shithub: libvpx

ref: 50b20b90aabcae5a158fe4a622401c8d005cf24f
dir: /test/vp10_inv_txfm_test.cc/

View raw version
/*
 *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/include/gtest/gtest.h"

#include "./vp10_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vp10/common/blockd.h"
#include "vp10/common/scan.h"
#include "vpx/vpx_integer.h"
#include "vp10/common/vp10_inv_txfm.h"

using libvpx_test::ACMRandom;

namespace {
const double PI = 3.141592653589793238462643383279502884;
const double kInvSqrt2 = 0.707106781186547524400844362104;

void reference_idct_1d(const double *in, double *out, int size) {
  for (int n = 0; n < size; ++n) {
    out[n] = 0;
    for (int k = 0; k < size; ++k) {
      if (k == 0)
        out[n] += kInvSqrt2 * in[k] * cos(PI * (2 * n + 1) * k / (2 * size));
      else
        out[n] += in[k] * cos(PI * (2 * n + 1) * k / (2 * size));
    }
  }
}

typedef void (*IdctFuncRef)(const double *in, double *out, int size);
typedef void (*IdctFunc)(const tran_low_t *in, tran_low_t *out);

class TransTestBase {
 public:
  virtual ~TransTestBase() {}

 protected:
  void RunInvAccuracyCheck() {
    tran_low_t *input  = new tran_low_t[txfm_size_];
    tran_low_t *output = new tran_low_t[txfm_size_];
    double *ref_input  = new double[txfm_size_];
    double *ref_output = new double[txfm_size_];

    ACMRandom rnd(ACMRandom::DeterministicSeed());
    const int count_test_block = 5000;
    for (int ti =  0; ti < count_test_block; ++ti) {
      for (int ni = 0; ni < txfm_size_; ++ni) {
        input[ni] = rnd.Rand8() - rnd.Rand8();
        ref_input[ni] = static_cast<double>(input[ni]);
      }

      fwd_txfm_(input, output);
      fwd_txfm_ref_(ref_input, ref_output, txfm_size_);

      for (int ni = 0; ni < txfm_size_; ++ni) {
        EXPECT_LE(
            abs(output[ni] - static_cast<tran_low_t>(round(ref_output[ni]))),
            max_error_);
      }
    }

    delete[] input;
    delete[] output;
    delete[] ref_input;
    delete[] ref_output;
  }

  double max_error_;
  int txfm_size_;
  IdctFunc fwd_txfm_;
  IdctFuncRef fwd_txfm_ref_;
};

typedef std::tr1::tuple<IdctFunc, IdctFuncRef, int, int> IdctParam;
class Vp10InvTxfm
    : public TransTestBase,
      public ::testing::TestWithParam<IdctParam> {
 public:
  virtual void SetUp() {
    fwd_txfm_ = GET_PARAM(0);
    fwd_txfm_ref_ = GET_PARAM(1);
    txfm_size_ = GET_PARAM(2);
    max_error_ = GET_PARAM(3);
  }
  virtual void TearDown() {}
};

TEST_P(Vp10InvTxfm, RunInvAccuracyCheck) {
  RunInvAccuracyCheck();
}

INSTANTIATE_TEST_CASE_P(
    C, Vp10InvTxfm,
    ::testing::Values(
        IdctParam(&vp10_idct4_c, &reference_idct_1d, 4, 1),
        IdctParam(&vp10_idct8_c, &reference_idct_1d, 8, 2),
        IdctParam(&vp10_idct16_c, &reference_idct_1d, 16, 4),
        IdctParam(&vp10_idct32_c, &reference_idct_1d, 32, 6))
);

typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef std::tr1::tuple<FwdTxfmFunc,
                        InvTxfmFunc,
                        InvTxfmFunc,
                        TX_SIZE, int> PartialInvTxfmParam;
const int kMaxNumCoeffs = 1024;
class Vp10PartialIDctTest
    : public ::testing::TestWithParam<PartialInvTxfmParam> {
 public:
  virtual ~Vp10PartialIDctTest() {}
  virtual void SetUp() {
    ftxfm_ = GET_PARAM(0);
    full_itxfm_ = GET_PARAM(1);
    partial_itxfm_ = GET_PARAM(2);
    tx_size_  = GET_PARAM(3);
    last_nonzero_ = GET_PARAM(4);
  }

  virtual void TearDown() { libvpx_test::ClearSystemState(); }

 protected:
  int last_nonzero_;
  TX_SIZE tx_size_;
  FwdTxfmFunc ftxfm_;
  InvTxfmFunc full_itxfm_;
  InvTxfmFunc partial_itxfm_;
};

TEST_P(Vp10PartialIDctTest, RunQuantCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int size;
  switch (tx_size_) {
    case TX_4X4:
      size = 4;
      break;
    case TX_8X8:
      size = 8;
      break;
    case TX_16X16:
      size = 16;
      break;
    case TX_32X32:
      size = 32;
      break;
    default:
      FAIL() << "Wrong Size!";
      break;
  }
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]);

  const int count_test_block = 1000;
  const int block_size = size * size;

  DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]);

  int max_error = 0;
  for (int i = 0; i < count_test_block; ++i) {
    // clear out destination buffer
    memset(dst1, 0, sizeof(*dst1) * block_size);
    memset(dst2, 0, sizeof(*dst2) * block_size);
    memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size);
    memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size);

    ACMRandom rnd(ACMRandom::DeterministicSeed());

    for (int i = 0; i < count_test_block; ++i) {
      // Initialize a test block with input range [-255, 255].
      if (i == 0) {
        for (int j = 0; j < block_size; ++j)
          input_extreme_block[j] = 255;
      } else if (i == 1) {
        for (int j = 0; j < block_size; ++j)
          input_extreme_block[j] = -255;
      } else {
        for (int j = 0; j < block_size; ++j) {
          input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
        }
      }

      ftxfm_(input_extreme_block, output_ref_block, size);

      // quantization with maximum allowed step sizes
      test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336;
      for (int j = 1; j < last_nonzero_; ++j)
        test_coef_block1[vp10_default_scan_orders[tx_size_].scan[j]]
                         = (output_ref_block[j] / 1828) * 1828;
    }

    ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size));
    ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size));

    for (int j = 0; j < block_size; ++j) {
      const int diff = dst1[j] - dst2[j];
      const int error = diff * diff;
      if (max_error < error)
        max_error = error;
    }
  }

  EXPECT_EQ(0, max_error)
      << "Error: partial inverse transform produces different results";
}

TEST_P(Vp10PartialIDctTest, ResultsMatch) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int size;
  switch (tx_size_) {
    case TX_4X4:
      size = 4;
      break;
    case TX_8X8:
      size = 8;
      break;
    case TX_16X16:
      size = 16;
      break;
    case TX_32X32:
      size = 32;
      break;
    default:
      FAIL() << "Wrong Size!";
      break;
  }
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]);
  DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]);
  const int count_test_block = 1000;
  const int max_coeff = 32766 / 4;
  const int block_size = size * size;
  int max_error = 0;
  for (int i = 0; i < count_test_block; ++i) {
    // clear out destination buffer
    memset(dst1, 0, sizeof(*dst1) * block_size);
    memset(dst2, 0, sizeof(*dst2) * block_size);
    memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size);
    memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size);
    int max_energy_leftover = max_coeff * max_coeff;
    for (int j = 0; j < last_nonzero_; ++j) {
      int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) *
                                          (rnd.Rand16() - 32768) / 65536);
      max_energy_leftover -= coef * coef;
      if (max_energy_leftover < 0) {
        max_energy_leftover = 0;
        coef = 0;
      }
      test_coef_block1[vp10_default_scan_orders[tx_size_].scan[j]] = coef;
    }

    memcpy(test_coef_block2, test_coef_block1,
           sizeof(*test_coef_block2) * block_size);

    ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size));
    ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size));

    for (int j = 0; j < block_size; ++j) {
      const int diff = dst1[j] - dst2[j];
      const int error = diff * diff;
      if (max_error < error)
        max_error = error;
    }
  }

  EXPECT_EQ(0, max_error)
      << "Error: partial inverse transform produces different results";
}
using std::tr1::make_tuple;

INSTANTIATE_TEST_CASE_P(
    C, Vp10PartialIDctTest,
    ::testing::Values(
        make_tuple(&vpx_fdct32x32_c,
                   &vp10_idct32x32_1024_add_c,
                   &vp10_idct32x32_34_add_c,
                   TX_32X32, 34),
        make_tuple(&vpx_fdct32x32_c,
                   &vp10_idct32x32_1024_add_c,
                   &vp10_idct32x32_1_add_c,
                   TX_32X32, 1),
        make_tuple(&vpx_fdct16x16_c,
                   &vp10_idct16x16_256_add_c,
                   &vp10_idct16x16_10_add_c,
                   TX_16X16, 10),
        make_tuple(&vpx_fdct16x16_c,
                   &vp10_idct16x16_256_add_c,
                   &vp10_idct16x16_1_add_c,
                   TX_16X16, 1),
        make_tuple(&vpx_fdct8x8_c,
                   &vp10_idct8x8_64_add_c,
                   &vp10_idct8x8_12_add_c,
                   TX_8X8, 12),
        make_tuple(&vpx_fdct8x8_c,
                   &vp10_idct8x8_64_add_c,
                   &vp10_idct8x8_1_add_c,
                   TX_8X8, 1),
        make_tuple(&vpx_fdct4x4_c,
                   &vp10_idct4x4_16_add_c,
                   &vp10_idct4x4_1_add_c,
                   TX_4X4, 1)));
}  // namespace