ref: 3f3d0adec18239f2b818cb6bafac407f2d6af66e
dir: /vp8/encoder/onyx_if.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "./vpx_scale_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vp8_rtcd.h" #include "bitstream.h" #include "vp8/common/onyxc_int.h" #include "vp8/common/blockd.h" #include "onyx_int.h" #include "vp8/common/systemdependent.h" #include "vp8/common/vp8_skin_detection.h" #include "vp8/encoder/quantize.h" #include "vp8/common/alloccommon.h" #include "mcomp.h" #include "firstpass.h" #include "vpx_dsp/psnr.h" #include "vpx_scale/vpx_scale.h" #include "vp8/common/extend.h" #include "ratectrl.h" #include "vp8/common/quant_common.h" #include "segmentation.h" #if CONFIG_POSTPROC #include "vp8/common/postproc.h" #endif #include "vpx_mem/vpx_mem.h" #include "vp8/common/reconintra.h" #include "vp8/common/swapyv12buffer.h" #include "vp8/common/threading.h" #include "vpx_ports/system_state.h" #include "vpx_ports/vpx_timer.h" #include "vpx_util/vpx_write_yuv_frame.h" #if ARCH_ARM #include "vpx_ports/arm.h" #endif #if CONFIG_MULTI_RES_ENCODING #include "mr_dissim.h" #endif #include "encodeframe.h" #if CONFIG_MULTITHREAD #include "ethreading.h" #endif #include "picklpf.h" #if !CONFIG_REALTIME_ONLY #include "temporal_filter.h" #endif #include <assert.h> #include <math.h> #include <stdio.h> #include <limits.h> #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING extern int vp8_update_coef_context(VP8_COMP *cpi); #endif extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag); extern void print_parms(VP8_CONFIG *ocf, char *filenam); extern unsigned int vp8_get_processor_freq(); extern void print_tree_update_probs(); int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest); static void set_default_lf_deltas(VP8_COMP *cpi); extern const int vp8_gf_interval_table[101]; #if CONFIG_INTERNAL_STATS #include "math.h" #include "vpx_dsp/ssim.h" #endif #ifdef OUTPUT_YUV_SRC FILE *yuv_file; #endif #ifdef OUTPUT_YUV_DENOISED FILE *yuv_denoised_file; #endif #ifdef OUTPUT_YUV_SKINMAP static FILE *yuv_skinmap_file = NULL; #endif #if 0 FILE *framepsnr; FILE *kf_list; FILE *keyfile; #endif #if 0 extern int skip_true_count; extern int skip_false_count; #endif #ifdef VP8_ENTROPY_STATS extern int intra_mode_stats[10][10][10]; #endif #ifdef SPEEDSTATS unsigned int frames_at_speed[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned int tot_pm = 0; unsigned int cnt_pm = 0; unsigned int tot_ef = 0; unsigned int cnt_ef = 0; #endif #ifdef MODE_STATS extern unsigned __int64 Sectionbits[50]; extern int y_modes[5]; extern int uv_modes[4]; extern int b_modes[10]; extern int inter_y_modes[10]; extern int inter_uv_modes[4]; extern unsigned int inter_b_modes[15]; #endif extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; extern const int qrounding_factors[129]; extern const int qzbin_factors[129]; extern void vp8cx_init_quantizer(VP8_COMP *cpi); extern const int vp8cx_base_skip_false_prob[128]; /* Tables relating active max Q to active min Q */ static const unsigned char kf_low_motion_minq[QINDEX_RANGE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23 }; static const unsigned char kf_high_motion_minq[QINDEX_RANGE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30 }; static const unsigned char gf_low_motion_minq[QINDEX_RANGE] = { 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58 }; static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] = { 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 }; static const unsigned char gf_high_motion_minq[QINDEX_RANGE] = { 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80 }; static const unsigned char inter_minq[QINDEX_RANGE] = { 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 }; #ifdef PACKET_TESTING extern FILE *vpxlogc; #endif static void save_layer_context(VP8_COMP *cpi) { LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer]; /* Save layer dependent coding state */ lc->target_bandwidth = cpi->target_bandwidth; lc->starting_buffer_level = cpi->oxcf.starting_buffer_level; lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level; lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size; lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms; lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms; lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms; lc->buffer_level = cpi->buffer_level; lc->bits_off_target = cpi->bits_off_target; lc->total_actual_bits = cpi->total_actual_bits; lc->worst_quality = cpi->worst_quality; lc->active_worst_quality = cpi->active_worst_quality; lc->best_quality = cpi->best_quality; lc->active_best_quality = cpi->active_best_quality; lc->ni_av_qi = cpi->ni_av_qi; lc->ni_tot_qi = cpi->ni_tot_qi; lc->ni_frames = cpi->ni_frames; lc->avg_frame_qindex = cpi->avg_frame_qindex; lc->rate_correction_factor = cpi->rate_correction_factor; lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor; lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor; lc->zbin_over_quant = cpi->mb.zbin_over_quant; lc->inter_frame_target = cpi->inter_frame_target; lc->total_byte_count = cpi->total_byte_count; lc->filter_level = cpi->common.filter_level; lc->frames_since_last_drop_overshoot = cpi->frames_since_last_drop_overshoot; lc->force_maxqp = cpi->force_maxqp; lc->last_frame_percent_intra = cpi->last_frame_percent_intra; memcpy(lc->count_mb_ref_frame_usage, cpi->mb.count_mb_ref_frame_usage, sizeof(cpi->mb.count_mb_ref_frame_usage)); } static void restore_layer_context(VP8_COMP *cpi, const int layer) { LAYER_CONTEXT *lc = &cpi->layer_context[layer]; /* Restore layer dependent coding state */ cpi->current_layer = layer; cpi->target_bandwidth = lc->target_bandwidth; cpi->oxcf.target_bandwidth = lc->target_bandwidth; cpi->oxcf.starting_buffer_level = lc->starting_buffer_level; cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level; cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size; cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms; cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms; cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms; cpi->buffer_level = lc->buffer_level; cpi->bits_off_target = lc->bits_off_target; cpi->total_actual_bits = lc->total_actual_bits; cpi->active_worst_quality = lc->active_worst_quality; cpi->active_best_quality = lc->active_best_quality; cpi->ni_av_qi = lc->ni_av_qi; cpi->ni_tot_qi = lc->ni_tot_qi; cpi->ni_frames = lc->ni_frames; cpi->avg_frame_qindex = lc->avg_frame_qindex; cpi->rate_correction_factor = lc->rate_correction_factor; cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor; cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor; cpi->mb.zbin_over_quant = lc->zbin_over_quant; cpi->inter_frame_target = lc->inter_frame_target; cpi->total_byte_count = lc->total_byte_count; cpi->common.filter_level = lc->filter_level; cpi->frames_since_last_drop_overshoot = lc->frames_since_last_drop_overshoot; cpi->force_maxqp = lc->force_maxqp; cpi->last_frame_percent_intra = lc->last_frame_percent_intra; memcpy(cpi->mb.count_mb_ref_frame_usage, lc->count_mb_ref_frame_usage, sizeof(cpi->mb.count_mb_ref_frame_usage)); } static int rescale(int val, int num, int denom) { int64_t llnum = num; int64_t llden = denom; int64_t llval = val; return (int)(llval * llnum / llden); } static void init_temporal_layer_context(VP8_COMP *cpi, VP8_CONFIG *oxcf, const int layer, double prev_layer_framerate) { LAYER_CONTEXT *lc = &cpi->layer_context[layer]; lc->framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[layer]; lc->target_bandwidth = cpi->oxcf.target_bitrate[layer] * 1000; lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level; lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level; lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size; lc->starting_buffer_level = rescale((int)(oxcf->starting_buffer_level), lc->target_bandwidth, 1000); if (oxcf->optimal_buffer_level == 0) { lc->optimal_buffer_level = lc->target_bandwidth / 8; } else { lc->optimal_buffer_level = rescale((int)(oxcf->optimal_buffer_level), lc->target_bandwidth, 1000); } if (oxcf->maximum_buffer_size == 0) { lc->maximum_buffer_size = lc->target_bandwidth / 8; } else { lc->maximum_buffer_size = rescale((int)(oxcf->maximum_buffer_size), lc->target_bandwidth, 1000); } /* Work out the average size of a frame within this layer */ if (layer > 0) { lc->avg_frame_size_for_layer = (int)((cpi->oxcf.target_bitrate[layer] - cpi->oxcf.target_bitrate[layer - 1]) * 1000 / (lc->framerate - prev_layer_framerate)); } lc->active_worst_quality = cpi->oxcf.worst_allowed_q; lc->active_best_quality = cpi->oxcf.best_allowed_q; lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q; lc->buffer_level = lc->starting_buffer_level; lc->bits_off_target = lc->starting_buffer_level; lc->total_actual_bits = 0; lc->ni_av_qi = 0; lc->ni_tot_qi = 0; lc->ni_frames = 0; lc->rate_correction_factor = 1.0; lc->key_frame_rate_correction_factor = 1.0; lc->gf_rate_correction_factor = 1.0; lc->inter_frame_target = 0; } // Upon a run-time change in temporal layers, reset the layer context parameters // for any "new" layers. For "existing" layers, let them inherit the parameters // from the previous layer state (at the same layer #). In future we may want // to better map the previous layer state(s) to the "new" ones. static void reset_temporal_layer_change(VP8_COMP *cpi, VP8_CONFIG *oxcf, const int prev_num_layers) { int i; double prev_layer_framerate = 0; const int curr_num_layers = cpi->oxcf.number_of_layers; // If the previous state was 1 layer, get current layer context from cpi. // We need this to set the layer context for the new layers below. if (prev_num_layers == 1) { cpi->current_layer = 0; save_layer_context(cpi); } for (i = 0; i < curr_num_layers; ++i) { LAYER_CONTEXT *lc = &cpi->layer_context[i]; if (i >= prev_num_layers) { init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate); } // The initial buffer levels are set based on their starting levels. // We could set the buffer levels based on the previous state (normalized // properly by the layer bandwidths) but we would need to keep track of // the previous set of layer bandwidths (i.e., target_bitrate[i]) // before the layer change. For now, reset to the starting levels. lc->buffer_level = cpi->oxcf.starting_buffer_level_in_ms * cpi->oxcf.target_bitrate[i]; lc->bits_off_target = lc->buffer_level; // TDOD(marpan): Should we set the rate_correction_factor and // active_worst/best_quality to values derived from the previous layer // state (to smooth-out quality dips/rate fluctuation at transition)? // We need to treat the 1 layer case separately: oxcf.target_bitrate[i] // is not set for 1 layer, and the restore_layer_context/save_context() // are not called in the encoding loop, so we need to call it here to // pass the layer context state to |cpi|. if (curr_num_layers == 1) { lc->target_bandwidth = cpi->oxcf.target_bandwidth; lc->buffer_level = cpi->oxcf.starting_buffer_level_in_ms * lc->target_bandwidth / 1000; lc->bits_off_target = lc->buffer_level; restore_layer_context(cpi, 0); } prev_layer_framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[i]; } } static void setup_features(VP8_COMP *cpi) { // If segmentation enabled set the update flags if (cpi->mb.e_mbd.segmentation_enabled) { cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } else { cpi->mb.e_mbd.update_mb_segmentation_map = 0; cpi->mb.e_mbd.update_mb_segmentation_data = 0; } cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0; cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); set_default_lf_deltas(cpi); } static void dealloc_raw_frame_buffers(VP8_COMP *cpi); void vp8_initialize_enc(void) { static volatile int init_done = 0; if (!init_done) { vpx_dsp_rtcd(); vp8_init_intra_predictors(); init_done = 1; } } static void dealloc_compressor_data(VP8_COMP *cpi) { vpx_free(cpi->tplist); cpi->tplist = NULL; /* Delete last frame MV storage buffers */ vpx_free(cpi->lfmv); cpi->lfmv = 0; vpx_free(cpi->lf_ref_frame_sign_bias); cpi->lf_ref_frame_sign_bias = 0; vpx_free(cpi->lf_ref_frame); cpi->lf_ref_frame = 0; /* Delete sementation map */ vpx_free(cpi->segmentation_map); cpi->segmentation_map = 0; vpx_free(cpi->active_map); cpi->active_map = 0; vp8_de_alloc_frame_buffers(&cpi->common); vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame); vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source); dealloc_raw_frame_buffers(cpi); vpx_free(cpi->tok); cpi->tok = 0; /* Structure used to monitor GF usage */ vpx_free(cpi->gf_active_flags); cpi->gf_active_flags = 0; /* Activity mask based per mb zbin adjustments */ vpx_free(cpi->mb_activity_map); cpi->mb_activity_map = 0; vpx_free(cpi->mb.pip); cpi->mb.pip = 0; #if CONFIG_MULTITHREAD vpx_free(cpi->mt_current_mb_col); cpi->mt_current_mb_col = NULL; #endif } static void enable_segmentation(VP8_COMP *cpi) { /* Set the appropriate feature bit */ cpi->mb.e_mbd.segmentation_enabled = 1; cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } static void disable_segmentation(VP8_COMP *cpi) { /* Clear the appropriate feature bit */ cpi->mb.e_mbd.segmentation_enabled = 0; } /* Valid values for a segment are 0 to 3 * Segmentation map is arrange as [Rows][Columns] */ static void set_segmentation_map(VP8_COMP *cpi, unsigned char *segmentation_map) { /* Copy in the new segmentation map */ memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols)); /* Signal that the map should be updated. */ cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } /* The values given for each segment can be either deltas (from the default * value chosen for the frame) or absolute values. * * Valid range for abs values is: * (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF) * Valid range for delta values are: * (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF) * * abs_delta = SEGMENT_DELTADATA (deltas) * abs_delta = SEGMENT_ABSDATA (use the absolute values given). * */ static void set_segment_data(VP8_COMP *cpi, signed char *feature_data, unsigned char abs_delta) { cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta; memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data)); } /* A simple function to cyclically refresh the background at a lower Q */ static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) { unsigned char *seg_map = cpi->segmentation_map; signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; int i; int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols; cpi->cyclic_refresh_q = Q / 2; if (cpi->oxcf.screen_content_mode) { // Modify quality ramp-up based on Q. Above some Q level, increase the // number of blocks to be refreshed, and reduce it below the thredhold. // Turn-off under certain conditions (i.e., away from key frame, and if // we are at good quality (low Q) and most of the blocks were // skipped-encoded // in previous frame. int qp_thresh = (cpi->oxcf.screen_content_mode == 2) ? 80 : 100; if (Q >= qp_thresh) { cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 10; } else if (cpi->frames_since_key > 250 && Q < 20 && cpi->mb.skip_true_count > (int)(0.95 * mbs_in_frame)) { cpi->cyclic_refresh_mode_max_mbs_perframe = 0; } else { cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 20; } block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; } // Set every macroblock to be eligible for update. // For key frame this will reset seg map to 0. memset(cpi->segmentation_map, 0, mbs_in_frame); if (cpi->common.frame_type != KEY_FRAME && block_count > 0) { /* Cycle through the macro_block rows */ /* MB loop to set local segmentation map */ i = cpi->cyclic_refresh_mode_index; assert(i < mbs_in_frame); do { /* If the MB is as a candidate for clean up then mark it for * possible boost/refresh (segment 1) The segment id may get * reset to 0 later if the MB gets coded anything other than * last frame 0,0 as only (last frame 0,0) MBs are eligable for * refresh : that is to say Mbs likely to be background blocks. */ if (cpi->cyclic_refresh_map[i] == 0) { seg_map[i] = 1; block_count--; } else if (cpi->cyclic_refresh_map[i] < 0) { cpi->cyclic_refresh_map[i]++; } i++; if (i == mbs_in_frame) i = 0; } while (block_count && i != cpi->cyclic_refresh_mode_index); cpi->cyclic_refresh_mode_index = i; #if CONFIG_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0) { if (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive && Q < (int)cpi->denoiser.denoise_pars.qp_thresh && (cpi->frames_since_key > 2 * cpi->denoiser.denoise_pars.consec_zerolast)) { // Under aggressive denoising, use segmentation to turn off loop // filter below some qp thresh. The filter is reduced for all // blocks that have been encoded as ZEROMV LAST x frames in a row, // where x is set by cpi->denoiser.denoise_pars.consec_zerolast. // This is to avoid "dot" artifacts that can occur from repeated // loop filtering on noisy input source. cpi->cyclic_refresh_q = Q; // lf_adjustment = -MAX_LOOP_FILTER; lf_adjustment = -40; for (i = 0; i < mbs_in_frame; ++i) { seg_map[i] = (cpi->consec_zero_last[i] > cpi->denoiser.denoise_pars.consec_zerolast) ? 