app_input.output_filename, kContainerIVF, &info); if (!writer) die("Failed to open %s for writing\n", app_input.output_filename); } #if OUTPUT_RC_STATS // For now, just write temporal layer streams. // TODO(marpan): do spatial by re-writing superframe. if (svc_ctx.output_rc_stat) { for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) { char file_name[PATH_MAX]; snprintf(file_name, sizeof(file_name), "%s_t%d.ivf", app_input.output_filename, tl); outfile[tl] = vpx_video_writer_open(file_name, kContainerIVF, &info); if (!outfile[tl]) die("Failed to open %s for writing", file_name); } } #endif // skip initial frames for (i = 0; i < app_input.frames_to_skip; ++i) vpx_img_read(&raw, infile); if (svc_ctx.speed != -1) vpx_codec_control(&codec, VP8E_SET_CPUUSED, svc_ctx.speed); if (svc_ctx.threads) vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (svc_ctx.threads >> 1)); if (svc_ctx.speed >= 5 && svc_ctx.aqmode == 1) vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3); if (svc_ctx.speed >= 5) vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1); // Encode frames while (!end_of_stream) { vpx_codec_iter_t iter = NULL; const vpx_codec_cx_pkt_t *cx_pkt; if (frame_cnt >= app_input.frames_to_code || !vpx_img_read(&raw, infile)) { // We need one extra vpx_svc_encode call at end of stream to flush // encoder and get remaining data end_of_stream = 1; } // For BYPASS/FLEXIBLE mode, set the frame flags (reference and updates) // and the buffer indices for each spatial layer of the current // (super)frame to be encoded. The temporal layer_id for the current frame // also needs to be set. // TODO(marpan): Should rename the "VP9E_TEMPORAL_LAYERING_MODE_BYPASS" // mode to "VP9E_LAYERING_MODE_BYPASS". if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { layer_id.spatial_layer_id = 0; // Example for 2 temporal layers. if (frame_cnt % 2 == 0) layer_id.temporal_layer_id = 0; else layer_id.temporal_layer_id = 1; // Note that we only set the temporal layer_id, since we are calling // the encode for the whole superframe. The encoder will internally loop // over all the spatial layers for the current superframe. vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id); set_frame_flags_bypass_mode(sl, layer_id.temporal_layer_id, svc_ctx.spatial_layers, frame_cnt == 0, &ref_frame_config); vpx_codec_control(&codec, VP9E_SET_SVC_REF_FRAME_CONFIG, &ref_frame_config); // Keep track of input frames, to account for frame drops in rate control // stats/metrics. for (sl = 0; sl < (unsigned int)enc_cfg.ss_number_layers; ++sl) { ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + layer_id.temporal_layer_id]; } } vpx_usec_timer_start(&timer); res = vpx_svc_encode( &svc_ctx, &codec, (end_of_stream ? NULL : &raw), pts, frame_duration, svc_ctx.speed >= 5 ? VPX_DL_REALTIME : VPX_DL_GOOD_QUALITY); vpx_usec_timer_mark(&timer); cx_time += vpx_usec_timer_elapsed(&timer); printf("%s", vpx_svc_get_message(&svc_ctx)); fflush(stdout); if (res != VPX_CODEC_OK) { die_codec(&codec, "Failed to encode frame"); } while ((cx_pkt = vpx_codec_get_cx_data(&codec, &iter)) != NULL) { switch (cx_pkt->kind) { case VPX_CODEC_CX_FRAME_PKT: { SvcInternal_t *const si = (SvcInternal_t *)svc_ctx.internal; if (cx_pkt->data.frame.sz > 0) { #if OUTPUT_RC_STATS uint32_t sizes[8]; int count = 0; #endif vpx_video_writer_write_frame(writer, cx_pkt->data.frame.buf, cx_pkt->data.frame.sz, cx_pkt->data.frame.pts); #if OUTPUT_RC_STATS // TODO(marpan): Put this (to line728) in separate function. if (svc_ctx.output_rc_stat) { vpx_codec_control(&codec, VP9E_GET_SVC_LAYER_ID, &layer_id); parse_superframe_index(cx_pkt->data.frame.buf, cx_pkt->data.frame.sz, sizes, &count); // Note computing input_layer_frames here won't account for frame // drops in rate control