ref: 48c4a038eb8322824927e86e0f9fc215c3cbc1e2
dir: /vpx_dsp/x86/variance_impl_avx2.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> // AVX2 #include "./vpx_dsp_rtcd.h" #include "vpx_ports/mem.h" /* clang-format off */ DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = { 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, }; /* clang-format on */ void vpx_get16x16var_avx2(const unsigned char *src_ptr, int source_stride, const unsigned char *ref_ptr, int recon_stride, unsigned int *SSE, int *Sum) { __m256i src, src_expand_low, src_expand_high, ref, ref_expand_low; __m256i ref_expand_high, madd_low, madd_high; unsigned int i, src_2strides, ref_2strides; __m256i zero_reg = _mm256_set1_epi16(0); __m256i sum_ref_src = _mm256_set1_epi16(0); __m256i madd_ref_src = _mm256_set1_epi16(0); // processing two strides in a 256 bit register reducing the number // of loop stride by half (comparing to the sse2 code) src_2strides = source_stride << 1; ref_2strides = recon_stride << 1; for (i = 0; i < 8; i++) { src = _mm256_castsi128_si256(_mm_loadu_si128((__m128i const *)(src_ptr))); src = _mm256_inserti128_si256( src, _mm_loadu_si128((__m128i const *)(src_ptr + source_stride)), 1); ref = _mm256_castsi128_si256(_mm_loadu_si128((__m128i const *)(ref_ptr))); ref = _mm256_inserti128_si256( ref, _mm_loadu_si128((__m128i const *)(ref_ptr + recon_stride)), 1); // expanding to 16 bit each lane src_expand_low = _mm256_unpacklo_epi8(src, zero_reg); src_expand_high = _mm256_unpackhi_epi8(src, zero_reg); ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg); ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg); // src-ref src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low); src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high); // madd low (src - ref) madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low); // add high to low src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high); // madd high (src - ref) madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high); sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low); // add high to low madd_ref_src = _mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high)); src_ptr += src_2strides; ref_ptr += ref_2strides; } { __m128i sum_res, madd_res; __m128i expand_sum_low, expand_sum_high, expand_sum; __m128i expand_madd_low, expand_madd_high, expand_madd; __m128i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum; // extract the low lane and add it to the high lane sum_res = _mm_add_epi16(_mm256_castsi256_si128(sum_ref_src), _mm256_extractf128_si256(sum_ref_src, 1)); madd_res = _mm_add_epi32(_mm256_castsi256_si128(madd_ref_src), _mm256_extractf128_si256(madd_ref_src, 1)); // padding each 2 bytes with another 2 zeroed bytes expand_sum_low = _mm_unpacklo_epi16(_mm256_castsi256_si128(zero_reg), sum_res); expand_sum_high = _mm_unpackhi_epi16(_mm256_castsi256_si128(zero_reg), sum_res); // shifting the sign 16 bits right expand_sum_low = _mm_srai_epi32(expand_sum_low, 16); expand_sum_high = _mm_srai_epi32(expand_sum_high, 16); expand_sum = _mm_add_epi32(expand_sum_low, expand_sum_high); // expand each 32 bits of the madd result to 64 bits expand_madd_low = _mm_unpacklo_epi32(madd_res, _mm256_castsi256_si128(zero_reg)); expand_madd_high = _mm_unpackhi_epi32(madd_res, _mm256_castsi256_si128(zero_reg)); expand_madd = _mm_add_epi32(expand_madd_low, expand_madd_high); ex_expand_sum_low = _mm_unpacklo_epi32(expand_sum, _mm256_castsi256_si128(zero_reg)); ex_expand_sum_high = _mm_unpackhi_epi32(expand_sum, _mm256_castsi256_si128(zero_reg)); ex_expand_sum = _mm_add_epi32(ex_expand_sum_low, ex_expand_sum_high); // shift 8 bytes eight madd_res = _mm_srli_si128(expand_madd, 8); sum_res = _mm_srli_si128(ex_expand_sum, 8); madd_res = _mm_add_epi32(madd_res, expand_madd); sum_res = _mm_add_epi32(sum_res, ex_expand_sum); *((int *)SSE) = _mm_cvtsi128_si32(madd_res); *((int *)Sum) = _mm_cvtsi128_si32(sum_res); } } void vpx_get32x32var_avx2(const unsigned char *src_ptr, int source_stride, const unsigned char *ref_ptr, int recon_stride, unsigned int *SSE, int *Sum) { __m256i src, src_expand_low, src_expand_high, ref, ref_expand_low; __m256i ref_expand_high, madd_low, madd_high; unsigned int i; __m256i zero_reg = _mm256_set1_epi16(0); __m256i sum_ref_src = _mm256_set1_epi16(0); __m256i madd_ref_src = _mm256_set1_epi16(0); // processing 32 elements in parallel for (i = 0; i < 16; i++) { src = _mm256_loadu_si256((__m256i const *)(src_ptr)); ref = _mm256_loadu_si256((__m256i const *)(ref_ptr)); // expanding to 16 bit each lane src_expand_low = _mm256_unpacklo_epi8(src, zero_reg); src_expand_high = _mm256_unpackhi_epi8(src, zero_reg); ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg); ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg); // src-ref src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low); src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high); // madd low (src - ref) madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low); // add high to low src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high); // madd high (src - ref) madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high); sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low); // add high to low madd_ref_src = _mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high)); src_ptr += source_stride; ref_ptr += recon_stride; } { __m256i expand_sum_low, expand_sum_high, expand_sum; __m256i expand_madd_low, expand_madd_high, expand_madd; __m256i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum; // padding each 2 bytes with another 2 zeroed bytes expand_sum_low = _mm256_unpacklo_epi16(zero_reg, sum_ref_src); expand_sum_high = _mm256_unpackhi_epi16(zero_reg, sum_ref_src); // shifting the sign 16 bits right expand_sum_low = _mm256_srai_epi32(expand_sum_low, 16); expand_sum_high = _mm256_srai_epi32(expand_sum_high, 16); expand_sum = _mm256_add_epi32(expand_sum_low, expand_sum_high); // expand each 32 bits of the madd result to 64 bits expand_madd_low = _mm256_unpacklo_epi32(madd_ref_src, zero_reg); expand_madd_high = _mm256_unpackhi_epi32(madd_ref_src, zero_reg); expand_madd = _mm256_add_epi32(expand_madd_low, expand_madd_high); ex_expand_sum_low = _mm256_unpacklo_epi32(expand_sum, zero_reg); ex_expand_sum_high = _mm256_unpackhi_epi32(expand_sum, zero_reg); ex_expand_sum = _mm256_add_epi32(ex_expand_sum_low, ex_expand_sum_high); // shift 8 bytes eight madd_ref_src = _mm256_srli_si256(expand_madd, 8); sum_ref_src = _mm256_srli_si256(ex_expand_sum, 8); madd_ref_src = _mm256_add_epi32(madd_ref_src, expand_madd); sum_ref_src = _mm256_add_epi32(sum_ref_src, ex_expand_sum); // extract the low lane and the high lane and add the results *((int *)SSE) = _mm_cvtsi128_si32(_mm256_castsi256_si128(madd_ref_src)) + _mm_cvtsi128_si32(_mm256_extractf128_si256(madd_ref_src, 1)); *((int *)Sum) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_ref_src)) + _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_ref_src, 1)); } } #define FILTER_SRC(filter) \ /* filter the source */ \ exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); \ exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); \ \ /* add 8 to source */ \ exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); \ exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); \ \ /* divide source by 16 */ \ exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); \ exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); #define MERGE_WITH_SRC(src_reg, reg) \ exp_src_lo = _mm256_unpacklo_epi8(src_reg, reg); \ exp_src_hi = _mm256_unpackhi_epi8(src_reg, reg); #define LOAD_SRC_DST \ /* load source and destination */ \ src_reg = _mm256_loadu_si256((__m256i const *)(src)); \ dst_reg = _mm256_loadu_si256((__m256i const *)(dst)); #define AVG_NEXT_SRC(src_reg, size_stride) \ src_next_reg = _mm256_loadu_si256((__m256i const *)(src + size_stride)); \ /* average between current and next stride source */ \ src_reg = _mm256_avg_epu8(src_reg, src_next_reg); #define MERGE_NEXT_SRC(src_reg, size_stride) \ src_next_reg = _mm256_loadu_si256((__m256i const *)(src + size_stride)); \ MERGE_WITH_SRC(src_reg, src_next_reg) #define CALC_SUM_SSE_INSIDE_LOOP \ /* expand each byte to 2 bytes */ \ exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); \ exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); \ /* source - dest */ \ exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); \ exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); \ /* caculate sum */ \ sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); \ exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); \ sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); \ exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); \ /* calculate sse */ \ sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); \ sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi); // final calculation to sum and sse #define CALC_SUM_AND_SSE \ res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); \ sse_reg_hi = _mm256_srli_si256(sse_reg, 8); \ sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); \ sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); \ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \ sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); \ \ sse_reg_hi = _mm256_srli_si256(sse_reg, 4); \ sum_reg_hi = _mm256_srli_si256(sum_reg, 8); \ \ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \ *((int *)sse) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + \ _mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); \ sum_reg_hi = _mm256_srli_si256(sum_reg, 4); \ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \ sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + \ _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1)); unsigned int vpx_sub_pixel_variance32xh_avx2(const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, int height, unsigned int *sse) { __m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; __m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi; __m256i zero_reg; int i, sum; sum_reg = _mm256_set1_epi16(0); sse_reg = _mm256_set1_epi16(0); zero_reg = _mm256_set1_epi16(0); // x_offset = 0 and y_offset = 0 if (x_offset == 0) { if (y_offset == 0) { for (i = 0; i < height; i++) { LOAD_SRC_DST // expend each