1 : 0; } } } #endif } /* Activate segmentation. */ cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; enable_segmentation(cpi); /* Set up the quant segment data */ feature_data[MB_LVL_ALT_Q][0] = 0; feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q); feature_data[MB_LVL_ALT_Q][2] = 0; feature_data[MB_LVL_ALT_Q][3] = 0; /* Set up the loop segment data */ feature_data[MB_LVL_ALT_LF][0] = 0; feature_data[MB_LVL_ALT_LF][1] = lf_adjustment; feature_data[MB_LVL_ALT_LF][2] = 0; feature_data[MB_LVL_ALT_LF][3] = 0; /* Initialise the feature data structure */ set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA); } static void compute_skin_map(VP8_COMP *cpi) { int mb_row, mb_col, num_bl; VP8_COMMON *cm = &cpi->common; const uint8_t *src_y = cpi->Source->y_buffer; const uint8_t *src_u = cpi->Source->u_buffer; const uint8_t *src_v = cpi->Source->v_buffer; const int src_ystride = cpi->Source->y_stride; const int src_uvstride = cpi->Source->uv_stride; const SKIN_DETECTION_BLOCK_SIZE bsize = (cm->Width * cm->Height <= 352 * 288) ? SKIN_8X8 : SKIN_16X16; for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { num_bl = 0; for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { const int bl_index = mb_row * cm->mb_cols + mb_col; cpi->skin_map[bl_index] = vp8_compute_skin_block(src_y, src_u, src_v, src_ystride, src_uvstride, bsize, cpi->consec_zero_last[bl_index], 0); num_bl++; src_y += 16; src_u += 8; src_v += 8; } src_y += (src_ystride << 4) - (num_bl << 4); src_u += (src_uvstride << 3) - (num_bl << 3); src_v += (src_uvstride << 3) - (num_bl << 3); } // Remove isolated skin blocks (none of its neighbors are skin) and isolated // non-skin blocks (all of its neighbors are skin). Skip the boundary. for (mb_row = 1; mb_row < cm->mb_rows - 1; mb_row++) { for (mb_col = 1; mb_col < cm->mb_cols - 1; mb_col++) { const int bl_index = mb_row * cm->mb_cols + mb_col; int num_neighbor = 0; int mi, mj; int non_skin_threshold = 8; for (mi = -1; mi <= 1; mi += 1) { for (mj = -1; mj <= 1; mj += 1) { int bl_neighbor_index = (mb_row + mi) * cm->mb_cols + mb_col + mj; if (cpi->skin_map[bl_neighbor_index]) num_neighbor++; } } if (cpi->skin_map[bl_index] && num_neighbor < 2) cpi->skin_map[bl_index] = 0; if (!cpi->skin_map[bl_index] && num_neighbor == non_skin_threshold) cpi->skin_map[bl_index] = 1; } } } static void set_default_lf_deltas(VP8_COMP *cpi) { cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); /* Test of ref frame deltas */ cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */ if (cpi->oxcf.Mode == MODE_REALTIME) { cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */ } else { cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */ } cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */ cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */ } /* Convenience macros for mapping speed and mode into a continuous * range */ #define GOOD(x) (x + 1) #define RT(x) (x + 7) static int speed_map(int speed, const int *map) { int res; do { res = *map++; } while (speed >= *map++); return res; } static const int thresh_mult_map_znn[] = { /* map common to zero, nearest, and near */ 0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX }; static const int thresh_mult_map_vhpred[] = { 1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(1), 2000, RT(7), INT_MAX, INT_MAX }; static const int thresh_mult_map_bpred[] = { 2000, GOOD(0), 2500, GOOD(2), 5000, GOOD(3), 7500, RT(0), 2500, RT(1), 5000, RT(6), INT_MAX, INT_MAX }; static const int thresh_mult_map_tm[] = { 1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 0, RT(1), 1000, RT(2), 2000, RT(7), INT_MAX, INT_MAX }; static const int thresh_mult_map_new1[] = { 1000, GOOD(2), 2000, RT(0), 2000, INT_MAX }; static const int thresh_mult_map_new2[] = { 1000, GOOD(2), 2000, GOOD(3), 2500, GOOD(5), 4000, RT(0), 2000, RT(2), 2500, RT(5), 4000, INT_MAX }; static const int thresh_mult_map_split1[] = { 2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX, RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX }; static const int thresh_mult_map_split2[] = { 5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX, RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX }; static const int mode_check_freq_map_zn2[] = { /* {zero,nearest}{2,3} */ 0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX }; static const int mode_check_freq_map_vhbpred[] = { 0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX }; static const int mode_check_freq_map_near2[] = { 0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(10), 1 << 2, RT(11), 1 << 3, RT(12), 1 << 4, INT_MAX }; static const int mode_check_freq_map_new1[] = { 0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX }; static const int mode_check_freq_map_new2[] = { 0, GOOD(5), 4, RT(0), 0, RT(3), 4, RT(10), 1 << 3, RT(11), 1 << 4, RT(12), 1 << 5, INT_MAX }; static const int mode_check_freq_map_split1[] = { 0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX }; static const int mode_check_freq_map_split2[] = { 0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX }; void vp8_set_speed_features(VP8_COMP *cpi) { SPEED_FEATURES *sf = &cpi->sf; int Mode = cpi->compressor_speed; int Speed = cpi->Speed; int Speed2; int i; VP8_COMMON *cm = &cpi->common; int last_improved_quant = sf->improved_quant; int ref_frames; /* Initialise default mode frequency sampling variables */ for (i = 0; i < MAX_MODES; ++i) { cpi->mode_check_freq[i] = 0; } cpi->mb.mbs_tested_so_far = 0; cpi->mb.mbs_zero_last_dot_suppress = 0; /* best quality defaults */ sf->RD = 1; sf->search_method = NSTEP; sf->improved_quant = 1; sf->improved_dct = 1; sf->auto_filter = 1; sf->recode_loop = 1; sf->quarter_pixel_search = 1; sf->half_pixel_search = 1; sf->iterative_sub_pixel = 1; sf->optimize_coefficients = 1; sf->use_fastquant_for_pick = 0; sf->no_skip_block4x4_search = 1; sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; sf->improved_mv_pred = 1; /* default thresholds to 0 */ for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = 0; /* Count enabled references */ ref_frames = 1; if (cpi->ref_frame_flags & VP8_LAST_FRAME) ref_frames++; if (cpi->ref_frame_flags & VP8_GOLD_FRAME) ref_frames++; if (cpi->ref_frame_flags & VP8_ALTR_FRAME) ref_frames++; /* Convert speed to continuous range, with clamping */ if (Mode == 0) { Speed = 0; } else if (Mode == 2) { Speed = RT(Speed); } else { if (Speed > 5) Speed = 5; Speed = GOOD(Speed); } sf->thresh_mult[THR_ZERO1] = sf->thresh_mult[THR_NEAREST1] = sf->thresh_mult[THR_NEAR1] = sf->thresh_mult[THR_DC] = 0; /* always */ sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO3] = sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST3] = sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR3] = speed_map(Speed, thresh_mult_map_znn); sf->thresh_mult[THR_V_PRED] = sf->thresh_mult[THR_H_PRED] = speed_map(Speed, thresh_mult_map_vhpred); sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred); sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm); sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1); sf->thresh_mult[THR_NEW2] = sf->thresh_mult[THR_NEW3] = speed_map(Speed, thresh_mult_map_new2); sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1); sf->thresh_mult[THR_SPLIT2] = sf->thresh_mult[THR_SPLIT3] = speed_map(Speed, thresh_mult_map_split2); // Special case for temporal layers. // Reduce the thresholds for zero/nearest/near for GOLDEN, if GOLDEN is // used as second reference. We don't modify thresholds for ALTREF case // since ALTREF is usually used as long-term reference in temporal layers. if ((cpi->Speed <= 6) && (cpi->oxcf.number_of_layers > 1) && (cpi->ref_frame_flags & VP8_LAST_FRAME) && (cpi->ref_frame_flags & VP8_GOLD_FRAME)) { if (cpi->closest_reference_frame == GOLDEN_FRAME) { sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 3; sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 3; sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 3; } else { sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 1; sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 1; sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 1; } } cpi->mode_check_freq[THR_ZERO1] = cpi->mode_check_freq[THR_NEAREST1] = cpi->mode_check_freq[THR_NEAR1] = cpi->mode_check_freq[THR_TM] = cpi->mode_check_freq[THR_DC] = 0; /* always */ cpi->mode_check_freq[THR_ZERO2] = cpi->mode_check_freq[THR_ZERO3] = cpi->mode_check_freq[THR_NEAREST2] = cpi->mode_check_freq[THR_NEAREST3] = speed_map(Speed, mode_check_freq_map_zn2); cpi->mode_check_freq[THR_NEAR2] = cpi->mode_check_freq[THR_NEAR3] = speed_map(Speed, mode_check_freq_map_near2); cpi->mode_check_freq[THR_V_PRED] = cpi->mode_check_freq[THR_H_PRED] = cpi->mode_check_freq[THR_B_PRED] = speed_map(Speed, mode_check_freq_map_vhbpred); // For real-time mode at speed 10 keep the mode_check_freq threshold // for NEW1 similar to that of speed 9. Speed2 = Speed; if (cpi->Speed == 10 && Mode == 2) Speed2 = RT(9); cpi->mode_check_freq[THR_NEW1] = speed_map(Speed2, mode_check_freq_map_new1); cpi->mode_check_freq[THR_NEW2] = cpi->mode_check_freq[THR_NEW3] = speed_map(Speed, mode_check_freq_map_new2); cpi->mode_check_freq[THR_SPLIT1] = speed_map(Speed, mode_check_freq_map_split1); cpi->mode_check_freq[THR_SPLIT2] = cpi->mode_check_freq[THR_SPLIT3] = speed_map(Speed, mode_check_freq_map_split2); Speed = cpi->Speed; switch (Mode) { #if !CONFIG_REALTIME_ONLY case 0: /* best quality mode */ sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; break; case 1: case 3: if (Speed > 0) { /* Disable coefficient optimization above speed 0 */ sf->optimize_coefficients = 0; sf->use_fastquant_for_pick = 1; sf->no_skip_block4x4_search = 0; sf->first_step = 1; } if (Speed > 2) { sf->improved_quant = 0; sf->improved_dct = 0; /* Only do recode loop on key frames, golden frames and * alt ref frames */ sf->recode_loop = 2; } if (Speed > 3) { sf->auto_filter = 1; sf->recode_loop = 0; /* recode loop off */ sf->RD = 0; /* Turn rd off */ } if (Speed > 4) { sf->auto_filter = 0; /* Faster selection of loop filter */ } break; #endif case 2: sf->optimize_coefficients = 0; sf->recode_loop = 0; sf->auto_filter = 1; sf->iterative_sub_pixel = 1; sf->search_method = NSTEP; if (Speed > 0) { sf->improved_quant = 0; sf->improved_dct = 0; sf->use_fastquant_for_pick = 1; sf->no_skip_block4x4_search = 0; sf->first_step = 1; } if (Speed > 2) sf->auto_filter = 0; /* Faster selection of loop filter */ if (Speed > 3) { sf->RD = 0; sf->auto_filter = 1; } if (Speed > 4) { sf->auto_filter = 0; /* Faster selection of loop filter */ sf->search_method = HEX; sf->iterative_sub_pixel = 0; } if (Speed > 6) { unsigned int sum = 0; unsigned int total_mbs = cm->MBs; int thresh; unsigned int total_skip; int min = 2000; if (cpi->oxcf.encode_breakout > 2000) min = cpi->oxcf.encode_breakout; min >>= 7; for (i = 0; i < min; ++i) { sum += cpi->mb.error_bins[i]; } total_skip = sum; sum = 0; /* i starts from 2 to make sure thresh started from 2048 */ for (; i < 1024; ++i) { sum += cpi->mb.error_bins[i]; if (10 * sum >= (unsigned int)(cpi->Speed - 6) * (total_mbs - total_skip)) { break; } } i--; thresh = (i << 7); if (thresh < 2000) thresh = 2000; if (ref_frames > 1) { sf->thresh_mult[THR_NEW1] = thresh; sf->thresh_mult[THR_NEAREST1] = thresh >> 1; sf->thresh_mult[THR_NEAR1] = thresh >> 1; } if (ref_frames > 2) { sf->thresh_mult[THR_NEW2] = thresh << 1; sf->thresh_mult[THR_NEAREST2] = thresh; sf->thresh_mult[THR_NEAR2] = thresh; } if (ref_frames > 3) { sf->thresh_mult[THR_NEW3] = thresh << 1; sf->thresh_mult[THR_NEAREST3] = thresh; sf->thresh_mult[THR_NEAR3] = thresh; } sf->improved_mv_pred = 0; } if (Speed > 8) sf->quarter_pixel_search = 0; if (cm->version == 0) { cm->filter_type = NORMAL_LOOPFILTER; if (Speed >= 14) cm->filter_type = SIMPLE_LOOPFILTER; } else { cm->filter_type = SIMPLE_LOOPFILTER; } /* This has a big hit on quality. Last resort */ if (Speed >= 15) sf->half_pixel_search = 0; memset(cpi->mb.error_bins, 0, sizeof(cpi->mb.error_bins)); }; /* switch */ /* Slow quant, dct and trellis not worthwhile for first pass * so make sure they are always turned off. */ if (cpi->pass == 1) { sf->improved_quant = 0; sf->optimize_coefficients = 0; sf->improved_dct = 0; } if (cpi->sf.search_method == NSTEP) { vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride); } else if (cpi->sf.search_method == DIAMOND) { vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride); } if (cpi->sf.improved_dct) { cpi->mb.short_fdct8x4 = vp8_short_fdct8x4; cpi->mb.short_fdct4x4 = vp8_short_fdct4x4; } else { /* No fast FDCT defined for any platform at this time. */ cpi->mb.short_fdct8x4 = vp8_short_fdct8x4; cpi->mb.short_fdct4x4 = vp8_short_fdct4x4; } cpi->mb.short_walsh4x4 = vp8_short_walsh4x4; if (cpi->sf.improved_quant) { cpi->mb.quantize_b = vp8_regular_quantize_b; } else { cpi->mb.quantize_b = vp8_fast_quantize_b; } if (cpi->sf.improved_quant != last_improved_quant) vp8cx_init_quantizer(cpi); if (cpi->sf.iterative_sub_pixel == 1) { cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively; } else if (cpi->sf.quarter_pixel_search) { cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step; } else if (cpi->sf.half_pixel_search) { cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step; } else { cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; } if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1) { cpi->mb.optimize = 1; } else { cpi->mb.optimize = 0; } if (cpi->common.full_pixel) { cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; } #ifdef SPEEDSTATS frames_at_speed[cpi->Speed]++; #endif } #undef GOOD #undef RT static void alloc_raw_frame_buffers(VP8_COMP *cpi) { #if VP8_TEMPORAL_ALT_REF int width = (cpi->oxcf.Width + 15) & ~15; int height = (cpi->oxcf.Height + 15) & ~15; #endif cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height, cpi->oxcf.lag_in_frames); if (!cpi->lookahead) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate lag buffers"); } #if VP8_TEMPORAL_ALT_REF if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, width, height, VP8BORDERINPIXELS)) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate altref buffer"); } #endif } static void dealloc_raw_frame_buffers(VP8_COMP *cpi) { #if VP8_TEMPORAL_ALT_REF vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer); #endif vp8_lookahead_destroy(cpi->lookahead); } static int vp8_alloc_partition_data(VP8_COMP *cpi) { vpx_free(cpi->mb.pip); cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1), sizeof(PARTITION_INFO)); if (!cpi->mb.pip) return 1; cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; return 0; } void vp8_alloc_compressor_data(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int width = cm->Width; int height = cm->Height; if (vp8_alloc_frame_buffers(cm, width, height)) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } if (vp8_alloc_partition_data(cpi)) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate partition data"); } if ((width & 0xf) != 0) width += 16 - (width & 0xf); if ((height & 0xf) != 0) height += 16 - (height & 0xf); if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame, width, height, VP8BORDERINPIXELS)) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); } if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, VP8BORDERINPIXELS)) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate scaled source buffer"); } vpx_free(cpi->tok); { #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */ #else unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16; #endif CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); } /* Data used for real time vc mode to see if gf needs refreshing */ cpi->zeromv_count = 0; /* Structures used to monitor GF usage */ vpx_free(cpi->gf_active_flags); CHECK_MEM_ERROR( cpi->gf_active_flags, vpx_calloc(sizeof(*cpi->gf_active_flags), cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; vpx_free(cpi->mb_activity_map); CHECK_MEM_ERROR( cpi->mb_activity_map, vpx_calloc(sizeof(*cpi->mb_activity_map), cm->mb_rows * cm->mb_cols)); /* allocate memory for storing last frame's MVs for MV prediction. */ vpx_free(cpi->lfmv); CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), sizeof(*cpi->lfmv))); vpx_free(cpi->lf_ref_frame_sign_bias); CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), sizeof(*cpi->lf_ref_frame_sign_bias))); vpx_free(cpi->lf_ref_frame); CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), sizeof(*cpi->lf_ref_frame))); /* Create the encoder segmentation map and set all entries to 0 */ vpx_free(cpi->segmentation_map); CHECK_MEM_ERROR( cpi->segmentation_map, vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->segmentation_map))); cpi->cyclic_refresh_mode_index = 0; vpx_free(cpi->active_map); CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->active_map))); memset(cpi->active_map, 1, (cm->mb_rows * cm->mb_cols)); #if CONFIG_MULTITHREAD if (width < 640) { cpi->mt_sync_range = 1; } else if (width <= 1280) { cpi->mt_sync_range = 4; } else if (width <= 2560) { cpi->mt_sync_range = 8; } else { cpi->mt_sync_range = 16; } if (cpi->oxcf.multi_threaded > 1) { int i; vpx_free(cpi->mt_current_mb_col); CHECK_MEM_ERROR(cpi->mt_current_mb_col, vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows)); for (i = 0; i < cm->mb_rows; ++i) vpx_atomic_init(&cpi->mt_current_mb_col[i], 0); } #endif vpx_free(cpi->tplist); CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows)); #if CONFIG_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0) { vp8_denoiser_free(&cpi->denoiser); if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows, cm->mb_cols, cpi->oxcf.noise_sensitivity)) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate denoiser"); } } #endif } /* Quant MOD */ static const int q_trans[] = { 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, }; int vp8_reverse_trans(int x) { int i; for (i = 0; i < 64; ++i) { if (q_trans[i] >= x) return i; } return 63; } void vp8_new_framerate(VP8_COMP *cpi, double framerate) { if (framerate < .1) framerate = 30; cpi->framerate = framerate; cpi->output_framerate = framerate; cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate); cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth; cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); /* Set Maximum gf/arf interval */ cpi->max_gf_interval = ((int)(cpi->output_framerate / 2.0) + 2); if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12; /* Extended interval for genuinely static scenes */ cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; /* Special conditions when altr ref frame enabled in lagged compress mode */ if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) { if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) { cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; } if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1) { cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; } } if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) { cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval; } } static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) { VP8_COMMON *cm = &cpi->common; cpi->oxcf = *oxcf; cpi->auto_gold = 1; cpi->auto_adjust_gold_quantizer = 1; cm->version = oxcf->Version; vp8_setup_version(cm); /* Frame rate is not available on the first frame, as it's derived from * the observed timestamps. The actual value used here doesn't matter * too much, as it will adapt quickly. */ if (oxcf->timebase.num > 0) { cpi->framerate = (double)(oxcf->timebase.den) / (double)(oxcf->timebase.num); } else { cpi->framerate = 30; } /* If the reciprocal of the timebase seems like a reasonable framerate, * then use that as a guess, otherwise use 30. */ if (cpi->framerate > 180) cpi->framerate = 30; cpi->ref_framerate = cpi->framerate; cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; cm->refresh_entropy_probs = 1; /* change includes all joint functionality */ vp8_change_config(cpi, oxcf); /* Initialize active best and worst q and average q values. */ cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; cpi->active_best_quality = cpi->oxcf.best_allowed_q; cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; /* Initialise the starting buffer levels */ cpi->buffer_level = cpi->oxcf.starting_buffer_level; cpi->bits_off_target = cpi->oxcf.starting_buffer_level; cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->total_actual_bits = 0; cpi->total_target_vs_actual = 0; /* Temporal scalabilty */ if (cpi->oxcf.number_of_layers > 1) { unsigned int i; double prev_layer_framerate = 0; for (i = 0; i < cpi->oxcf.number_of_layers; ++i) { init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate); prev_layer_framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[i]; } } #if VP8_TEMPORAL_ALT_REF { int i; cpi->fixed_divide[0] = 0; for (i = 1; i < 512; ++i) cpi->fixed_divide[i] = 0x80000 / i; } #endif } static void update_layer_contexts(VP8_COMP *cpi) { VP8_CONFIG *oxcf = &cpi->oxcf; /* Update snapshots of the layer contexts to reflect new parameters */ if (oxcf->number_of_layers > 1) { unsigned int i; double prev_layer_framerate = 0; assert(oxcf->number_of_layers <= VPX_TS_MAX_LAYERS); for (i = 0; i < oxcf->number_of_layers && i < VPX_TS_MAX_LAYERS; ++i) { LAYER_CONTEXT *lc = &cpi->layer_context[i]; lc->framerate = cpi->ref_framerate / oxcf->rate_decimator[i]; lc->target_bandwidth = oxcf->target_bitrate[i] * 1000; lc->starting_buffer_level = rescale( (int)oxcf->starting_buffer_level_in_ms, lc->target_bandwidth, 1000); if (oxcf->optimal_buffer_level == 0) { lc->optimal_buffer_level = lc->target_bandwidth / 8; } else { lc->optimal_buffer_level = rescale( (int)oxcf->optimal_buffer_level_in_ms, lc->target_bandwidth, 1000); } if (oxcf->maximum_buffer_size == 0) { lc->maximum_buffer_size = lc->target_bandwidth / 8; } else { lc->maximum_buffer_size = rescale((int)oxcf->maximum_buffer_size_in_ms, lc->target_bandwidth, 1000); } /* Work out the average size of a frame within this layer */ if (i > 0) { lc->avg_frame_size_for_layer = (int)((oxcf->target_bitrate[i] - oxcf->target_bitrate[i - 1]) * 1000 / (lc->framerate - prev_layer_framerate)); } prev_layer_framerate = lc->framerate; } } } void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) { VP8_COMMON *cm = &cpi->common; int last_w, last_h; unsigned int prev_number_of_layers; if (!cpi) return; if (!oxcf) return; if (cm->version != oxcf->Version) { cm->version = oxcf->Version; vp8_setup_version(cm); } last_w = cpi->oxcf.Width; last_h = cpi->oxcf.Height; prev_number_of_layers = cpi->oxcf.number_of_layers; cpi->oxcf = *oxcf; switch (cpi->oxcf.Mode) { case MODE_REALTIME: cpi->pass = 0; cpi->compressor_speed = 2; if (cpi->oxcf.cpu_used < -16) { cpi->oxcf.cpu_used = -16; } if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16; break; case MODE_GOODQUALITY: cpi->pass = 0; cpi->compressor_speed = 1; if (cpi->oxcf.cpu_used < -5) { cpi->oxcf.cpu_used = -5; } if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; break; case MODE_BESTQUALITY: cpi->pass = 0; cpi->compressor_speed = 0; break; case MODE_FIRSTPASS: cpi->pass = 1; cpi->compressor_speed = 1; break; case MODE_SECONDPASS: cpi->pass = 2; cpi->compressor_speed = 1; if (cpi->oxcf.cpu_used < -5) { cpi->oxcf.cpu_used = -5; } if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; break; case MODE_SECONDPASS_BEST: cpi->pass = 2; cpi->compressor_speed = 0; break; } if (cpi->pass == 0) cpi->auto_worst_q = 1; cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; if (oxcf->fixed_q >= 0) { if (oxcf->worst_allowed_q < 0) { cpi->oxcf.fixed_q = q_trans[0]; } else { cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q]; } if (oxcf->alt_q < 0) { cpi->oxcf.alt_q = q_trans[0]; } else { cpi->oxcf.alt_q = q_trans[oxcf->alt_q]; } if (oxcf->key_q < 0) { cpi->oxcf.key_q = q_trans[0]; } else { cpi->oxcf.key_q = q_trans[oxcf->key_q]; } if (oxcf->gold_q < 0) { cpi->oxcf.gold_q = q_trans[0]; } else { cpi->oxcf.gold_q = q_trans[oxcf->gold_q]; } } cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL; // GF behavior for 1 pass CBR, used when error_resilience is off. if (!cpi->oxcf.error_resilient_mode && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cpi->oxcf.Mode == MODE_REALTIME) cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; #if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) cpi->oxcf.token_partitions = 3; #endif if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) { cm->multi_token_partition = (TOKEN_PARTITION)cpi->oxcf.token_partitions; } setup_features(cpi); if (!cpi->use_roi_static_threshold) { int i; for (i = 0; i < MAX_MB_SEGMENTS; ++i) { cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; } } /* At the moment the first order values may not be > MAXQ */ if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ; /* local file playback mode == really big buffer */ if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { cpi->oxcf.starting_buffer_level = 60000; cpi->oxcf.optimal_buffer_level = 60000; cpi->oxcf.maximum_buffer_size = 240000; cpi->oxcf.starting_buffer_level_in_ms = 60000; cpi->oxcf.optimal_buffer_level_in_ms = 60000; cpi->oxcf.maximum_buffer_size_in_ms = 240000; } /* Convert target bandwidth from Kbit/s to Bit/s */ cpi->oxcf.target_bandwidth *= 1000; cpi->oxcf.starting_buffer_level = rescale( (int)cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); /* Set or reset optimal and maximum buffer levels. */ if (cpi->oxcf.optimal_buffer_level == 0) { cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; } else { cpi->oxcf.optimal_buffer_level = rescale( (int)cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); } if (cpi->oxcf.maximum_buffer_size == 0) { cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; } else { cpi->oxcf.maximum_buffer_size = rescale((int)cpi->oxcf.maximum_buffer_size, cpi->oxcf.target_bandwidth, 1000); } // Under a configuration change, where maximum_buffer_size may change, // keep buffer level clipped to the maximum allowed buffer size. if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; cpi->buffer_level = cpi->bits_off_target; } /* Set up frame rate and related parameters rate control values. */ vp8_new_framerate(cpi, cpi->framerate); /* Set absolute upper and lower quality limits */ cpi->worst_quality = cpi->oxcf.worst_allowed_q; cpi->best_quality = cpi->oxcf.best_allowed_q; /* active values should only be modified if out of new range */ if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) { cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; } /* less likely */ else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) { cpi->active_worst_quality = cpi->oxcf.best_allowed_q; } if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) { cpi->active_best_quality = cpi->oxcf.best_allowed_q; } /* less likely */ else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) { cpi->active_best_quality = cpi->oxcf.worst_allowed_q; } cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0; cpi->cq_target_quality = cpi->oxcf.cq_level; /* Only allow dropped frames in buffered mode */ cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode; cpi->target_bandwidth = cpi->oxcf.target_bandwidth; // Check if the number of temporal layers has changed, and if so reset the // pattern counter and set/initialize the temporal layer context for the // new layer configuration. if (cpi->oxcf.number_of_layers != prev_number_of_layers) { // If the number of temporal layers are changed we must start at the // base of the pattern cycle, so set the layer id to 0 and reset // the temporal pattern counter. if (cpi->temporal_layer_id > 0) { cpi->temporal_layer_id = 0; } cpi->temporal_pattern_counter = 0; reset_temporal_layer_change(cpi, oxcf, prev_number_of_layers); } if (!cpi->initial_width) { cpi->initial_width = cpi->oxcf.Width; cpi->initial_height = cpi->oxcf.Height; } cm->Width = cpi->oxcf.Width; cm->Height = cpi->oxcf.Height; assert(cm->Width <= cpi->initial_width); assert(cm->Height <= cpi->initial_height); /* TODO(jkoleszar): if an internal spatial resampling is active, * and we downsize the input image, maybe we should clear the * internal scale immediately rather than waiting for it to * correct. */ /* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */ if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7; cm->sharpness_level = cpi->oxcf.Sharpness; if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) { int hr, hs, vr, vs; Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); /* always go to the next whole number */ cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; } if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height) { cpi->force_next_frame_intra = 1; } if (((cm->Width + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_width || ((cm->Height + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_height || cm->yv12_fb[cm->lst_fb_idx].y_width == 0) { dealloc_raw_frame_buffers(cpi); alloc_raw_frame_buffers(cpi); vp8_alloc_compressor_data(cpi); } if (cpi->oxcf.fixed_q >= 0) { cpi->last_q[0] = cpi->oxcf.fixed_q; cpi->last_q[1] = cpi->oxcf.fixed_q; } cpi->Speed = cpi->oxcf.cpu_used; /* force to allowlag to 0 if lag_in_frames is 0; */ if (cpi->oxcf.lag_in_frames == 0) { cpi->oxcf.allow_lag = 0; } /* Limit on lag buffers as these are not currently dynamically allocated */ else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) { cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; } /* YX Temp */ cpi->alt_ref_source = NULL; cpi->is_src_frame_alt_ref = 0; #if CONFIG_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity) { if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc) { int width = (cpi->oxcf.Width + 15) & ~15; int height = (cpi->oxcf.Height + 15) & ~15; if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows, cm->mb_cols, cpi->oxcf.noise_sensitivity)) { vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate denoiser"); } } } #endif #if 0 /* Experimental RD Code */ cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif } #ifndef M_LOG2_E #define M_LOG2_E 0.693147180559945309417 #endif #define log2f(x) (log(x) / (float)M_LOG2_E) static void cal_mvsadcosts(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 300; mvsadcost[1][0] = 300; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= mvfp_max); } struct VP8_COMP *vp8_create_compressor(VP8_CONFIG *oxcf) { int i; VP8_COMP *cpi; VP8_COMMON *cm; cpi = vpx_memalign(32, sizeof(VP8_COMP)); /* Check that the CPI instance is valid */ if (!cpi) return 0; cm = &cpi->common; memset(cpi, 0, sizeof(VP8_COMP)); if (setjmp(cm->error.jmp)) { cpi->common.error.setjmp = 0; vp8_remove_compressor(&cpi); return 0; } cpi->common.error.setjmp = 1; CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1)); vp8_create_common(&cpi->common); init_config(cpi, oxcf); memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob)); cpi->common.current_video_frame = 0; cpi->temporal_pattern_counter = 0; cpi->temporal_layer_id = -1; cpi->kf_overspend_bits = 0; cpi->kf_bitrate_adjustment = 0; cpi->frames_till_gf_update_due = 0; cpi->gf_overspend_bits = 0; cpi->non_gf_bitrate_adjustment = 0; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; cpi->prob_intra_coded = 63; /* Prime the recent reference frame usage counters. * Hereafter they will be maintained as a sort of moving average */ cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; /* Set reference frame sign bias for ALTREF frame to 1 (for now) */ cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; cpi->twopass.gf_decay_rate = 0; cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->gold_is_last = 0; cpi->alt_is_last = 0; cpi->gold_is_alt = 0; cpi->active_map_enabled = 0; cpi->use_roi_static_threshold = 0; #if 0 /* Experimental code for lagged and one pass */ /* Initialise one_pass GF frames stats */ /* Update stats used for GF selection */ if (cpi->pass == 0) { cpi->one_pass_frame_index = 0; for (i = 0; i < MAX_LAG_BUFFERS; ++i) { cpi->one_pass_frame_stats[i].frames_so_far = 0; cpi->one_pass_frame_stats[i].frame_intra_error = 0.0; cpi->one_pass_frame_stats[i].frame_coded_error = 0.0; cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0; cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0; cpi->one_pass_frame_stats[i].frame_mvr = 0.0; cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0; cpi->one_pass_frame_stats[i].frame_mvc = 0.0; cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0; } } #endif cpi->mse_source_denoised = 0; /* Should we use the cyclic refresh method. * Currently there is no external control for this. * Enable it for error_resilient_mode, or for 1 pass CBR mode. */ cpi->cyclic_refresh_mode_enabled = (cpi->oxcf.error_resilient_mode || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cpi->oxcf.Mode <= 2)); cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 7; if (cpi->oxcf.number_of_layers == 1) { cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 20; } else if (cpi->oxcf.number_of_layers == 2) { cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 10; } cpi->cyclic_refresh_mode_index = 0; cpi->cyclic_refresh_q = 32; // GF behavior for 1 pass CBR, used when error_resilience is off. cpi->gf_update_onepass_cbr = 0; cpi->gf_noboost_onepass_cbr = 0; if (!cpi->oxcf.error_resilient_mode && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cpi->oxcf.Mode <= 2) { cpi->gf_update_onepass_cbr = 1; cpi->gf_noboost_onepass_cbr = 1; cpi->gf_interval_onepass_cbr = cpi->cyclic_refresh_mode_max_mbs_perframe > 0 ? (2 * (cpi->common.mb_rows * cpi->common.mb_cols) / cpi->cyclic_refresh_mode_max_mbs_perframe) : 10; cpi->gf_interval_onepass_cbr = VPXMIN(40, VPXMAX(6, cpi->gf_interval_onepass_cbr)); cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; } if (cpi->cyclic_refresh_mode_enabled) { CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); } else { cpi->cyclic_refresh_map = (signed char *)NULL; } CHECK_MEM_ERROR(cpi->skin_map, vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(cpi->skin_map[0]))); CHECK_MEM_ERROR(cpi->consec_zero_last, vpx_calloc(cm->mb_rows * cm->mb_cols, 1)); CHECK_MEM_ERROR(cpi->consec_zero_last_mvbias, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); #ifdef VP8_ENTROPY_STATS init_context_counters(); #endif /*Initialize the feed-forward activity masking.*/ cpi->activity_avg = 90 << 12; /* Give a sensible default for the first frame. */ cpi->frames_since_key = 8; cpi->key_frame_frequency = cpi->oxcf.key_freq; cpi->this_key_frame_forced = 0; cpi->next_key_frame_forced = 0; cpi->source_alt_ref_pending = 0; cpi->source_alt_ref_active = 0; cpi->common.refresh_alt_ref_frame = 0; cpi->force_maxqp = 0; cpi->frames_since_last_drop_overshoot = 0; cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; #if CONFIG_INTERNAL_STATS cpi->b_calculate_ssimg = 0; cpi->count = 0; cpi->bytes = 0; if (cpi->b_calculate_psnr) { cpi->total_sq_error = 0.0; cpi->total_sq_error2 = 0.0; cpi->total_y = 0.0; cpi->total_u = 0.0; cpi->total_v = 0.0; cpi->total = 0.0; cpi->totalp_y = 0.0; cpi->totalp_u = 0.0; cpi->totalp_v = 0.0; cpi->totalp = 0.0; cpi->tot_recode_hits = 0; cpi->summed_quality = 0; cpi->summed_weights = 0; } #endif cpi->first_time_stamp_ever = 0x7FFFFFFF; cpi->frames_till_gf_update_due = 0; cpi->key_frame_count = 1; cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; cpi->ni_tot_qi = 0; cpi->ni_frames = 0; cpi->total_byte_count = 0; cpi->drop_frame = 0; cpi->rate_correction_factor = 1.0; cpi->key_frame_rate_correction_factor = 1.0; cpi->gf_rate_correction_factor = 1.0; cpi->twopass.est_max_qcorrection_factor = 1.0; for (i = 0; i < KEY_FRAME_CONTEXT; ++i) { cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate; } #ifdef OUTPUT_YUV_SRC yuv_file = fopen("bd.yuv", "ab"); #endif #ifdef OUTPUT_YUV_DENOISED yuv_denoised_file = fopen("denoised.yuv", "ab"); #endif #ifdef OUTPUT_YUV_SKINMAP yuv_skinmap_file = fopen("skinmap.yuv", "wb"); #endif #if 0 framepsnr = fopen("framepsnr.stt", "a"); kf_list = fopen("kf_list.stt", "w"); #endif cpi->output_pkt_list = oxcf->output_pkt_list; #if !CONFIG_REALTIME_ONLY if (cpi->pass == 1) { vp8_init_first_pass(cpi); } else if (cpi->pass == 2) { size_t packet_sz = sizeof(FIRSTPASS_STATS); int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; cpi->twopass.stats_in = cpi->twopass.stats_in_start; cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz); vp8_init_second_pass(cpi); } #endif if (cpi->compressor_speed == 2) { cpi->avg_encode_time = 0; cpi->avg_pick_mode_time = 0; } vp8_set_speed_features(cpi); /* Set starting values of RD threshold multipliers (128 = *1) */ for (i = 0; i < MAX_MODES; ++i) { cpi->mb.rd_thresh_mult[i] = 128; } #ifdef VP8_ENTROPY_STATS init_mv_ref_counts(); #endif #if CONFIG_MULTITHREAD if (vp8cx_create_encoder_threads(cpi)) { vp8_remove_compressor(&cpi); return 0; } #endif cpi->fn_ptr[BLOCK_16X16].sdf = vpx_sad16x16; cpi->fn_ptr[BLOCK_16X16].vf = vpx_variance16x16; cpi->fn_ptr[BLOCK_16X16].svf = vpx_sub_pixel_variance16x16; cpi->fn_ptr[BLOCK_16X16].sdx3f = vpx_sad16x16x3; cpi->fn_ptr[BLOCK_16X16].sdx8f = vpx_sad16x16x8; cpi->fn_ptr[BLOCK_16X16].sdx4df = vpx_sad16x16x4d; cpi->fn_ptr[BLOCK_16X8].sdf = vpx_sad16x8; cpi->fn_ptr[BLOCK_16X8].vf = vpx_variance16x8; cpi->fn_ptr[BLOCK_16X8].svf = vpx_sub_pixel_variance16x8; cpi->fn_ptr[BLOCK_16X8].sdx3f = vpx_sad16x8x3; cpi->fn_ptr[BLOCK_16X8].sdx8f = vpx_sad16x8x8; cpi->fn_ptr[BLOCK_16X8].sdx4df = vpx_sad16x8x4d; cpi->fn_ptr[BLOCK_8X16].sdf = vpx_sad8x16; cpi->fn_ptr[BLOCK_8X16].vf = vpx_variance8x16; cpi->fn_ptr[BLOCK_8X16].svf = vpx_sub_pixel_variance8x16; cpi->fn_ptr[BLOCK_8X16].sdx3f = vpx_sad8x16x3; cpi->fn_ptr[BLOCK_8X16].sdx8f = vpx_sad8x16x8; cpi->fn_ptr[BLOCK_8X16].sdx4df = vpx_sad8x16x4d; cpi->fn_ptr[BLOCK_8X8].sdf = vpx_sad8x8; cpi->fn_ptr[BLOCK_8X8].vf = vpx_variance8x8; cpi->fn_ptr[BLOCK_8X8].svf = vpx_sub_pixel_variance8x8; cpi->fn_ptr[BLOCK_8X8].sdx3f = vpx_sad8x8x3; cpi->fn_ptr[BLOCK_8X8].sdx8f = vpx_sad8x8x8; cpi->fn_ptr[BLOCK_8X8].sdx4df = vpx_sad8x8x4d; cpi->fn_ptr[BLOCK_4X4].sdf = vpx_sad4x4; cpi->fn_ptr[BLOCK_4X4].vf = vpx_variance4x4; cpi->fn_ptr[BLOCK_4X4].svf = vpx_sub_pixel_variance4x4; cpi->fn_ptr[BLOCK_4X4].sdx3f = vpx_sad4x4x3; cpi->fn_ptr[BLOCK_4X4].sdx8f = vpx_sad4x4x8; cpi->fn_ptr[BLOCK_4X4].sdx4df = vpx_sad4x4x4d; #if ARCH_X86 || ARCH_X86_64 cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn; #endif cpi->full_search_sad = vp8_full_search_sad; cpi->diamond_search_sad = vp8_diamond_search_sad; cpi->refining_search_sad = vp8_refining_search_sad; /* make sure frame 1 is okay */ cpi->mb.error_bins[0] = cpi->common.MBs; /* vp8cx_init_quantizer() is first called here. Add check in * vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only * called later when needed. This will avoid unnecessary calls of * vp8cx_init_quantizer() for every frame. */ vp8cx_init_quantizer(cpi); vp8_loop_filter_init(cm); cpi->common.error.setjmp = 0; #if CONFIG_MULTI_RES_ENCODING /* Calculate # of MBs in a row in lower-resolution level image. */ if (cpi->oxcf.mr_encoder_id > 0) vp8_cal_low_res_mb_cols(cpi); #endif /* setup RD costs to MACROBLOCK struct */ cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max + 1]; cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max + 1]; cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max + 1]; cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max + 1]; cal_mvsadcosts(cpi->mb.mvsadcost); cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost; cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost; cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs; cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs; cpi->mb.token_costs = cpi->rd_costs.token_costs; /* setup block ptrs & offsets */ vp8_setup_block_ptrs(&cpi->mb); vp8_setup_block_dptrs(&cpi->mb.e_mbd); return cpi; } void vp8_remove_compressor(VP8_COMP **ptr) { VP8_COMP *cpi = *ptr; if (!cpi) return; if (cpi && (cpi->common.current_video_frame > 0)) { #if !CONFIG_REALTIME_ONLY if (cpi->pass == 2) { vp8_end_second_pass(cpi); } #endif #ifdef VP8_ENTROPY_STATS print_context_counters(); print_tree_update_probs(); print_mode_context(); #endif #if CONFIG_INTERNAL_STATS if (cpi->pass != 1) { FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / 10000000.000; double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded; if (cpi->b_calculate_psnr) { if (cpi->oxcf.number_of_layers > 1) { int i; fprintf(f, "Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t" "GLPsnrP\tVPXSSIM\n"); for (i = 0; i < (int)cpi->oxcf.number_of_layers; ++i) { double dr = (double)cpi->bytes_in_layer[i] * 8.0 / 1000.0 / time_encoded; double samples = 3.0 / 2 * cpi->frames_in_layer[i] * cpi->common.Width * cpi->common.Height; double total_psnr = vpx_sse_to_psnr(samples, 255.0, cpi->total_error2[i]); double total_psnr2 = vpx_sse_to_psnr(samples, 255.0, cpi->total_error2_p[i]); double total_ssim = 100 * pow(cpi->sum_ssim[i] / cpi->sum_weights[i], 8.0); fprintf(f, "%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" "%7.3f\t%7.3f\n", i, dr, cpi->sum_psnr[i] / cpi->frames_in_layer[i], total_psnr, cpi->sum_psnr_p[i] / cpi->frames_in_layer[i], total_psnr2, total_ssim); } } else { double samples = 3.0 / 2 * cpi->count * cpi->common.Width * cpi->common.Height; double total_psnr = vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error); double total_psnr2 = vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error2); double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t" "GLPsnrP\tVPXSSIM\n"); fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" "%7.3f\n", dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim); } } fclose(f); #if 0 f = fopen("qskip.stt", "a"); fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount); fclose(f); #endif } #endif #ifdef SPEEDSTATS if (cpi->compressor_speed == 2) { int i; FILE *f = fopen("cxspeed.stt", "a"); cnt_pm /= cpi->common.MBs; for (i = 0; i < 16; ++i) fprintf(f, "%5d", frames_at_speed[i]); fprintf(f, "\n"); fclose(f); } #endif #ifdef MODE_STATS { extern int count_mb_seg[4]; FILE *f = fopen("modes.stt", "a"); double dr = (double)cpi->framerate * (double)bytes * (double)8 / (double)count / (double)1000; fprintf(f, "intra_mode in Intra Frames:\n"); fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]); fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]); fprintf(f, "B: "); { int i; for (i = 0; i < 10; ++i) fprintf(f, "%8d, ", b_modes[i]); fprintf(f, "\n"); } fprintf(f, "Modes in Inter Frames:\n"); fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n", inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4], inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]); fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]); fprintf(f, "B: "); { int i; for (i = 0; i < 15; ++i) fprintf(f, "%8d, ", inter_b_modes[i]); fprintf(f, "\n"); } fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]); fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]); fclose(f); } #endif #ifdef VP8_ENTROPY_STATS { int i, j, k; FILE *fmode = fopen("modecontext.c", "w"); fprintf(fmode, "\n#include \"entropymode.h\"\n\n"); fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts "); fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n"); for (i = 0; i < 10; ++i) { fprintf(fmode, " { /* Above Mode : %d */\n", i); for (j = 0; j < 10; ++j) { fprintf(fmode, " {"); for (k = 0; k < 10; ++k) { if (!intra_mode_stats[i][j][k]) fprintf(fmode, " %5d, ", 1); else fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); } fprintf(fmode, "}, /* left_mode %d */\n", j); } fprintf(fmode, " },\n"); } fprintf(fmode, "};\n"); fclose(fmode); } #endif #if defined(SECTIONBITS_OUTPUT) if (0) { int i; FILE *f = fopen("tokenbits.stt", "a"); for (i = 0; i < 28; ++i) fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); fprintf(f, "\n"); fclose(f); } #endif #if 0 { printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); } #endif } #if CONFIG_MULTITHREAD vp8cx_remove_encoder_threads(cpi); #endif #if CONFIG_TEMPORAL_DENOISING vp8_denoiser_free(&cpi->denoiser); #endif dealloc_compressor_data(cpi); vpx_free(cpi->mb.ss); vpx_free(cpi->tok); vpx_free(cpi->skin_map); vpx_free(cpi->cyclic_refresh_map); vpx_free(cpi->consec_zero_last); vpx_free(cpi->consec_zero_last_mvbias); vp8_remove_common(&cpi->common); vpx_free(cpi); *ptr = 0; #ifdef OUTPUT_YUV_SRC fclose(yuv_file); #endif #ifdef OUTPUT_YUV_DENOISED fclose(yuv_denoised_file); #endif #ifdef OUTPUT_YUV_SKINMAP fclose(yuv_skinmap_file); #endif #if 0 if (keyfile) fclose(keyfile); if (framepsnr) fclose(framepsnr); if (kf_list) fclose(kf_list); #endif } static uint64_t calc_plane_error(unsigned char *orig, int orig_stride, unsigned char *recon, int recon_stride, unsigned int cols, unsigned int rows) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row + 16 <= rows; row += 16) { for (col = 0; col + 16 <= cols; col += 16) { unsigned int sse; vpx_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse); total_sse += sse; } /* Handle odd-sized width */ if (col < cols) { unsigned int border_row, border_col; unsigned char *border_orig = orig; unsigned char *border_recon = recon; for (border_row = 0; border_row < 16; ++border_row) { for (border_col = col; border_col < cols; ++border_col) { diff = border_orig[border_col] - border_recon[border_col]; total_sse += diff * diff; } border_orig += orig_stride; border_recon += recon_stride; } } orig += orig_stride * 16; recon += recon_stride * 16; } /* Handle odd-sized height */ for (; row < rows; ++row) { for (col = 0; col < cols; ++col) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } vpx_clear_system_state(); return total_sse; } static void generate_psnr_packet(VP8_COMP *cpi) { YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; struct vpx_codec_cx_pkt pkt; uint64_t sse; int i; unsigned int width = cpi->common.Width; unsigned int height = cpi->common.Height; pkt.kind = VPX_CODEC_PSNR_PKT; sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, width, height); pkt.data.psnr.sse[0] = sse; pkt.data.psnr.sse[1] = sse; pkt.data.psnr.samples[0] = width * height; pkt.data.psnr.samples[1] = width * height; width = (width + 1) / 2; height = (height + 1) / 2; sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, recon->uv_stride, width, height); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[2] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[2] = width * height; sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, recon->uv_stride, width, height); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[3] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[3] = width * height; for (i = 0; i < 4; ++i) { pkt.data.psnr.psnr[i] = vpx_sse_to_psnr(pkt.data.psnr.samples[i], 255.0, (double)(pkt.data.psnr.sse[i])); } vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); } int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags) { if (ref_frame_flags > 7) return -1; cpi->ref_frame_flags = ref_frame_flags; return 0; } int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags) { if (ref_frame_flags > 7) return -1; cpi->common.refresh_golden_frame = 0; cpi->common.refresh_alt_ref_frame = 0; cpi->common.refresh_last_frame = 0; if (ref_frame_flags & VP8_LAST_FRAME) cpi->common.refresh_last_frame = 1; if (ref_frame_flags & VP8_GOLD_FRAME) cpi->common.refresh_golden_frame = 1; if (ref_frame_flags & VP8_ALTR_FRAME) cpi->common.refresh_alt_ref_frame = 1; return 0; } int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP8_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP8_LAST_FRAME) { ref_fb_idx = cm->lst_fb_idx; } else if (ref_frame_flag == VP8_GOLD_FRAME) { ref_fb_idx = cm->gld_fb_idx; } else if (ref_frame_flag == VP8_ALTR_FRAME) { ref_fb_idx = cm->alt_fb_idx; } else { return -1; } vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd); return 0; } int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP8_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP8_LAST_FRAME) { ref_fb_idx = cm->lst_fb_idx; } else if (ref_frame_flag == VP8_GOLD_FRAME) { ref_fb_idx = cm->gld_fb_idx; } else if (ref_frame_flag == VP8_ALTR_FRAME) { ref_fb_idx = cm->alt_fb_idx; } else { return -1; } vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]); return 0; } int vp8_update_entropy(VP8_COMP *cpi, int update) { VP8_COMMON *cm = &cpi->common; cm->refresh_entropy_probs = update; return 0; } static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; /* are we resizing the image */ if (cm->horiz_scale != 0 || cm->vert_scale != 0) { #if CONFIG_SPATIAL_RESAMPLING int hr, hs, vr, vs; int tmp_height; if (cm->vert_scale == 3) { tmp_height = 9; } else { tmp_height = 11; } Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); vpx_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer, tmp_height, hs, hr, vs, vr, 0); vp8_yv12_extend_frame_borders(&cpi->scaled_source); cpi->Source = &cpi->scaled_source; #endif } else { cpi->Source = sd; } } static int resize_key_frame(VP8_COMP *cpi) { #if CONFIG_SPATIAL_RESAMPLING VP8_COMMON *cm = &cpi->common; /* Do we need to apply resampling for one pass cbr. * In one pass this is more limited than in two pass cbr. * The test and any change is only made once per key frame sequence. */ if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) { int hr, hs, vr, vs; int new_width, new_height; /* If we are below the resample DOWN watermark then scale down a * notch. */ if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) { cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO; cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO; } /* Should we now start scaling back up */ else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)) { cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL; cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL; } /* Get the new height and width */ Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; /* If the image size has changed we need to reallocate the buffers * and resample the source image */ if ((cm->Width != new_width) || (cm->Height != new_height)) { cm->Width = new_width; cm->Height = new_height; vp8_alloc_compressor_data(cpi); scale_and_extend_source(cpi->un_scaled_source, cpi); return 1; } } #endif return 0; } static void update_alt_ref_frame_stats(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; /* Select an interval before next GF or altref */ if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; if ((cpi->pass != 2) && cpi->frames_till_gf_update_due) { cpi->current_gf_interval = cpi->frames_till_gf_update_due; /* Set the bits per frame that we should try and recover in * subsequent inter frames to account for the extra GF spend... * note that his does not apply for GF updates that occur * coincident with a key frame as the extra cost of key frames is * dealt with elsewhere. */ cpi->gf_overspend_bits += cpi->projected_frame_size; cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; } /* Update data structure that monitors level of reference to last GF */ memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; /* this frame refreshes means next frames don't unless specified by user */ cpi->frames_since_golden = 0; /* Clear the alternate reference update pending flag. */ cpi->source_alt_ref_pending = 0; /* Set the alternate reference frame active flag */ cpi->source_alt_ref_active = 1; } static void update_golden_frame_stats(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; /* Update the Golden frame usage counts. */ if (cm->refresh_golden_frame) { /* Select an interval before next GF */ if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0)) { cpi->current_gf_interval = cpi->frames_till_gf_update_due; /* Set the bits per frame that we should try and recover in * subsequent inter frames to account for the extra GF spend... * note that his does not apply for GF updates that occur * coincident with a key frame as the extra cost of key frames * is dealt with elsewhere. */ if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active) { /* Calcluate GF bits to be recovered * Projected size - av frame bits available for inter * frames for clip as a whole */ cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target); } cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; } /* Update data structure that monitors level of reference to last GF */ memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; /* this frame refreshes means next frames don't unless specified by * user */ cm->refresh_golden_frame = 0; cpi->frames_since_golden = 0; cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; /* ******** Fixed Q test code only ************ */ /* If we are going to use the ALT reference for the next group of * frames set a flag to say so. */ if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame) { cpi->source_alt_ref_pending = 1; cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; } if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = 0; /* Decrement count down till next gf */ if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; } else if (!cpi->common.refresh_alt_ref_frame) { /* Decrement count down till next gf */ if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; if (cpi->frames_till_alt_ref_frame) cpi->frames_till_alt_ref_frame--; cpi->frames_since_golden++; if (cpi->frames_since_golden > 1) { cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME]; cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->mb.count_mb_ref_frame_usage[LAST_FRAME]; cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME]; cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME]; } } } /* This function updates the reference frame probability estimates that * will be used during mode selection */ static void update_rd_ref_frame_probs(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; const int *const rfct = cpi->mb.count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; if (cm->frame_type == KEY_FRAME) { cpi->prob_intra_coded = 255; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; } else if (!