ref: 4d33a01ca37a4753fec9ce046561ea91068ee808
dir: /test/partial_idct_test.cc/
/* * Copyright (c) 2013 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_scan.h" #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { typedef void (*FwdTxfmFunc)(const int16_t *in, int16_t *out, int stride); typedef void (*InvTxfmFunc)(const int16_t *in, uint8_t *out, int stride); typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, InvTxfmFunc, TX_SIZE, int> PartialInvTxfmParam; const int kMaxNumCoeffs = 1024; class PartialIDctTest : public ::testing::TestWithParam<PartialInvTxfmParam> { public: virtual ~PartialIDctTest() {} virtual void SetUp() { ftxfm_ = GET_PARAM(0); full_itxfm_ = GET_PARAM(1); partial_itxfm_ = GET_PARAM(2); tx_size_ = GET_PARAM(3); last_nonzero_ = GET_PARAM(4); } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: int last_nonzero_; TX_SIZE tx_size_; FwdTxfmFunc ftxfm_; InvTxfmFunc full_itxfm_; InvTxfmFunc partial_itxfm_; }; TEST_P(PartialIDctTest, RunQuantCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int size; switch (tx_size_) { case TX_4X4: size = 4; break; case TX_8X8: size = 8; break; case TX_16X16: size = 16; break; case TX_32X32: size = 32; break; default: FAIL() << "Wrong Size!"; break; } DECLARE_ALIGNED_ARRAY(16, int16_t, test_coef_block1, kMaxNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, test_coef_block2, kMaxNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst1, kMaxNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst2, kMaxNumCoeffs); const int count_test_block = 1000; const int block_size = size * size; DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kMaxNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kMaxNumCoeffs); int max_error = 0; for (int i = 0; i < count_test_block; ++i) { // clear out destination buffer memset(dst1, 0, sizeof(*dst1) * block_size); memset(dst2, 0, sizeof(*dst2) * block_size); memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. if (i == 0) { for (int j = 0; j < block_size; ++j) input_extreme_block[j] = 255; } else if (i == 1) { for (int j = 0; j < block_size; ++j) input_extreme_block[j] = -255; } else { for (int j = 0; j < block_size; ++j) { input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; } } ftxfm_(input_extreme_block, output_ref_block, size); // quantization with maximum allowed step sizes test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336; for (int j = 1; j < last_nonzero_; ++j) test_coef_block1[vp9_default_scan_orders[tx_size_].scan[j]] = (output_ref_block[j] / 1828) * 1828; } ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size)); for (int j = 0; j < block_size; ++j) { const int diff = dst1[j] - dst2[j]; const int error = diff * diff; if (max_error < error) max_error = error; } } EXPECT_EQ(0, max_error) << "Error: partial inverse transform produces different results"; } TEST_P(PartialIDctTest, ResultsMatch) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int size; switch (tx_size_) { case TX_4X4: size = 4; break; case TX_8X8: size = 8; break; case TX_16X16: size = 16; break; case TX_32X32: size = 32; break; default: FAIL() << "Wrong Size!"; break; } DECLARE_ALIGNED_ARRAY(16, int16_t, test_coef_block1, kMaxNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, test_coef_block2, kMaxNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst1, kMaxNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst2, kMaxNumCoeffs); const int count_test_block = 1000; const int max_coeff = 32766 / 4; const int block_size = size * size; int max_error = 0; for (int i = 0; i < count_test_block; ++i) { // clear out destination buffer memset(dst1, 0, sizeof(*dst1) * block_size); memset(dst2, 0, sizeof(*dst2) * block_size); memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); int max_energy_leftover = max_coeff * max_coeff; for (int j = 0; j < last_nonzero_; ++j) { int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) * (rnd.Rand16() - 32768) / 65536); max_energy_leftover -= coef * coef; if (max_energy_leftover < 0) { max_energy_leftover = 0; coef = 0; } test_coef_block1[vp9_default_scan_orders[tx_size_].scan[j]] = coef; } memcpy(test_coef_block2, test_coef_block1, sizeof(*test_coef_block2) * block_size); ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size)); for (int j = 0; j < block_size; ++j) { const int diff = dst1[j] - dst2[j]; const int error = diff * diff; if (max_error < error) max_error = error; } } EXPECT_EQ(0, max_error) << "Error: partial inverse transform produces different results"; } using std::tr1::make_tuple; INSTANTIATE_TEST_CASE_P( C, PartialIDctTest, ::testing::Values( make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, &vp9_idct32x32_34_add_c, TX_32X32, 34), make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, &vp9_idct32x32_1_add_c, TX_32X32, 1), make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, &vp9_idct16x16_10_add_c, TX_16X16, 10), make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, &vp9_idct16x16_1_add_c, TX_16X16, 1), make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, &vp9_idct8x8_12_add_c, TX_8X8, 12), make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, &vp9_idct8x8_1_add_c, TX_8X8, 1), make_tuple(&vp9_fdct4x4_c, &vp9_idct4x4_16_add_c, &vp9_idct4x4_1_add_c, TX_4X4, 1))); #if HAVE_NEON_ASM INSTANTIATE_TEST_CASE_P( NEON, PartialIDctTest, ::testing::Values( make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, &vp9_idct32x32_1_add_neon, TX_32X32, 1), make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, &vp9_idct16x16_10_add_neon, TX_16X16, 10), make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, &vp9_idct16x16_1_add_neon, TX_16X16, 1), make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, &vp9_idct8x8_12_add_neon, TX_8X8, 12), make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, &vp9_idct8x8_1_add_neon, TX_8X8, 1), make_tuple(&vp9_fdct4x4_c, &vp9_idct4x4_16_add_c, &vp9_idct4x4_1_add_neon, TX_4X4, 1))); #endif #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, PartialIDctTest, ::testing::Values( make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, &vp9_idct32x32_34_add_sse2, TX_32X32, 34), make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, &vp9_idct32x32_1_add_sse2, TX_32X32, 1), make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, &vp9_idct16x16_10_add_sse2, TX_16X16, 10), make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, &vp9_idct16x16_1_add_sse2, TX_16X16, 1), make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, &vp9_idct8x8_12_add_sse2, TX_8X8, 12), make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, &vp9_idct8x8_1_add_sse2, TX_8X8, 1), make_tuple(&vp9_fdct4x4_c, &vp9_idct4x4_16_add_c, &vp9_idct4x4_1_add_sse2, TX_4X4, 1))); #endif #if HAVE_SSSE3 && ARCH_X86_64 INSTANTIATE_TEST_CASE_P( SSSE3_64, PartialIDctTest, ::testing::Values( make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, &vp9_idct8x8_12_add_ssse3, TX_8X8, 12))); #endif #if HAVE_SSSE3 INSTANTIATE_TEST_CASE_P( SSSE3, PartialIDctTest, ::testing::Values( make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, &vp9_idct16x16_10_add_ssse3, TX_16X16, 10))); #endif } // namespace