stats. // TODO(marpan): Fix this for non-bypass mode so we can get stats // for dropped frames. if (svc_ctx.temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + layer_id.temporal_layer_id]; } } for (tl = layer_id.temporal_layer_id; tl < enc_cfg.ts_number_layers; ++tl) { vpx_video_writer_write_frame( outfile[tl], cx_pkt->data.frame.buf, cx_pkt->data.frame.sz, cx_pkt->data.frame.pts); } for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { for (tl = layer_id.temporal_layer_id; tl < enc_cfg.ts_number_layers; ++tl) { const int layer = sl * enc_cfg.ts_number_layers + tl; ++rc.layer_tot_enc_frames[layer]; rc.layer_encoding_bitrate[layer] += 8.0 * sizes[sl]; // Keep count of rate control stats per layer, for non-key // frames. if (tl == (unsigned int)layer_id.temporal_layer_id && !(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)) { rc.layer_avg_frame_size[layer] += 8.0 * sizes[sl]; rc.layer_avg_rate_mismatch[layer] += fabs(8.0 * sizes[sl] - rc.layer_pfb[layer]) / rc.layer_pfb[layer]; ++rc.layer_enc_frames[layer]; } } } // Update for short-time encoding bitrate states, for moving // window of size rc->window, shifted by rc->window / 2. // Ignore first window segment, due to key frame. if (frame_cnt > (unsigned int)rc.window_size) { tl = layer_id.temporal_layer_id; for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { sum_bitrate += 0.001 * 8.0 * sizes[sl] * framerate; } if (frame_cnt % rc.window_size == 0) { rc.window_count += 1; rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size; rc.variance_st_encoding_bitrate += (sum_bitrate / rc.window_size) * (sum_bitrate / rc.window_size); sum_bitrate = 0.0; } } // Second shifted window. if (frame_cnt > (unsigned int)(rc.window_size + rc.window_size / 2)) { tl = layer_id.temporal_layer_id; for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { sum_bitrate2 += 0.001 * 8.0 * sizes[sl] * framerate; } if (frame_cnt > (unsigned int)(2 * rc.window_size) && frame_cnt % rc.window_size == 0) { rc.window_count += 1; rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size; rc.variance_st_encoding_bitrate += (sum_bitrate2 / rc.window_size) * (sum_bitrate2 / rc.window_size); sum_bitrate2 = 0.0; } } } #endif } /* printf("SVC frame: %d, kf: %d, size: %d, pts: %d\n", frames_received, !!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY), (int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts); */ if (enc_cfg.ss_number_layers == 1 && enc_cfg.ts_number_layers == 1) si->bytes_sum[0] += (int)cx_pkt->data.frame.sz; ++frames_received; break; } case VPX_CODEC_STATS_PKT: { stats_write(&app_input.rc_stats, cx_pkt->data.twopass_stats.buf, cx_pkt->data.twopass_stats.sz); break; } default: { break; } } } if (!end_of_stream) { ++frame_cnt; pts += frame_duration; } } // Compensate for the extra frame count for the bypass mode. if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { const int layer = sl * enc_cfg.ts_number_layers + layer_id.temporal_layer_id; --rc.layer_input_frames[layer]; } } printf("Processed %d frames\n", frame_cnt); fclose(infile); #if OUTPUT_RC_STATS if (svc_ctx.output_rc_stat) { printout_rate_control_summary(&rc, &enc_cfg, frame_cnt); printf("\n"); } #endif if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); if (app_input.passes == 2) stats_close(&app_input.rc_stats, 1); if (writer) { vpx_video_writer_close(writer); } #if OUTPUT_RC_STATS if (svc_ctx.output_rc_stat) { for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) { vpx_video_writer_close(outfile[tl]); } } #endif printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), 1000000 * (double)frame_cnt / (double)cx_time); vpx_img_free(&raw); // display average size, psnr printf("%s", vpx_svc_dump_statistics(&svc_ctx)); vpx_svc_release(&svc_ctx); return EXIT_SUCCESS; }