(rf_intra + rf_inter)) { cpi->prob_intra_coded = 63; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; } /* update reference frame costs since we can do better than what we got * last frame. */ if (cpi->oxcf.number_of_layers == 1) { if (cpi->common.refresh_alt_ref_frame) { cpi->prob_intra_coded += 40; if (cpi->prob_intra_coded > 255) cpi->prob_intra_coded = 255; cpi->prob_last_coded = 200; cpi->prob_gf_coded = 1; } else if (cpi->frames_since_golden == 0) { cpi->prob_last_coded = 214; } else if (cpi->frames_since_golden == 1) { cpi->prob_last_coded = 192; cpi->prob_gf_coded = 220; } else if (cpi->source_alt_ref_active) { cpi->prob_gf_coded -= 20; if (cpi->prob_gf_coded < 10) cpi->prob_gf_coded = 10; } if (!cpi->source_alt_ref_active) cpi->prob_gf_coded = 255; } } #if !CONFIG_REALTIME_ONLY /* 1 = key, 0 = inter */ static int decide_key_frame(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int code_key_frame = 0; cpi->kf_boost = 0; if (cpi->Speed > 11) return 0; /* Clear down mmx registers */ vpx_clear_system_state(); if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0)) { double change = 1.0 * abs((int)(cpi->mb.intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error); double change2 = 1.0 * abs((int)(cpi->mb.prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error); double minerror = cm->MBs * 256; cpi->last_intra_error = cpi->mb.intra_error; cpi->last_prediction_error = cpi->mb.prediction_error; if (10 * cpi->mb.intra_error / (1 + cpi->mb.prediction_error) < 15 && cpi->mb.prediction_error > minerror && (change > .25 || change2 > .25)) { /*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > * cpi->last_frame_percent_intra + 3*/ return 1; } return 0; } /* If the following are true we might as well code a key frame */ if (((cpi->this_frame_percent_intra == 100) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) || ((cpi->this_frame_percent_intra > 95) && (cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5)))) { code_key_frame = 1; } /* in addition if the following are true and this is not a golden frame * then code a key frame Note that on golden frames there often seems * to be a pop in intra useage anyway hence this restriction is * designed to prevent spurious key frames. The Intra pop needs to be * investigated. */ else if (((cpi->this_frame_percent_intra > 60) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) || ((cpi->this_frame_percent_intra > 75) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) || ((cpi->this_frame_percent_intra > 90) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10)))) { if (!cm->refresh_golden_frame) code_key_frame = 1; } return code_key_frame; } static void Pass1Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest, unsigned int *frame_flags) { (void)size; (void)dest; (void)frame_flags; vp8_set_quantizer(cpi, 26); vp8_first_pass(cpi); } #endif #if 0 void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) { /* write the frame */ FILE *yframe; int i; char filename[255]; sprintf(filename, "cx\\y%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->y_height; ++i) fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\u%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; ++i) fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\v%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; ++i) fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); } #endif #if !CONFIG_REALTIME_ONLY /* Function to test for conditions that indeicate we should loop * back and recode a frame. */ static int recode_loop_test(VP8_COMP *cpi, int high_limit, int low_limit, int q, int maxq, int minq) { int force_recode = 0; VP8_COMMON *cm = &cpi->common; /* Is frame recode allowed at all * Yes if either recode mode 1 is selected or mode two is selcted * and the frame is a key frame. golden frame or alt_ref_frame */ if ((cpi->sf.recode_loop == 1) || ((cpi->sf.recode_loop == 2) && ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame))) { /* General over and under shoot tests */ if (((cpi->projected_frame_size > high_limit) && (q < maxq)) || ((cpi->projected_frame_size < low_limit) && (q > minq))) { force_recode = 1; } /* Special Constrained quality tests */ else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { /* Undershoot and below auto cq level */ if ((q > cpi->cq_target_quality) && (cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3))) { force_recode = 1; } /* Severe undershoot and between auto and user cq level */ else if ((q > cpi->oxcf.cq_level) && (cpi->projected_frame_size < cpi->min_frame_bandwidth) && (cpi->active_best_quality > cpi->oxcf.cq_level)) { force_recode = 1; cpi->active_best_quality = cpi->oxcf.cq_level; } } } return force_recode; } #endif // !CONFIG_REALTIME_ONLY static void update_reference_frames(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb; /* At this point the new frame has been encoded. * If any buffer copy / swapping is signaled it should be done here. */ if (cm->frame_type == KEY_FRAME) { yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME | VP8_ALTR_FRAME; yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx; cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame; cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame; } else { if (cm->refresh_alt_ref_frame) { assert(!cm->copy_buffer_to_arf); cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALTR_FRAME; cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; cm->alt_fb_idx = cm->new_fb_idx; cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame; } else if (cm->copy_buffer_to_arf) { assert(!(cm->copy_buffer_to_arf & ~0x3)); if (cm->copy_buffer_to_arf == 1) { if (cm->alt_fb_idx != cm->lst_fb_idx) { yv12_fb[cm->lst_fb_idx].flags |= VP8_ALTR_FRAME; yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; cm->alt_fb_idx = cm->lst_fb_idx; cpi->current_ref_frames[ALTREF_FRAME] = cpi->current_ref_frames[LAST_FRAME]; } } else { if (cm->alt_fb_idx != cm->gld_fb_idx) { yv12_fb[cm->gld_fb_idx].flags |= VP8_ALTR_FRAME; yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; cm->alt_fb_idx = cm->gld_fb_idx; cpi->current_ref_frames[ALTREF_FRAME] = cpi->current_ref_frames[GOLDEN_FRAME]; } } } if (cm->refresh_golden_frame) { assert(!cm->copy_buffer_to_gf); cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME; cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; cm->gld_fb_idx = cm->new_fb_idx; cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame; } else if (cm->copy_buffer_to_gf) { assert(!(cm->copy_buffer_to_arf & ~0x3)); if (cm->copy_buffer_to_gf == 1) { if (cm->gld_fb_idx != cm->lst_fb_idx) { yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FRAME; yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; cm->gld_fb_idx = cm->lst_fb_idx; cpi->current_ref_frames[GOLDEN_FRAME] = cpi->current_ref_frames[LAST_FRAME]; } } else { if (cm->alt_fb_idx != cm->gld_fb_idx) { yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FRAME; yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; cm->gld_fb_idx = cm->alt_fb_idx; cpi->current_ref_frames[GOLDEN_FRAME] = cpi->current_ref_frames[ALTREF_FRAME]; } } } } if (cm->refresh_last_frame) { cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FRAME; cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FRAME; cm->lst_fb_idx = cm->new_fb_idx; cpi->current_ref_frames[LAST_FRAME] = cm->current_video_frame; } #if CONFIG_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity) { /* we shouldn't have to keep multiple copies as we know in advance which * buffer we should start - for now to get something up and running * I've chosen to copy the buffers */ if (cm->frame_type == KEY_FRAME) { int i; for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_running_avg[i]); } else { vp8_yv12_extend_frame_borders( &cpi->denoiser.yv12_running_avg[INTRA_FRAME]); if (cm->refresh_alt_ref_frame || cm->copy_buffer_to_arf) { vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], &cpi->denoiser.yv12_running_avg[ALTREF_FRAME]); } if (cm->refresh_golden_frame || cm->copy_buffer_to_gf) { vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], &cpi->denoiser.yv12_running_avg[GOLDEN_FRAME]); } if (cm->refresh_last_frame) { vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], &cpi->denoiser.yv12_running_avg[LAST_FRAME]); } } if (cpi->oxcf.noise_sensitivity == 4) vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_last_source); } #endif } static int measure_square_diff_partial(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, VP8_COMP *cpi) { int i, j; int Total = 0; int num_blocks = 0; int skip = 2; int min_consec_zero_last = 10; int tot_num_blocks = (source->y_height * source->y_width) >> 8; unsigned char *src = source->y_buffer; unsigned char *dst = dest->y_buffer; /* Loop through the Y plane, every |skip| blocks along rows and colmumns, * summing the square differences, and only for blocks that have been * zero_last mode at least |x| frames in a row. */ for (i = 0; i < source->y_height; i += 16 * skip) { int block_index_row = (i >> 4) * cpi->common.mb_cols; for (j = 0; j < source->y_width; j += 16 * skip) { int index = block_index_row + (j >> 4); if (cpi->consec_zero_last[index] >= min_consec_zero_last) { unsigned int sse; Total += vpx_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse); num_blocks++; } } src += 16 * skip * source->y_stride; dst += 16 * skip * dest->y_stride; } // Only return non-zero if we have at least ~1/16 samples for estimate. if (num_blocks > (tot_num_blocks >> 4)) { assert(num_blocks != 0); return (Total / num_blocks); } else { return 0; } } #if CONFIG_TEMPORAL_DENOISING static void process_denoiser_mode_change(VP8_COMP *cpi) { const VP8_COMMON *const cm = &cpi->common; int i, j; int total = 0; int num_blocks = 0; // Number of blocks skipped along row/column in computing the // nmse (normalized mean square error) of source. int skip = 2; // Only select blocks for computing nmse that have been encoded // as ZERO LAST min_consec_zero_last frames in a row. // Scale with number of temporal layers. int min_consec_zero_last = 12 / cpi->oxcf.number_of_layers; // Decision is tested for changing the denoising mode every // num_mode_change times this function is called. Note that this // function called every 8 frames, so (8 * num_mode_change) is number // of frames where denoising mode change is tested for switch. int num_mode_change = 20; // Framerate factor, to compensate for larger mse at lower framerates. // Use ref_framerate, which is full source framerate for temporal layers. // TODO(marpan): Adjust this factor. int fac_framerate = cpi->ref_framerate < 25.0f ? 80 : 100; int tot_num_blocks = cm->mb_rows * cm->mb_cols; int ystride = cpi->Source->y_stride; unsigned char *src = cpi->Source->y_buffer; unsigned char *dst = cpi->denoiser.yv12_last_source.y_buffer; static const unsigned char const_source[16] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; int bandwidth = (int)(cpi->target_bandwidth); // For temporal layers, use full bandwidth (top layer). if (cpi->oxcf.number_of_layers > 1) { LAYER_CONTEXT *lc = &cpi->layer_context[cpi->oxcf.number_of_layers - 1]; bandwidth = (int)(lc->target_bandwidth); } // Loop through the Y plane, every skip blocks along rows and columns, // summing the normalized mean square error, only for blocks that have // been encoded as ZEROMV LAST at least min_consec_zero_last least frames in // a row and have small sum difference between current and previous frame. // Normalization here is by the contrast of the current frame block. for (i = 0; i < cm->Height; i += 16 * skip) { int block_index_row = (i >> 4) * cm->mb_cols; for (j = 0; j < cm->Width; j += 16 * skip) { int index = block_index_row + (j >> 4); if (cpi->consec_zero_last[index] >= min_consec_zero_last) { unsigned int sse; const unsigned int var = vpx_variance16x16(src + j, ystride, dst + j, ystride, &sse); // Only consider this block as valid for noise measurement // if the sum_diff average of the current and previous frame // is small (to avoid effects from lighting change). if ((sse - var) < 128) { unsigned int sse2; const unsigned int act = vpx_variance16x16(src + j, ystride, const_source, 0, &sse2); if (act > 0) total += sse / act; num_blocks++; } } } src += 16 * skip * ystride; dst += 16 * skip * ystride; } total = total * fac_framerate / 100; // Only consider this frame as valid sample if we have computed nmse over // at least ~1/16 blocks, and Total > 0 (Total == 0 can happen if the // application inputs duplicate frames, or contrast is all zero). if (total > 0 && (num_blocks > (tot_num_blocks >> 4))) { // Update the recursive mean square source_diff. total = (total << 8) / num_blocks; if (cpi->denoiser.nmse_source_diff_count == 0) { // First sample in new interval. cpi->denoiser.nmse_source_diff = total; cpi->denoiser.qp_avg = cm->base_qindex; } else { // For subsequent samples, use average with weight ~1/4 for new sample. cpi->denoiser.nmse_source_diff = (int)((total + 3 * cpi->denoiser.nmse_source_diff) >> 2); cpi->denoiser.qp_avg = (int)((cm->base_qindex + 3 * cpi->denoiser.qp_avg) >> 2); } cpi->denoiser.nmse_source_diff_count++; } // Check for changing the denoiser mode, when we have obtained #samples = // num_mode_change. Condition the change also on the bitrate and QP. if (cpi->denoiser.nmse_source_diff_count == num_mode_change) { // Check for going up: from normal to aggressive mode. if ((cpi->denoiser.denoiser_mode == kDenoiserOnYUV) && (cpi->denoiser.nmse_source_diff > cpi->denoiser.threshold_aggressive_mode) && (cpi->denoiser.qp_avg < cpi->denoiser.qp_threshold_up && bandwidth > cpi->denoiser.bitrate_threshold)) { vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUVAggressive); } else { // Check for going down: from aggressive to normal mode. if (((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) && (cpi->denoiser.nmse_source_diff < cpi->denoiser.threshold_aggressive_mode)) || ((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) && (cpi->denoiser.qp_avg > cpi->denoiser.qp_threshold_down || bandwidth < cpi->denoiser.bitrate_threshold))) { vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV); } } // Reset metric and counter for next interval. cpi->denoiser.nmse_source_diff = 0; cpi->denoiser.qp_avg = 0; cpi->denoiser.nmse_source_diff_count = 0; } } #endif void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm) { const FRAME_TYPE frame_type = cm->frame_type; int update_any_ref_buffers = 1; if (cpi->common.refresh_last_frame == 0 && cpi->common.refresh_golden_frame == 0 && cpi->common.refresh_alt_ref_frame == 0) { update_any_ref_buffers = 0; } if (cm->no_lpf) { cm->filter_level = 0; } else { struct vpx_usec_timer timer; vpx_clear_system_state(); vpx_usec_timer_start(&timer); if (cpi->sf.auto_filter == 0) { #if CONFIG_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) { // Use the denoised buffer for selecting base loop filter level. // Denoised signal for current frame is stored in INTRA_FRAME. // No denoising on key frames. vp8cx_pick_filter_level_fast( &cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi); } else { vp8cx_pick_filter_level_fast(cpi->Source, cpi); } #else vp8cx_pick_filter_level_fast(cpi->Source, cpi); #endif } else { #if CONFIG_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) { // Use the denoised buffer for selecting base loop filter level. // Denoised signal for current frame is stored in INTRA_FRAME. // No denoising on key frames. vp8cx_pick_filter_level(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi); } else { vp8cx_pick_filter_level(cpi->Source, cpi); } #else vp8cx_pick_filter_level(cpi->Source, cpi); #endif } if (cm->filter_level > 0) { vp8cx_set_alt_lf_level(cpi, cm->filter_level); } vpx_usec_timer_mark(&timer); cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); } #if CONFIG_MULTITHREAD if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */ } #endif // No need to apply loop-filter if the encoded frame does not update // any reference buffers. if (cm->filter_level > 0 && update_any_ref_buffers) { vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, frame_type); } vp8_yv12_extend_frame_borders(cm->frame_to_show); } static void encode_frame_to_data_rate(VP8_COMP *cpi, size_t *size, unsigned char *dest, unsigned char *dest_end, unsigned int *frame_flags) { int Q; int frame_over_shoot_limit; int frame_under_shoot_limit; int Loop = 0; int loop_count; VP8_COMMON *cm = &cpi->common; int active_worst_qchanged = 0; #if !CONFIG_REALTIME_ONLY int q_low; int q_high; int zbin_oq_high; int zbin_oq_low = 0; int top_index; int bottom_index; int overshoot_seen = 0; int undershoot_seen = 0; #endif int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100); int drop_mark75 = drop_mark * 2 / 3; int drop_mark50 = drop_mark / 4; int drop_mark25 = drop_mark / 8; /* Clear down mmx registers to allow floating point in what follows */ vpx_clear_system_state(); if (cpi->force_next_frame_intra) { cm->frame_type = KEY_FRAME; /* delayed intra frame */ cpi->force_next_frame_intra = 0; } /* For an alt ref frame in 2 pass we skip the call to the second pass * function that sets the target bandwidth */ switch (cpi->pass) { #if !CONFIG_REALTIME_ONLY case 2: if (cpi->common.refresh_alt_ref_frame) { /* Per frame bit target for the alt ref frame */ cpi->per_frame_bandwidth = cpi->twopass.gf_bits; /* per second target bitrate */ cpi->target_bandwidth = (int)(cpi->twopass.gf_bits * cpi->output_framerate); } break; #endif // !CONFIG_REALTIME_ONLY default: cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_framerate); break; } /* Default turn off buffer to buffer copying */ cm->copy_buffer_to_gf = 0; cm->copy_buffer_to_arf = 0; /* Clear zbin over-quant value and mode boost values. */ cpi->mb.zbin_over_quant = 0; cpi->mb.zbin_mode_boost = 0; /* Enable or disable mode based tweaking of the zbin * For 2 Pass Only used where GF/ARF prediction quality * is above a threshold */ cpi->mb.zbin_mode_boost_enabled = 1; if (cpi->pass == 2) { if (cpi->gfu_boost <= 400) { cpi->mb.zbin_mode_boost_enabled = 0; } } /* Current default encoder behaviour for the altref sign bias */ if (cpi->source_alt_ref_active) { cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; } else { cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0; } /* Check to see if a key frame is signaled * For two pass with auto key frame enabled cm->frame_type may already * be set, but not for one pass. */ if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) || (cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) { /* Key frame from VFW/auto-keyframe/first frame */ cm->frame_type = KEY_FRAME; #if CONFIG_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity == 4) { // For adaptive mode, reset denoiser to normal mode on key frame. vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV); } #endif } #if CONFIG_MULTI_RES_ENCODING if (cpi->oxcf.mr_total_resolutions > 1) { LOWER_RES_FRAME_INFO *low_res_frame_info = (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; if (cpi->oxcf.mr_encoder_id) { // Check if lower resolution is available for motion vector reuse. if (cm->frame_type != KEY_FRAME) { cpi->mr_low_res_mv_avail = 1; cpi->mr_low_res_mv_avail &= !