byte to 2 bytes MERGE_WITH_SRC(src_reg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } // x_offset = 0 and y_offset = 8 } else if (y_offset == 8) { __m256i src_next_reg; for (i = 0; i < height; i++) { LOAD_SRC_DST AVG_NEXT_SRC(src_reg, src_stride) // expend each byte to 2 bytes MERGE_WITH_SRC(src_reg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } // x_offset = 0 and y_offset = bilin interpolation } else { __m256i filter, pw8, src_next_reg; y_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); pw8 = _mm256_set1_epi16(8); for (i = 0; i < height; i++) { LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, src_stride) FILTER_SRC(filter) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } } // x_offset = 8 and y_offset = 0 } else if (x_offset == 8) { if (y_offset == 0) { __m256i src_next_reg; for (i = 0; i < height; i++) { LOAD_SRC_DST AVG_NEXT_SRC(src_reg, 1) // expand each byte to 2 bytes MERGE_WITH_SRC(src_reg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } // x_offset = 8 and y_offset = 8 } else if (y_offset == 8) { __m256i src_next_reg, src_avg; // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *)(src)); AVG_NEXT_SRC(src_reg, 1) for (i = 0; i < height; i++) { src_avg = src_reg; src += src_stride; LOAD_SRC_DST AVG_NEXT_SRC(src_reg, 1) // average between previous average to current average src_avg = _mm256_avg_epu8(src_avg, src_reg); // expand each byte to 2 bytes MERGE_WITH_SRC(src_avg, zero_reg) // save current source average CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; } // x_offset = 8 and y_offset = bilin interpolation } else { __m256i filter, pw8, src_next_reg, src_avg; y_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); pw8 = _mm256_set1_epi16(8); // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *)(src)); AVG_NEXT_SRC(src_reg, 1) for (i = 0; i < height; i++) { // save current source average src_avg = src_reg; src += src_stride; LOAD_SRC_DST AVG_NEXT_SRC(src_reg, 1) MERGE_WITH_SRC(src_avg, src_reg) FILTER_SRC(filter) CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; } } // x_offset = bilin interpolation and y_offset = 0 } else { if (y_offset == 0) { __m256i filter, pw8, src_next_reg; x_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); pw8 = _mm256_set1_epi16(8); for (i = 0; i < height; i++) { LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(filter) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } // x_offset = bilin interpolation and y_offset = 8 } else if (y_offset == 8) { __m256i filter, pw8, src_next_reg, src_pack; x_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); pw8 = _mm256_set1_epi16(8); src_reg = _mm256_loadu_si256((__m256i const *)(src)); MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(filter) // convert each 16 bit to 8 bit to each low and high lane source src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); for (i = 0; i < height; i++) { src += src_stride; LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(filter) src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // average between previous pack to the current src_pack = _mm256_avg_epu8(src_pack, src_reg); MERGE_WITH_SRC(src_pack, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src_pack = src_reg; dst += dst_stride; } // x_offset = bilin interpolation and y_offset = bilin interpolation } else { __m256i xfilter, yfilter, pw8, src_next_reg, src_pack; x_offset <<= 5; xfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); y_offset <<= 5; yfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); pw8 = _mm256_set1_epi16(8); // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *)(src)); MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(xfilter) // convert each 16 bit to 8 bit to each low and high lane source src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); for (i = 0; i < height; i++) { src += src_stride; LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(xfilter) src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // merge previous pack to current pack source MERGE_WITH_SRC(src_pack, src_reg) // filter the source FILTER_SRC(yfilter) src_pack = src_reg; CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; } } } CALC_SUM_AND_SSE return sum; } unsigned int vpx_sub_pixel_avg_variance32xh_avx2( const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int height, unsigned int *sse) { __m256i sec_reg; __m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; __m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi; __m256i zero_reg; int i, sum; sum_reg = _mm256_set1_epi16(0); sse_reg = _mm256_set1_epi16(0); zero_reg = _mm256_set1_epi16(0); // x_offset = 0 and y_offset = 0 if (x_offset == 0) { if (y_offset == 0) { for (i = 0; i < height; i++) { LOAD_SRC_DST sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_reg = _mm256_avg_epu8(src_reg, sec_reg); sec += sec_stride; // expend each byte to 2 bytes MERGE_WITH_SRC(src_reg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } } else if (y_offset == 8) { __m256i src_next_reg; for (i = 0; i < height; i++) { LOAD_SRC_DST AVG_NEXT_SRC(src_reg, src_stride) sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_reg = _mm256_avg_epu8(src_reg, sec_reg); sec += sec_stride; // expend each byte to 2 bytes MERGE_WITH_SRC(src_reg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } // x_offset = 0 and y_offset = bilin interpolation } else { __m256i filter, pw8, src_next_reg; y_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); pw8 = _mm256_set1_epi16(8); for (i = 0; i < height; i++) { LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, src_stride) FILTER_SRC(filter) src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_reg = _mm256_avg_epu8(src_reg, sec_reg); sec += sec_stride; MERGE_WITH_SRC(src_reg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } } // x_offset = 8 and y_offset = 0 } else if (x_offset == 8) { if (y_offset == 0) { __m256i src_next_reg; for (i = 0; i < height; i++) { LOAD_SRC_DST AVG_NEXT_SRC(src_reg, 1) sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_reg = _mm256_avg_epu8(src_reg, sec_reg); sec += sec_stride; // expand each byte to 2 bytes MERGE_WITH_SRC(src_reg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } // x_offset = 8 and y_offset = 8 } else if (y_offset == 8) { __m256i src_next_reg, src_avg; // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *)(src)); AVG_NEXT_SRC(src_reg, 1) for (i = 0; i < height; i++) { // save current source average src_avg = src_reg; src += src_stride; LOAD_SRC_DST AVG_NEXT_SRC(src_reg, 1) // average between previous average to current average src_avg = _mm256_avg_epu8(src_avg, src_reg); sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_avg = _mm256_avg_epu8(src_avg, sec_reg); sec += sec_stride; // expand each byte to 2 bytes MERGE_WITH_SRC(src_avg, zero_reg) CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; } // x_offset = 8 and y_offset = bilin interpolation } else { __m256i filter, pw8, src_next_reg, src_avg; y_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); pw8 = _mm256_set1_epi16(8); // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *)(src)); AVG_NEXT_SRC(src_reg, 1) for (i = 0; i < height; i++) { // save current source average src_avg = src_reg; src += src_stride; LOAD_SRC_DST AVG_NEXT_SRC(src_reg, 1) MERGE_WITH_SRC(src_avg, src_reg) FILTER_SRC(filter) src_avg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_avg = _mm256_avg_epu8(src_avg, sec_reg); // expand each byte to 2 bytes MERGE_WITH_SRC(src_avg, zero_reg) sec += sec_stride; CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; } } // x_offset = bilin interpolation and y_offset = 0 } else { if (y_offset == 0) { __m256i filter, pw8, src_next_reg; x_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); pw8 = _mm256_set1_epi16(8); for (i = 0; i < height; i++) { LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(filter) src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_reg = _mm256_avg_epu8(src_reg, sec_reg); MERGE_WITH_SRC(src_reg, zero_reg) sec += sec_stride; CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } // x_offset = bilin interpolation and y_offset = 8 } else if (y_offset == 8) { __m256i filter, pw8, src_next_reg, src_pack; x_offset <<= 5; filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); pw8 = _mm256_set1_epi16(8); src_reg = _mm256_loadu_si256((__m256i const *)(src)); MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(filter) // convert each 16 bit to 8 bit to each low and high lane source src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); for (i = 0; i < height; i++) { src += src_stride; LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(filter) src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // average between previous pack to the current src_pack = _mm256_avg_epu8(src_pack, src_reg); sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_pack = _mm256_avg_epu8(src_pack, sec_reg); sec += sec_stride; MERGE_WITH_SRC(src_pack, zero_reg) src_pack = src_reg; CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; } // x_offset = bilin interpolation and y_offset = bilin interpolation } else { __m256i xfilter, yfilter, pw8, src_next_reg, src_pack; x_offset <<= 5; xfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + x_offset)); y_offset <<= 5; yfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + y_offset)); pw8 = _mm256_set1_epi16(8); // load source and another source starting from the next // following byte src_reg = _mm256_loadu_si256((__m256i const *)(src)); MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(xfilter) // convert each 16 bit to 8 bit to each low and high lane source src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); for (i = 0; i < height; i++) { src += src_stride; LOAD_SRC_DST MERGE_NEXT_SRC(src_reg, 1) FILTER_SRC(xfilter) src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // merge previous pack to current pack source MERGE_WITH_SRC(src_pack, src_reg) // filter the source FILTER_SRC(yfilter) src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); sec_reg = _mm256_loadu_si256((__m256i const *)(sec)); src_pack = _mm256_avg_epu8(src_pack, sec_reg); MERGE_WITH_SRC(src_pack, zero_reg) src_pack = src_reg; sec += sec_stride; CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; } } } CALC_SUM_AND_SSE return sum; }