(low_res_frame_info->is_frame_dropped); if (cpi->ref_frame_flags & VP8_LAST_FRAME) cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[LAST_FRAME] == low_res_frame_info->low_res_ref_frames[LAST_FRAME]); if (cpi->ref_frame_flags & VP8_GOLD_FRAME) cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[GOLDEN_FRAME] == low_res_frame_info->low_res_ref_frames[GOLDEN_FRAME]); // Don't use altref to determine whether low res is available. // TODO (marpan): Should we make this type of condition on a // per-reference frame basis? /* if (cpi->ref_frame_flags & VP8_ALTR_FRAME) cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[ALTREF_FRAME] == low_res_frame_info->low_res_ref_frames[ALTREF_FRAME]); */ } // Disable motion vector reuse (i.e., disable any usage of the low_res) // if the previous lower stream is skipped/disabled. if (low_res_frame_info->skip_encoding_prev_stream) { cpi->mr_low_res_mv_avail = 0; } } // This stream is not skipped (i.e., it's being encoded), so set this skip // flag to 0. This is needed for the next stream (i.e., which is the next // frame to be encoded). low_res_frame_info->skip_encoding_prev_stream = 0; // On a key frame: For the lowest resolution, keep track of the key frame // counter value. For the higher resolutions, reset the current video // frame counter to that of the lowest resolution. // This is done to the handle the case where we may stop/start encoding // higher layer(s). The restart-encoding of higher layer is only signaled // by a key frame for now. // TODO (marpan): Add flag to indicate restart-encoding of higher layer. if (cm->frame_type == KEY_FRAME) { if (cpi->oxcf.mr_encoder_id) { // If the initial starting value of the buffer level is zero (this can // happen because we may have not started encoding this higher stream), // then reset it to non-zero value based on |starting_buffer_level|. if (cpi->common.current_video_frame == 0 && cpi->buffer_level == 0) { unsigned int i; cpi->bits_off_target = cpi->oxcf.starting_buffer_level; cpi->buffer_level = cpi->oxcf.starting_buffer_level; for (i = 0; i < cpi->oxcf.number_of_layers; ++i) { LAYER_CONTEXT *lc = &cpi->layer_context[i]; lc->bits_off_target = lc->starting_buffer_level; lc->buffer_level = lc->starting_buffer_level; } } cpi->common.current_video_frame = low_res_frame_info->key_frame_counter_value; } else { low_res_frame_info->key_frame_counter_value = cpi->common.current_video_frame; } } } #endif // Find the reference frame closest to the current frame. cpi->closest_reference_frame = LAST_FRAME; if (cm->frame_type != KEY_FRAME) { int i; MV_REFERENCE_FRAME closest_ref = INTRA_FRAME; if (cpi->ref_frame_flags & VP8_LAST_FRAME) { closest_ref = LAST_FRAME; } else if (cpi->ref_frame_flags & VP8_GOLD_FRAME) { closest_ref = GOLDEN_FRAME; } else if (cpi->ref_frame_flags & VP8_ALTR_FRAME) { closest_ref = ALTREF_FRAME; } for (i = 1; i <= 3; ++i) { vpx_ref_frame_type_t ref_frame_type = (vpx_ref_frame_type_t)((i == 3) ? 4 : i); if (cpi->ref_frame_flags & ref_frame_type) { if ((cm->current_video_frame - cpi->current_ref_frames[i]) < (cm->current_video_frame - cpi->current_ref_frames[closest_ref])) { closest_ref = i; } } } cpi->closest_reference_frame = closest_ref; } /* Set various flags etc to special state if it is a key frame */ if (cm->frame_type == KEY_FRAME) { int i; // Set the loop filter deltas and segmentation map update setup_features(cpi); /* The alternate reference frame cannot be active for a key frame */ cpi->source_alt_ref_active = 0; /* Reset the RD threshold multipliers to default of * 1 (128) */ for (i = 0; i < MAX_MODES; ++i) { cpi->mb.rd_thresh_mult[i] = 128; } // Reset the zero_last counter to 0 on key frame. memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols); memset(cpi->consec_zero_last_mvbias, 0, (cpi->common.mb_rows * cpi->common.mb_cols)); } #if 0 /* Experimental code for lagged compress and one pass * Initialise one_pass GF frames stats * Update stats used for GF selection */ { cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0; } #endif update_rd_ref_frame_probs(cpi); if (cpi->drop_frames_allowed) { /* The reset to decimation 0 is only done here for one pass. * Once it is set two pass leaves decimation on till the next kf. */ if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0)) { cpi->decimation_factor--; } if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0) { cpi->decimation_factor = 1; } else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3)) { cpi->decimation_factor = 3; } else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2)) { cpi->decimation_factor = 2; } else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1)) { cpi->decimation_factor = 1; } } /* The following decimates the frame rate according to a regular * pattern (i.e. to 1/2 or 2/3 frame rate) This can be used to help * prevent buffer under-run in CBR mode. Alternatively it might be * desirable in some situations to drop frame rate but throw more bits * at each frame. * * Note that dropping a key frame can be problematic if spatial * resampling is also active */ if (cpi->decimation_factor > 0) { switch (cpi->decimation_factor) { case 1: cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2; break; case 2: cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; break; case 3: cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; break; } /* Note that we should not throw out a key frame (especially when * spatial resampling is enabled). */ if (cm->frame_type == KEY_FRAME) { cpi->decimation_count = cpi->decimation_factor; } else if (cpi->decimation_count > 0) { cpi->decimation_count--; cpi->bits_off_target += cpi->av_per_frame_bandwidth; if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; } #if CONFIG_MULTI_RES_ENCODING vp8_store_drop_frame_info(cpi); #endif cm->current_video_frame++; cpi->frames_since_key++; // We advance the temporal pattern for dropped frames. cpi->temporal_pattern_counter++; #if CONFIG_INTERNAL_STATS cpi->count++; #endif cpi->buffer_level = cpi->bits_off_target; if (cpi->oxcf.number_of_layers > 1) { unsigned int i; /* Propagate bits saved by dropping the frame to higher * layers */ for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { LAYER_CONTEXT *lc = &cpi->layer_context[i]; lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate); if (lc->bits_off_target > lc->maximum_buffer_size) { lc->bits_off_target = lc->maximum_buffer_size; } lc->buffer_level = lc->bits_off_target; } } return; } else { cpi->decimation_count = cpi->decimation_factor; } } else { cpi->decimation_count = 0; } /* Decide how big to make the frame */ if (!vp8_pick_frame_size(cpi)) { /*TODO: 2 drop_frame and return code could be put together. */ #if CONFIG_MULTI_RES_ENCODING vp8_store_drop_frame_info(cpi); #endif cm->current_video_frame++; cpi->frames_since_key++; // We advance the temporal pattern for dropped frames. cpi->temporal_pattern_counter++; return; } /* Reduce active_worst_allowed_q for CBR if our buffer is getting too full. * This has a knock on effect on active best quality as well. * For CBR if the buffer reaches its maximum level then we can no longer * save up bits for later frames so we might as well use them up * on the current frame. */ if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && (cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode) { /* Max adjustment is 1/4 */ int Adjustment = cpi->active_worst_quality / 4; if (Adjustment) { int buff_lvl_step; if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size) { buff_lvl_step = (int)((cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level) / Adjustment); if (buff_lvl_step) { Adjustment = (int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / buff_lvl_step); } else { Adjustment = 0; } } cpi->active_worst_quality -= Adjustment; if (cpi->active_worst_quality < cpi->active_best_quality) { cpi->active_worst_quality = cpi->active_best_quality; } } } /* Set an active best quality and if necessary active worst quality * There is some odd behavior for one pass here that needs attention. */ if ((cpi->pass == 2) || (cpi->ni_frames > 150)) { vpx_clear_system_state(); Q = cpi->active_worst_quality; if (cm->frame_type == KEY_FRAME) { if (cpi->pass == 2) { if (cpi->gfu_boost > 600) { cpi->active_best_quality = kf_low_motion_minq[Q]; } else { cpi->active_best_quality = kf_high_motion_minq[Q]; } /* Special case for key frames forced because we have reached * the maximum key frame interval. Here force the Q to a range * based on the ambient Q to reduce the risk of popping */ if (cpi->this_key_frame_forced) { if (cpi->active_best_quality > cpi->avg_frame_qindex * 7 / 8) { cpi->active_best_quality = cpi->avg_frame_qindex * 7 / 8; } else if (cpi->active_best_quality<cpi->avg_frame_qindex>> 2) { cpi->active_best_quality = cpi->avg_frame_qindex >> 2; } } } /* One pass more conservative */ else { cpi->active_best_quality = kf_high_motion_minq[Q]; } } else if (cpi->oxcf.number_of_layers == 1 && (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)) { /* Use the lower of cpi->active_worst_quality and recent * average Q as basis for GF/ARF Q limit unless last frame was * a key frame. */ if ((cpi->frames_since_key > 1) && (cpi->avg_frame_qindex < cpi->active_worst_quality)) { Q = cpi->avg_frame_qindex; } /* For constrained quality dont allow Q less than the cq level */ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < cpi->cq_target_quality)) { Q = cpi->cq_target_quality; } if (cpi->pass == 2) { if (cpi->gfu_boost > 1000) { cpi->active_best_quality = gf_low_motion_minq[Q]; } else if (cpi->gfu_boost < 400) { cpi->active_best_quality = gf_high_motion_minq[Q]; } else { cpi->active_best_quality = gf_mid_motion_minq[Q]; } /* Constrained quality use slightly lower active best. */ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { cpi->active_best_quality = cpi->active_best_quality * 15 / 16; } } /* One pass more conservative */ else { cpi->active_best_quality = gf_high_motion_minq[Q]; } } else { cpi->active_best_quality = inter_minq[Q]; /* For the constant/constrained quality mode we dont want * q to fall below the cq level. */ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (cpi->active_best_quality < cpi->cq_target_quality)) { /* If we are strongly undershooting the target rate in the last * frames then use the user passed in cq value not the auto * cq value. */ if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) { cpi->active_best_quality = cpi->oxcf.cq_level; } else { cpi->active_best_quality = cpi->cq_target_quality; } } } /* If CBR and the buffer is as full then it is reasonable to allow * higher quality on the frames to prevent bits just going to waste. */ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { /* Note that the use of >= here elliminates the risk of a devide * by 0 error in the else if clause */ if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size) { cpi->active_best_quality = cpi->best_quality; } else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level) { int Fraction = (int)(((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level)); int min_qadjustment = ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128; cpi->active_best_quality -= min_qadjustment; } } } /* Make sure constrained quality mode limits are adhered to for the first * few frames of one pass encodes */ else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame) { cpi->active_best_quality = cpi->best_quality; } else if (cpi->active_best_quality < cpi->cq_target_quality) { cpi->active_best_quality = cpi->cq_target_quality; } } /* Clip the active best and worst quality values to limits */ if (cpi->active_worst_quality > cpi->worst_quality) { cpi->active_worst_quality = cpi->worst_quality; } if (cpi->active_best_quality < cpi->best_quality) { cpi->active_best_quality = cpi->best_quality; } if (cpi->active_worst_quality < cpi->active_best_quality) { cpi->active_worst_quality = cpi->active_best_quality; } /* Determine initial Q to try */ Q = vp8_regulate_q(cpi, cpi->this_frame_target); #if !CONFIG_REALTIME_ONLY /* Set highest allowed value for Zbin over quant */ if (cm->frame_type == KEY_FRAME) { zbin_oq_high = 0; } else if ((cpi->oxcf.number_of_layers == 1) && ((cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active)))) { zbin_oq_high = 16; } else { zbin_oq_high = ZBIN_OQ_MAX; } #endif compute_skin_map(cpi); /* Setup background Q adjustment for error resilient mode. * For multi-layer encodes only enable this for the base layer. */ if (cpi->cyclic_refresh_mode_enabled) { // Special case for screen_content_mode with golden frame updates. int disable_cr_gf = (cpi->oxcf.screen_content_mode == 2 && cm->refresh_golden_frame); if (cpi->current_layer == 0 && cpi->force_maxqp == 0 && !disable_cr_gf) { cyclic_background_refresh(cpi, Q, 0); } else { disable_segmentation(cpi); } } vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit); #if !CONFIG_REALTIME_ONLY /* Limit Q range for the adaptive loop. */ bottom_index = cpi->active_best_quality; top_index = cpi->active_worst_quality; q_low = cpi->active_best_quality; q_high = cpi->active_worst_quality; #endif vp8_save_coding_context(cpi); loop_count = 0; scale_and_extend_source(cpi->un_scaled_source, cpi); #if CONFIG_TEMPORAL_DENOISING && CONFIG_POSTPROC // Option to apply spatial blur under the aggressive or adaptive // (temporal denoising) mode. if (cpi->oxcf.noise_sensitivity >= 3) { if (cpi->denoiser.denoise_pars.spatial_blur != 0) { vp8_de_noise(cm, cpi->Source, cpi->Source, cpi->denoiser.denoise_pars.spatial_blur, 1, 0, 0); } } #endif #if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC && !(CONFIG_TEMPORAL_DENOISING) if (cpi->oxcf.noise_sensitivity > 0) { unsigned char *src; int l = 0; switch (cpi->oxcf.noise_sensitivity) { case 1: l = 20; break; case 2: l = 40; break; case 3: l = 60; break; case 4: l = 80; break; case 5: l = 100; break; case 6: l = 150; break; } if (cm->frame_type == KEY_FRAME) { vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1); } else { vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1); src = cpi->Source->y_buffer; if (cpi->Source->y_stride < 0) { src += cpi->Source->y_stride * (cpi->Source->y_height - 1); } } } #endif #ifdef OUTPUT_YUV_SRC vpx_write_yuv_frame(yuv_file, cpi->Source); #endif do { vpx_clear_system_state(); vp8_set_quantizer(cpi, Q); /* setup skip prob for costing in mode/mv decision */ if (cpi->common.mb_no_coeff_skip) { cpi->prob_skip_false = cpi->base_skip_false_prob[Q]; if (cm->frame_type != KEY_FRAME) { if (cpi->common.refresh_alt_ref_frame) { if (cpi->last_skip_false_probs[2] != 0) { cpi->prob_skip_false = cpi->last_skip_false_probs[2]; } /* if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 ) cpi->prob_skip_false = cpi->last_skip_false_probs[2]; else if (cpi->last_skip_false_probs[2]!=0) cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2; */ } else if (cpi->common.refresh_golden_frame) { if (cpi->last_skip_false_probs[1] != 0) { cpi->prob_skip_false = cpi->last_skip_false_probs[1]; } /* if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 ) cpi->prob_skip_false = cpi->last_skip_false_probs[1]; else if (cpi->last_skip_false_probs[1]!=0) cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2; */ } else { if (cpi->last_skip_false_probs[0] != 0) { cpi->prob_skip_false = cpi->last_skip_false_probs[0]; } /* if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 ) cpi->prob_skip_false = cpi->last_skip_false_probs[0]; else if(cpi->last_skip_false_probs[0]!=0) cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2; */ } /* as this is for cost estimate, let's make sure it does not * go extreme eitehr way */ if (cpi->prob_skip_false < 5) cpi->prob_skip_false = 5; if (cpi->prob_skip_false > 250) cpi->prob_skip_false = 250; if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref) { cpi->prob_skip_false = 1; } } #if 0 if (cpi->pass != 1) { FILE *f = fopen("skip.stt", "a"); fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false); fclose(f); } #endif } if (cm->frame_type == KEY_FRAME) { if (resize_key_frame(cpi)) { /* If the frame size has changed, need to reset Q, quantizer, * and background refresh. */ Q = vp8_regulate_q(cpi, cpi->this_frame_target); if (cpi->cyclic_refresh_mode_enabled) { if (cpi->current_layer == 0) { cyclic_background_refresh(cpi, Q, 0); } else { disable_segmentation(cpi); } } // Reset the zero_last counter to 0 on key frame. memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols); memset(cpi->consec_zero_last_mvbias, 0, (cpi->common.mb_rows * cpi->common.mb_cols)); vp8_set_quantizer(cpi, Q); } vp8_setup_key_frame(cpi); } #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING { if (cpi->oxcf.error_resilient_mode) cm->refresh_entropy_probs = 0; if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { if (cm->frame_type == KEY_FRAME) cm->refresh_entropy_probs = 1; } if (cm->refresh_entropy_probs == 0) { /* save a copy for later refresh */ memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc)); } vp8_update_coef_context(cpi); vp8_update_coef_probs(cpi); /* transform / motion compensation build reconstruction frame * +pack coef partitions */ vp8_encode_frame(cpi); /* cpi->projected_frame_size is not needed for RT mode */ } #else /* transform / motion compensation build reconstruction frame */ vp8_encode_frame(cpi); if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { if (vp8_drop_encodedframe_overshoot(cpi, Q)) return; } cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi); cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0; #endif vpx_clear_system_state(); /* Test to see if the stats generated for this frame indicate that * we should have coded a key frame (assuming that we didn't)! */ if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME && cpi->compressor_speed != 2) { #if !CONFIG_REALTIME_ONLY if (decide_key_frame(cpi)) { /* Reset all our sizing numbers and recode */ cm->frame_type = KEY_FRAME; vp8_pick_frame_size(cpi); /* Clear the Alt reference frame active flag when we have * a key frame */ cpi->source_alt_ref_active = 0; // Set the loop filter deltas and segmentation map update setup_features(cpi); vp8_restore_coding_context(cpi); Q = vp8_regulate_q(cpi, cpi->this_frame_target); vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit); /* Limit Q range for the adaptive loop. */ bottom_index = cpi->active_best_quality; top_index = cpi->active_worst_quality; q_low = cpi->active_best_quality; q_high = cpi->active_worst_quality; loop_count++; Loop = 1; continue; } #endif } vpx_clear_system_state(); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; /* Are we are overshooting and up against the limit of active max Q. */ if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) && (Q == cpi->active_worst_quality) && (cpi->active_worst_quality < cpi->worst_quality) && (cpi->projected_frame_size > frame_over_shoot_limit)) { int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit; /* If so is there any scope for relaxing it */ while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0)) { cpi->active_worst_quality++; /* Assume 1 qstep = about 4% on frame size. */ over_size_percent = (int)(over_size_percent * 0.96); } #if !CONFIG_REALTIME_ONLY top_index = cpi->active_worst_quality; #endif // !CONFIG_REALTIME_ONLY /* If we have updated the active max Q do not call * vp8_update_rate_correction_factors() this loop. */ active_worst_qchanged = 1; } else { active_worst_qchanged = 0; } #if CONFIG_REALTIME_ONLY Loop = 0; #else /* Special case handling for forced key frames */ if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { int last_q = Q; int kf_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); /* The key frame is not good enough */ if (kf_err > ((cpi->ambient_err * 7) >> 3)) { /* Lower q_high */ q_high = (Q > q_low) ? (Q - 1) : q_low; /* Adjust Q */ Q = (q_high + q_low) >> 1; } /* The key frame is much better than the previous frame */ else if (kf_err < (cpi->ambient_err >> 1)) { /* Raise q_low */ q_low = (Q < q_high) ? (Q + 1) : q_high; /* Adjust Q */ Q = (q_high + q_low + 1) >> 1; } /* Clamp Q to upper and lower limits: */ if (Q > q_high) { Q = q_high; } else if (Q < q_low) { Q = q_low; } Loop = Q != last_q; } /* Is the projected frame size out of range and are we allowed * to attempt to recode. */ else if (recode_loop_test(cpi, frame_over_shoot_limit, frame_under_shoot_limit, Q, top_index, bottom_index)) { int last_q = Q; int Retries = 0; /* Frame size out of permitted range. Update correction factor * & compute new Q to try... */ /* Frame is too large */ if (cpi->projected_frame_size > cpi->this_frame_target) { /* Raise Qlow as to at least the current value */ q_low = (Q < q_high) ? (Q + 1) : q_high; /* If we are using over quant do the same for zbin_oq_low */ if (cpi->mb.zbin_over_quant > 0) { zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high) ? (cpi->mb.zbin_over_quant + 1) : zbin_oq_high; } if (undershoot_seen) { /* Update rate_correction_factor unless * cpi->active_worst_quality has changed. */ if (!active_worst_qchanged) { vp8_update_rate_correction_factors(cpi, 1); } Q = (q_high + q_low + 1) / 2; /* Adjust cpi->zbin_over_quant (only allowed when Q * is max) */ if (Q < MAXQ) { cpi->mb.zbin_over_quant = 0; } else { zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high) ? (cpi->mb.zbin_over_quant + 1) : zbin_oq_high; cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; } } else { /* Update rate_correction_factor unless * cpi->active_worst_quality has changed. */ if (!active_worst_qchanged) { vp8_update_rate_correction_factors(cpi, 0); } Q = vp8_regulate_q(cpi, cpi->this_frame_target); while (((Q < q_low) || (cpi->mb.zbin_over_quant < zbin_oq_low)) && (Retries < 10)) { vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); Retries++; } } overshoot_seen = 1; } /* Frame is too small */ else { if (cpi->mb.zbin_over_quant == 0) { /* Lower q_high if not using over quant */ q_high = (Q > q_low) ? (Q - 1) : q_low; } else { /* else lower zbin_oq_high */ zbin_oq_high = (cpi->mb.zbin_over_quant > zbin_oq_low) ? (cpi->mb.zbin_over_quant - 1) : zbin_oq_low; } if (overshoot_seen) { /* Update rate_correction_factor unless * cpi->active_worst_quality has changed. */ if (!active_worst_qchanged) { vp8_update_rate_correction_factors(cpi, 1); } Q = (q_high + q_low) / 2; /* Adjust cpi->zbin_over_quant (only allowed when Q * is max) */ if (Q < MAXQ) { cpi->mb.zbin_over_quant = 0; } else { cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; } } else { /* Update rate_correction_factor unless * cpi->active_worst_quality has changed. */ if (!active_worst_qchanged) { vp8_update_rate_correction_factors(cpi, 0); } Q = vp8_regulate_q(cpi, cpi->this_frame_target); /* Special case reset for qlow for constrained quality. * This should only trigger where there is very substantial * undershoot on a frame and the auto cq level is above * the user passsed in value. */ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < q_low)) { q_low = Q; } while (((Q > q_high) || (cpi->mb.zbin_over_quant > zbin_oq_high)) && (Retries < 10)) { vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); Retries++; } } undershoot_seen = 1; } /* Clamp Q to upper and lower limits: */ if (Q > q_high) { Q = q_high; } else if (Q < q_low) { Q = q_low; } /* Clamp cpi->zbin_over_quant */ cpi->mb.zbin_over_quant = (cpi->mb.zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->mb.zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->mb.zbin_over_quant; Loop = Q != last_q; } else { Loop = 0; } #endif // CONFIG_REALTIME_ONLY if (cpi->is_src_frame_alt_ref) Loop = 0; if (Loop == 1) { vp8_restore_coding_context(cpi); loop_count++; #if CONFIG_INTERNAL_STATS cpi->tot_recode_hits++; #endif } } while (Loop == 1); #if defined(DROP_UNCODED_FRAMES) /* if there are no coded macroblocks at all drop this frame */ if (cpi->common.MBs == cpi->mb.skip_true_count && (cpi->drop_frame_count & 7) != 7 && cm->frame_type != KEY_FRAME) { cpi->common.current_video_frame++; cpi->frames_since_key++; cpi->drop_frame_count++; // We advance the temporal pattern for dropped frames. cpi->temporal_pattern_counter++; return; } cpi->drop_frame_count = 0; #endif #if 0 /* Experimental code for lagged and one pass * Update stats used for one pass GF selection */ { cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error; cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error; cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0; } #endif /* Special case code to reduce pulsing when key frames are forced at a * fixed interval. Note the reconstruction error if it is the frame before * the force key frame */ if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) { cpi->ambient_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); } /* This frame's MVs are saved and will be used in next frame's MV predictor. * Last frame has one more line(add to bottom) and one more column(add to * right) than cm->mip. The edge elements are initialized to 0. */ #if CONFIG_MULTI_RES_ENCODING if (!cpi->oxcf.mr_encoder_id && cm->show_frame) #else if (cm->show_frame) /* do not save for altref frame */ #endif { int mb_row; int mb_col; /* Point to beginning of allocated MODE_INFO arrays. */ MODE_INFO *tmp = cm->mip; if (cm->frame_type != KEY_FRAME) { for (mb_row = 0; mb_row < cm->mb_rows + 1; ++mb_row) { for (mb_col = 0; mb_col < cm->mb_cols + 1; ++mb_col) { if (tmp->mbmi.ref_frame != INTRA_FRAME) { cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int = tmp->mbmi.mv.as_int; } cpi->lf_ref_frame_sign_bias[mb_col + mb_row * (cm->mode_info_stride + 1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame]; cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] = tmp->mbmi.ref_frame; tmp++; } } } } /* Count last ref frame 0,0 usage on current encoded frame. */ { int mb_row; int mb_col; /* Point to beginning of MODE_INFO arrays. */ MODE_INFO *tmp = cm->mi; cpi->zeromv_count = 0; if (cm->frame_type != KEY_FRAME) { for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { if (tmp->mbmi.mode == ZEROMV && tmp->mbmi.ref_frame == LAST_FRAME) { cpi->zeromv_count++; } tmp++; } tmp++; } } } #if CONFIG_MULTI_RES_ENCODING vp8_cal_dissimilarity(cpi); #endif /* Update the GF useage maps. * This is done after completing the compression of a frame when all * modes etc. are finalized but before loop filter */ if (cpi->oxcf.number_of_layers == 1) { vp8_update_gf_useage_maps(cpi, cm, &cpi->mb); } if (cm->frame_type == KEY_FRAME) cm->refresh_last_frame = 1; #if 0 { FILE *f = fopen("gfactive.stt", "a"); fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame); fclose(f); } #endif /* For inter frames the current default behavior is that when * cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer * This is purely an encoder decision at present. */ if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame) { cm->copy_buffer_to_arf = 2; } else { cm->copy_buffer_to_arf = 0; } cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; #if CONFIG_TEMPORAL_DENOISING // Get some measure of the amount of noise, by measuring the (partial) mse // between source and denoised buffer, for y channel. Partial refers to // computing the sse for a sub-sample of the frame (i.e., skip x blocks along // row/column), // and only for blocks in that set that are consecutive ZEROMV_LAST mode. // Do this every ~8 frames, to further reduce complexity. // TODO(marpan): Keep this for now for the case cpi->oxcf.noise_sensitivity < // 4, // should be removed in favor of the process_denoiser_mode_change() function // below. if (cpi->oxcf.noise_sensitivity > 0 && cpi->oxcf.noise_sensitivity < 4 && !cpi->oxcf.screen_content_mode && cpi->frames_since_key % 8 == 0 && cm->frame_type != KEY_FRAME) { cpi->mse_source_denoised = measure_square_diff_partial( &cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi->Source, cpi); } // For the adaptive denoising mode (noise_sensitivity == 4), sample the mse // of source diff (between current and previous frame), and determine if we // should switch the denoiser mode. Sampling refers to computing the mse for // a sub-sample of the frame (i.e., skip x blocks along row/column), and // only for blocks in that set that have used ZEROMV LAST, along with some // constraint on the sum diff between blocks. This process is called every // ~8 frames, to further reduce complexity. if (cpi->oxcf.noise_sensitivity == 4 && !cpi->oxcf.screen_content_mode && cpi->frames_since_key % 8 == 0 && cm->frame_type != KEY_FRAME) { process_denoiser_mode_change(cpi); } #endif #ifdef OUTPUT_YUV_SKINMAP if (cpi->common.current_video_frame > 1) { vp8_compute_skin_map(cpi, yuv_skinmap_file); } #endif #if CONFIG_MULTITHREAD if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { /* start loopfilter in separate thread */ sem_post(&cpi->h_event_start_lpf); cpi->b_lpf_running = 1; /* wait for the filter_level to be picked so that we can continue with * stream packing */ sem_wait(&cpi->h_event_end_lpf); } else #endif { vp8_loopfilter_frame(cpi, cm); } update_reference_frames(cpi); #ifdef OUTPUT_YUV_DENOISED vpx_write_yuv_frame(yuv_denoised_file, &cpi->denoiser.yv12_running_avg[INTRA_FRAME]); #endif #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) if (cpi->oxcf.error_resilient_mode) { cm->refresh_entropy_probs = 0; } #endif /* build the bitstream */ vp8_pack_bitstream(cpi, dest, dest_end, size); /* Move storing frame_type out of the above loop since it is also * needed in motion search besides loopfilter */ cm->last_frame_type = cm->frame_type; /* Update rate control heuristics */ cpi->total_byte_count += (*size); cpi->projected_frame_size = (int)(*size) << 3; if (cpi->oxcf.number_of_layers > 1) { unsigned int i; for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { cpi->layer_context[i].total_byte_count += (*size); } } if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 2); cpi->last_q[cm->frame_type] = cm->base_qindex; if (cm->frame_type == KEY_FRAME) { vp8_adjust_key_frame_context(cpi); } /* Keep a record of ambient average Q. */ if (cm->frame_type != KEY_FRAME) { cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2; } /* Keep a record from which we can calculate the average Q excluding * GF updates and key frames */ if ((cm->frame_type != KEY_FRAME) && ((cpi->oxcf.number_of_layers > 1) || (!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame))) { cpi->ni_frames++; /* Calculate the average Q for normal inter frames (not key or GFU * frames). */ if (cpi->pass == 2) { cpi->ni_tot_qi += Q; cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); } else { /* Damp value for first few frames */ if (cpi->ni_frames > 150) { cpi->ni_tot_qi += Q; cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); } /* For one pass, early in the clip ... average the current frame Q * value with the worstq entered by the user as a dampening measure */ else { cpi->ni_tot_qi += Q; cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2; } /* If the average Q is higher than what was used in the last * frame (after going through the recode loop to keep the frame * size within range) then use the last frame value - 1. The -1 * is designed to stop Q and hence the data rate, from * progressively falling away during difficult sections, but at * the same time reduce the number of itterations around the * recode loop. */ if (Q > cpi->ni_av_qi) cpi->ni_av_qi = Q - 1; } } /* Update the buffer level variable. */ /* Non-viewable frames are a special case and are treated as pure overhead. */ if (!cm->show_frame) { cpi->bits_off_target -= cpi->projected_frame_size; } else { cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size; } /* Clip the buffer level to the maximum specified buffer size */ if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; } // If the frame dropper is not enabled, don't let the buffer level go below // some threshold, given here by -|maximum_buffer_size|. For now we only do // this for screen content input. if (cpi->drop_frames_allowed == 0 && cpi->oxcf.screen_content_mode && cpi->bits_off_target < -cpi->oxcf.maximum_buffer_size) { cpi->bits_off_target = -cpi->oxcf.maximum_buffer_size; } /* Rolling monitors of whether we are over or underspending used to * help regulate min and Max Q in two pass. */ cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4; cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4; cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32; cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32; /* Actual bits spent */ cpi->total_actual_bits += cpi->projected_frame_size; /* Debug stats */ cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size); cpi->buffer_level = cpi->bits_off_target; /* Propagate values to higher temporal layers */ if (cpi->oxcf.number_of_layers > 1) { unsigned int i; for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { LAYER_CONTEXT *lc = &cpi->layer_context[i]; int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate - cpi->projected_frame_size); lc->bits_off_target += bits_off_for_this_layer; /* Clip buffer level to maximum buffer size for the layer */ if (lc->bits_off_target > lc->maximum_buffer_size) { lc->bits_off_target = lc->maximum_buffer_size; } lc->total_actual_bits += cpi->projected_frame_size; lc->total_target_vs_actual += bits_off_for_this_layer; lc->buffer_level = lc->bits_off_target; } } /* Update bits left to the kf and gf groups to account for overshoot * or undershoot on these frames */ if (cm->frame_type == KEY_FRAME) { cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; } else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) { cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; } if (cm->frame_type != KEY_FRAME) { if (cpi->common.refresh_alt_ref_frame) { cpi->last_skip_false_probs[2] = cpi->prob_skip_false; cpi->last_skip_probs_q[2] = cm->base_qindex; } else if (cpi->common.refresh_golden_frame) { cpi->last_skip_false_probs[1] = cpi->prob_skip_false; cpi->last_skip_probs_q[1] = cm->base_qindex; } else { cpi->last_skip_false_probs[0] = cpi->prob_skip_false; cpi->last_skip_probs_q[0] = cm->base_qindex; /* update the baseline */ cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false; } } #if 0 && CONFIG_INTERNAL_STATS { FILE *f = fopen("tmp.stt", "a"); vpx_clear_system_state(); if (cpi->twopass.total_left_stats.coded_error != 0.0) fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64 "%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d " "%8.2lf %"PRId64" %10.3lf %10"PRId64" %8d\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, (cpi->projected_frame_size - cpi->this_frame_target), cpi->total_target_vs_actual, cpi->buffer_level, (cpi->oxcf.starting_buffer_level-cpi->bits_off_target), cpi->total_actual_bits, cm->base_qindex, cpi->active_best_quality, cpi->active_worst_quality, cpi->ni_av_qi, cpi->cq_target_quality, cm->refresh_golden_frame, cm->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->twopass.est_max_qcorrection_factor, cpi->twopass.bits_left, cpi->twopass.total_left_stats.coded_error, (double)cpi->twopass.bits_left / cpi->twopass.total_left_stats.coded_error, cpi->tot_recode_hits); else fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64 "%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d " "%8.2lf %"PRId64" %10.3lf %8d\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, (cpi->projected_frame_size - cpi->this_frame_target), cpi->total_target_vs_actual, cpi->buffer_level, (cpi->oxcf.starting_buffer_level-cpi->bits_off_target), cpi->total_actual_bits, cm->base_qindex, cpi->active_best_quality, cpi->active_worst_quality, cpi->ni_av_qi, cpi->cq_target_quality, cm->refresh_golden_frame, cm->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->twopass.est_max_qcorrection_factor, cpi->twopass.bits_left, cpi->twopass.total_left_stats.coded_error, cpi->tot_recode_hits); fclose(f); { FILE *fmodes = fopen("Modes.stt", "a"); fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, cm->frame_type, cm->refresh_golden_frame, cm->refresh_alt_ref_frame); fprintf(fmodes, "\n"); fclose(fmodes); } } #endif if (cm->refresh_golden_frame == 1) { cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN; } else { cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_GOLDEN; } if (cm->refresh_alt_ref_frame == 1) { cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF; } else { cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_ALTREF; } if (cm->refresh_last_frame & cm->refresh_golden_frame) { /* both refreshed */ cpi->gold_is_last = 1; } else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) { /* 1 refreshed but not the other */ cpi->gold_is_last = 0; } if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) { /* both refreshed */ cpi->alt_is_last = 1; } else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) { /* 1 refreshed but not the other */ cpi->alt_is_last = 0; } if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) { /* both refreshed */ cpi->gold_is_alt = 1; } else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) { /* 1 refreshed but not the other */ cpi->gold_is_alt = 0; } cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME; if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP8_GOLD_FRAME; if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME; if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME; if (!cpi->oxcf.error_resilient_mode) { if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME)) { /* Update the alternate reference frame stats as appropriate. */ update_alt_ref_frame_stats(cpi); } else { /* Update the Golden frame stats as appropriate. */ update_golden_frame_stats(cpi); } } if (cm->frame_type == KEY_FRAME) { /* Tell the caller that the frame was coded as a key frame */ *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; /* As this frame is a key frame the next defaults to an inter frame. */ cm->frame_type = INTER_FRAME; cpi->last_frame_percent_intra = 100; } else { *frame_flags = cm->frame_flags & ~FRAMEFLAGS_KEY; cpi->last_frame_percent_intra = cpi->this_frame_percent_intra; } /* Clear the one shot update flags for segmentation map and mode/ref * loop filter deltas. */ cpi->mb.e_mbd.update_mb_segmentation_map = 0; cpi->mb.e_mbd.update_mb_segmentation_data = 0; cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; /* Dont increment frame counters if this was an altref buffer update * not a real frame */ if (cm->show_frame) { cm->current_video_frame++; cpi->frames_since_key++; cpi->temporal_pattern_counter++; } #if 0 { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); recon_file = fopen(filename, "wb"); fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc, cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file); fclose(recon_file); } #endif /* DEBUG */ /* vpx_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); */ } #if !CONFIG_REALTIME_ONLY static void Pass2Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest, unsigned char *dest_end, unsigned int *frame_flags) { if (!cpi->common.refresh_alt_ref_frame) vp8_second_pass(cpi); encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags); cpi->twopass.bits_left -= 8 * (int)(*size); if (!cpi->common.refresh_alt_ref_frame) { double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->framerate); } } #endif int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time) { struct vpx_usec_timer timer; int res = 0; vpx_usec_timer_start(&timer); /* Reinit the lookahead buffer if the frame size changes */ if (sd->y_width != cpi->oxcf.Width || sd->y_height != cpi->oxcf.Height) { assert(cpi->oxcf.lag_in_frames < 2); dealloc_raw_frame_buffers(cpi); alloc_raw_frame_buffers(cpi); } if (vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL)) { res = -1; } vpx_usec_timer_mark(&timer); cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); return res; } static int frame_is_reference(const VP8_COMP *cpi) { const VP8_COMMON *cm = &cpi->common; const MACROBLOCKD *xd = &cpi->mb.e_mbd; return cm->frame_type == KEY_FRAME || cm->refresh_last_frame || cm->refresh_golden_frame || cm->refresh_alt_ref_frame || cm->copy_buffer_to_gf || cm->copy_buffer_to_arf || cm->refresh_entropy_probs || xd->mode_ref_lf_delta_update || xd->update_mb_segmentation_map || xd->update_mb_segmentation_data; } int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags, size_t *size, unsigned char *dest, unsigned char *dest_end, int64_t *time_stamp, int64_t *time_end, int flush) { VP8_COMMON *cm; struct vpx_usec_timer tsctimer; struct vpx_usec_timer ticktimer; struct vpx_usec_timer cmptimer; YV12_BUFFER_CONFIG *force_src_buffer = NULL; if (!cpi) return -1; cm = &cpi->common; if (setjmp(cpi->common.error.jmp)) { cpi->common.error.setjmp = 0; vpx_clear_system_state(); return VPX_CODEC_CORRUPT_FRAME; } cpi->common.error.setjmp = 1; vpx_usec_timer_start(&cmptimer); cpi->source = NULL; #if !CONFIG_REALTIME_ONLY /* Should we code an alternate reference frame */ if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) { if ((cpi->source = vp8_lookahead_peek( cpi->lookahead, cpi->frames_till_gf_update_due, PEEK_FORWARD))) { cpi->alt_ref_source = cpi->source; if (cpi->oxcf.arnr_max_frames > 0) { vp8_temporal_filter_prepare_c(cpi, cpi->frames_till_gf_update_due); force_src_buffer = &cpi->alt_ref_buffer; } cpi->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due; cm->refresh_alt_ref_frame = 1; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 0; cm->show_frame = 0; /* Clear Pending alt Ref flag. */ cpi->source_alt_ref_pending = 0; cpi->is_src_frame_alt_ref = 0; } } #endif if (!cpi->source) { /* Read last frame source if we are encoding first pass. */ if (cpi->pass == 1 && cm->current_video_frame > 0) { if ((cpi->last_source = vp8_lookahead_peek(cpi->lookahead, 1, PEEK_BACKWARD)) == NULL) { return -1; } } if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush))) { cm->show_frame = 1; cpi->is_src_frame_alt_ref = cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source); if (cpi->is_src_frame_alt_ref) cpi->alt_ref_source = NULL; } } if (cpi->source) { cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img; cpi->un_scaled_source = cpi->Source; *time_stamp = cpi->source->ts_start; *time_end = cpi->source->ts_end; *frame_flags = cpi->source->flags; if (cpi->pass == 1 && cm->current_video_frame > 0) { cpi->last_frame_unscaled_source = &cpi->last_source->img; } } else { *size = 0; #if !CONFIG_REALTIME_ONLY if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) { vp8_end_first_pass(cpi); /* get last stats packet */ cpi->twopass.first_pass_done = 1; } #endif return -1; } if (cpi->source->ts_start < cpi->first_time_stamp_ever) { cpi->first_time_stamp_ever = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_start; } /* adjust frame rates based on timestamps given */ if (cm->show_frame) { int64_t this_duration; int step = 0; if (cpi->source->ts_start == cpi->first_time_stamp_ever) { this_duration = cpi->source->ts_end - cpi->source->ts_start; step = 1; } else { int64_t last_duration; this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen; last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; /* do a step update if the duration changes by 10% */ if (last_duration) { step = (int)(((this_duration - last_duration) * 10 / last_duration)); } } if (this_duration) { if (step) { cpi->ref_framerate = 10000000.0 / this_duration; } else { double avg_duration, interval; /* Average this frame's rate into the last second's average * frame rate. If we haven't seen 1 second yet, then average * over the whole interval seen. */ interval = (double)(cpi->source->ts_end - cpi->first_time_stamp_ever); if (interval > 10000000.0) interval = 10000000; avg_duration = 10000000.0 / cpi->ref_framerate; avg_duration *= (interval - avg_duration + this_duration); avg_duration /= interval; cpi->ref_framerate = 10000000.0 / avg_duration; } #if CONFIG_MULTI_RES_ENCODING if (cpi->oxcf.mr_total_resolutions > 1) { LOWER_RES_FRAME_INFO *low_res_frame_info = (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; // Frame rate should be the same for all spatial layers in // multi-res-encoding (simulcast), so we constrain the frame for // higher layers to be that of lowest resolution. This is needed // as he application may decide to skip encoding a high layer and // then start again, in which case a big jump in time-stamps will // be received for that high layer, which will yield an incorrect // frame rate (from time-stamp adjustment in above calculation). if (cpi->oxcf.mr_encoder_id) { if (!low_res_frame_info->skip_encoding_base_stream) cpi->ref_framerate = low_res_frame_info->low_res_framerate; } else { // Keep track of frame rate for lowest resolution. low_res_frame_info->low_res_framerate = cpi->ref_framerate; // The base stream is being encoded so set skip flag to 0. low_res_frame_info->skip_encoding_base_stream = 0; } } #endif if (cpi->oxcf.number_of_layers > 1) { unsigned int i; /* Update frame rates for each layer */ assert(cpi->oxcf.number_of_layers <= VPX_TS_MAX_LAYERS); for (i = 0; i < cpi->oxcf.number_of_layers && i < VPX_TS_MAX_LAYERS; ++i) { LAYER_CONTEXT *lc = &cpi->layer_context[i]; lc->framerate = cpi->ref_framerate / cpi->oxcf.rate_decimator[i]; } } else { vp8_new_framerate(cpi, cpi->ref_framerate); } } cpi->last_time_stamp_seen = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_end; } if (cpi->oxcf.number_of_layers > 1) { int layer; update_layer_contexts(cpi); /* Restore layer specific context & set frame rate */ if (cpi->temporal_layer_id >= 0) { layer = cpi->temporal_layer_id; } else { layer = cpi->oxcf .layer_id[cpi->temporal_pattern_counter % cpi->oxcf.periodicity]; } restore_layer_context(cpi, layer); vp8_new_framerate(cpi, cpi->layer_context[layer].framerate); } if (cpi->compressor_speed == 2) { vpx_usec_timer_start(&tsctimer); vpx_usec_timer_start(&ticktimer); } cpi->lf_zeromv_pct = (cpi->zeromv_count * 100) / cm->MBs; #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING { int i; const int num_part = (1 << cm->multi_token_partition); /* the available bytes in dest */ const unsigned long dest_size = dest_end - dest; const int tok_part_buff_size = (dest_size * 9) / (10 * num_part); unsigned char *dp = dest; cpi->partition_d[0] = dp; dp += dest_size / 10; /* reserve 1/10 for control partition */ cpi->partition_d_end[0] = dp; for (i = 0; i < num_part; ++i) { cpi->partition_d[i + 1] = dp; dp += tok_part_buff_size; cpi->partition_d_end[i + 1] = dp; } } #endif /* start with a 0 size frame */ *size = 0; /* Clear down mmx registers */ vpx_clear_system_state(); cm->frame_type = INTER_FRAME; cm->frame_flags = *frame_flags; #if 0 if (cm->refresh_alt_ref_frame) { cm->refresh_golden_frame = 0; cm->refresh_last_frame = 0; } else { cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; } #endif /* find a free buffer for the new frame */ { int i = 0; for (; i < NUM_YV12_BUFFERS; ++i) { if (!cm->yv12_fb[i].flags) { cm->new_fb_idx = i; break; } } assert(i < NUM_YV12_BUFFERS); } switch (cpi->pass) { #if !CONFIG_REALTIME_ONLY case 1: Pass1Encode(cpi, size, dest, frame_flags); break; case 2: Pass2Encode(cpi, size, dest, dest_end, frame_flags); break; #endif // !CONFIG_REALTIME_ONLY default: encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags); break; } if (cpi->compressor_speed == 2) { unsigned int duration, duration2; vpx_usec_timer_mark(&tsctimer); vpx_usec_timer_mark(&ticktimer); duration = (int)(vpx_usec_timer_elapsed(&ticktimer)); duration2 = (unsigned int)((double)duration / 2); if (cm->frame_type != KEY_FRAME) { if (cpi->avg_encode_time == 0) { cpi->avg_encode_time = duration; } else { cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3; } } if (duration2) { { if (cpi->avg_pick_mode_time == 0) { cpi->avg_pick_mode_time = duration2; } else { cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3; } } } } if (cm->refresh_entropy_probs == 0) { memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc)); } /* Save the contexts separately for alt ref, gold and last. */ /* (TODO jbb -> Optimize this with pointers to avoid extra copies. ) */ if (cm->refresh_alt_ref_frame) memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc)); if (cm->refresh_golden_frame) memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc)); if (cm->refresh_last_frame) memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc)); /* if its a dropped frame honor the requests on subsequent frames */ if (*size > 0) { cpi->droppable = !frame_is_reference(cpi); /* return to normal state */ cm->refresh_entropy_probs = 1; cm->refresh_alt_ref_frame = 0; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; cm->frame_type = INTER_FRAME; } /* Save layer specific state */ if (cpi->oxcf.number_of_layers > 1) save_layer_context(cpi); vpx_usec_timer_mark(&cmptimer); cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) { generate_psnr_packet(cpi); } #if CONFIG_INTERNAL_STATS if (cpi->pass != 1) { cpi->bytes += *size; if (cm->show_frame) { cpi->common.show_frame_mi = cpi->common.mi; cpi->count++; if (cpi->b_calculate_psnr) { uint64_t ye, ue, ve; double frame_psnr; YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; unsigned int y_width = cpi->common.Width; unsigned int y_height = cpi->common.Height; unsigned int uv_width = (y_width + 1) / 2; unsigned int uv_height = (y_height + 1) / 2; int y_samples = y_height * y_width; int uv_samples = uv_height * uv_width; int t_samples = y_samples + 2 * uv_samples; double sq_error; ye = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, y_width, y_height); ue = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, recon->uv_stride, uv_width, uv_height); ve = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, recon->uv_stride, uv_width, uv_height); sq_error = (double)(ye + ue + ve); frame_psnr = vpx_sse_to_psnr(t_samples, 255.0, sq_error); cpi->total_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye); cpi->total_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue); cpi->total_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve); cpi->total_sq_error += sq_error; cpi->total += frame_psnr; #if CONFIG_POSTPROC { YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; double sq_error2; double frame_psnr2, frame_ssim2 = 0; double weight = 0; vp8_deblock(cm, cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0); vpx_clear_system_state(); ye = calc_plane_error(orig->y_buffer, orig->y_stride, pp->y_buffer, pp->y_stride, y_width, y_height); ue = calc_plane_error(orig->u_buffer, orig->uv_stride, pp->u_buffer, pp->uv_stride, uv_width, uv_height); ve = calc_plane_error(orig->v_buffer, orig->uv_stride, pp->v_buffer, pp->uv_stride, uv_width, uv_height); sq_error2 = (double)(ye + ue + ve); frame_psnr2 = vpx_sse_to_psnr(t_samples, 255.0, sq_error2); cpi->totalp_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye); cpi->totalp_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue); cpi->totalp_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve); cpi->total_sq_error2 += sq_error2; cpi->totalp += frame_psnr2; frame_ssim2 = vpx_calc_ssim(cpi->Source, &cm->post_proc_buffer, &weight); cpi->summed_quality += frame_ssim2 * weight; cpi->summed_weights += weight; if (cpi->oxcf.number_of_layers > 1) { unsigned int i; for (i = cpi->current_layer; i < cpi->oxcf.number_of_layers; ++i) { cpi->frames_in_layer[i]++; cpi->bytes_in_layer[i] += *size; cpi->sum_psnr[i] += frame_psnr; cpi->sum_psnr_p[i] += frame_psnr2; cpi->total_error2[i] += sq_error; cpi->total_error2_p[i] += sq_error2; cpi->sum_ssim[i] += frame_ssim2 * weight; cpi->sum_weights[i] += weight; } } } #endif } } } #if 0 if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q) { skiptruecount += cpi->skip_true_count; skipfalsecount += cpi->skip_false_count; } #endif #if 0 if (cpi->pass != 1) { FILE *f = fopen("skip.stt", "a"); fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size); if (cpi->is_src_frame_alt_ref == 1) fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size); fclose(f); } #endif #endif cpi->common.error.setjmp = 0; #if CONFIG_MULTITHREAD /* wait for the lpf thread done */ if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) && cpi->b_lpf_running) { sem_wait(&cpi->h_event_end_lpf); cpi->b_lpf_running = 0; } #endif return 0; } int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags) { if (cpi->common.refresh_alt_ref_frame) { return -1; } else { int ret; #if CONFIG_POSTPROC cpi->common.show_frame_mi = cpi->common.mi; ret = vp8_post_proc_frame(&cpi->common, dest, flags); #else (void)flags; if (cpi->common.frame_to_show) { *dest = *cpi->common.frame_to_show; dest->y_width = cpi->common.Width; dest->y_height = cpi->common.Height; dest->uv_height = cpi->common.Height / 2; ret = 0; } else { ret = -1; } #endif vpx_clear_system_state(); return ret; } } int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4]) { signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; int internal_delta_q[MAX_MB_SEGMENTS]; const int range = 63; int i; // Check number of rows and columns match if (cpi->common.mb_rows != (int)rows || cpi->common.mb_cols != (int)cols) { return -1; } // Range check the delta Q values and convert the external Q range values // to internal ones. if ((abs(delta_q[0]) > range) || (abs(delta_q[1]) > range) || (abs(delta_q[2]) > range) || (abs(delta_q[3]) > range)) { return -1; } // Range check the delta lf values if ((abs(delta_lf[0]) > range) || (abs(delta_lf[1]) > range) || (abs(delta_lf[2]) > range) || (abs(delta_lf[3]) > range)) { return -1; } // Also disable segmentation if no deltas are specified. if (!map || (delta_q[0] == 0 && delta_q[1] == 0 && delta_q[2] == 0 && delta_q[3] == 0 && delta_lf[0] == 0 && delta_lf[1] == 0 && delta_lf[2] == 0 && delta_lf[3] == 0 && threshold[0] == 0 && threshold[1] == 0 && threshold[2] == 0 && threshold[3] == 0)) { disable_segmentation(cpi); return 0; } // Translate the external delta q values to internal values. for (i = 0; i < MAX_MB_SEGMENTS; ++i) { internal_delta_q[i] = (delta_q[i] >= 0) ? q_trans[delta_q[i]] : -q_trans[-delta_q[i]]; } /* Set the segmentation Map */ set_segmentation_map(cpi, map); /* Activate segmentation. */ enable_segmentation(cpi); /* Set up the quant segment data */ feature_data[MB_LVL_ALT_Q][0] = internal_delta_q[0]; feature_data[MB_LVL_ALT_Q][1] = internal_delta_q[1]; feature_data[MB_LVL_ALT_Q][2] = internal_delta_q[2]; feature_data[MB_LVL_ALT_Q][3] = internal_delta_q[3]; /* Set up the loop segment data s */ feature_data[MB_LVL_ALT_LF][0] = delta_lf[0]; feature_data[MB_LVL_ALT_LF][1] = delta_lf[1]; feature_data[MB_LVL_ALT_LF][2] = delta_lf[2]; feature_data[MB_LVL_ALT_LF][3] = delta_lf[3]; cpi->segment_encode_breakout[0] = threshold[0]; cpi->segment_encode_breakout[1] = threshold[1]; cpi->segment_encode_breakout[2] = threshold[2]; cpi->segment_encode_breakout[3] = threshold[3]; /* Initialise the feature data structure */ set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA); if (threshold[0] != 0 || threshold[1] != 0 || threshold[2] != 0 || threshold[3] != 0) cpi->use_roi_static_threshold = 1; cpi->cyclic_refresh_mode_enabled = 0; return 0; } int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols) { if ((int)rows == cpi->common.mb_rows && (int)cols == cpi->common.mb_cols) { if (map) { memcpy(cpi->active_map, map, rows * cols); cpi->active_map_enabled = 1; } else { cpi->active_map_enabled = 0; } return 0; } else { return -1; } } int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode, VPX_SCALING vert_mode) { if (horiz_mode <= ONETWO) { cpi->common.horiz_scale = horiz_mode; } else { return -1; } if (vert_mode <= ONETWO) { cpi->common.vert_scale = vert_mode; } else { return -1; } return 0; } int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) { int i, j; int Total = 0; unsigned char *src = source->y_buffer; unsigned char *dst = dest->y_buffer; /* Loop through the Y plane raw and reconstruction data summing * (square differences) */ for (i = 0; i < source->y_height; i += 16) { for (j = 0; j < source->y_width; j += 16) { unsigned int sse; Total += vpx_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse); } src += 16 * source->y_stride; dst += 16 * dest->y_stride; } return Total; } int vp8_get_quantizer(VP8_COMP *cpi) { return cpi->common.base_qindex; }