ref: 580317160caf12b755aff57c7900bd44285eac37
dir: /test/vp10_inv_txfm_test.cc/
/* * Copyright (c) 2013 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vp10_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vp10/common/blockd.h" #include "vp10/common/scan.h" #include "vpx/vpx_integer.h" #include "vp10/common/vp10_inv_txfm.h" using libvpx_test::ACMRandom; namespace { const double PI = 3.141592653589793238462643383279502884; const double kInvSqrt2 = 0.707106781186547524400844362104; void reference_idct_1d(const double *in, double *out, int size) { for (int n = 0; n < size; ++n) { out[n] = 0; for (int k = 0; k < size; ++k) { if (k == 0) out[n] += kInvSqrt2 * in[k] * cos(PI * (2 * n + 1) * k / (2 * size)); else out[n] += in[k] * cos(PI * (2 * n + 1) * k / (2 * size)); } } } typedef void (*IdctFuncRef)(const double *in, double *out, int size); typedef void (*IdctFunc)(const tran_low_t *in, tran_low_t *out); class TransTestBase { public: virtual ~TransTestBase() {} protected: void RunInvAccuracyCheck() { tran_low_t *input = new tran_low_t[txfm_size_]; tran_low_t *output = new tran_low_t[txfm_size_]; double *ref_input = new double[txfm_size_]; double *ref_output = new double[txfm_size_]; ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; for (int ti = 0; ti < count_test_block; ++ti) { for (int ni = 0; ni < txfm_size_; ++ni) { input[ni] = rnd.Rand8() - rnd.Rand8(); ref_input[ni] = static_cast<double>(input[ni]); } fwd_txfm_(input, output); fwd_txfm_ref_(ref_input, ref_output, txfm_size_); for (int ni = 0; ni < txfm_size_; ++ni) { EXPECT_LE( abs(output[ni] - static_cast<tran_low_t>(round(ref_output[ni]))), max_error_); } } delete[] input; delete[] output; delete[] ref_input; delete[] ref_output; } double max_error_; int txfm_size_; IdctFunc fwd_txfm_; IdctFuncRef fwd_txfm_ref_; }; typedef std::tr1::tuple<IdctFunc, IdctFuncRef, int, int> IdctParam; class Vp10InvTxfm : public TransTestBase, public ::testing::TestWithParam<IdctParam> { public: virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); fwd_txfm_ref_ = GET_PARAM(1); txfm_size_ = GET_PARAM(2); max_error_ = GET_PARAM(3); } virtual void TearDown() {} }; TEST_P(Vp10InvTxfm, RunInvAccuracyCheck) { RunInvAccuracyCheck(); } INSTANTIATE_TEST_CASE_P( C, Vp10InvTxfm, ::testing::Values( IdctParam(&vp10_idct4_c, &reference_idct_1d, 4, 1), IdctParam(&vp10_idct8_c, &reference_idct_1d, 8, 2), IdctParam(&vp10_idct16_c, &reference_idct_1d, 16, 4), IdctParam(&vp10_idct32_c, &reference_idct_1d, 32, 6)) ); typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, InvTxfmFunc, TX_SIZE, int> PartialInvTxfmParam; const int kMaxNumCoeffs = 1024; class Vp10PartialIDctTest : public ::testing::TestWithParam<PartialInvTxfmParam> { public: virtual ~Vp10PartialIDctTest() {} virtual void SetUp() { ftxfm_ = GET_PARAM(0); full_itxfm_ = GET_PARAM(1); partial_itxfm_ = GET_PARAM(2); tx_size_ = GET_PARAM(3); last_nonzero_ = GET_PARAM(4); } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: int last_nonzero_; TX_SIZE tx_size_; FwdTxfmFunc ftxfm_; InvTxfmFunc full_itxfm_; InvTxfmFunc partial_itxfm_; }; TEST_P(Vp10PartialIDctTest, RunQuantCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int size; switch (tx_size_) { case TX_4X4: size = 4; break; case TX_8X8: size = 8; break; case TX_16X16: size = 16; break; case TX_32X32: size = 32; break; default: FAIL() << "Wrong Size!"; break; } DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); const int count_test_block = 1000; const int block_size = size * size; DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]); int max_error = 0; for (int i = 0; i < count_test_block; ++i) { // clear out destination buffer memset(dst1, 0, sizeof(*dst1) * block_size); memset(dst2, 0, sizeof(*dst2) * block_size); memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. if (i == 0) { for (int j = 0; j < block_size; ++j) input_extreme_block[j] = 255; } else if (i == 1) { for (int j = 0; j < block_size; ++j) input_extreme_block[j] = -255; } else { for (int j = 0; j < block_size; ++j) { input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; } } ftxfm_(input_extreme_block, output_ref_block, size); // quantization with maximum allowed step sizes test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336; for (int j = 1; j < last_nonzero_; ++j) test_coef_block1[vp10_default_scan_orders[tx_size_].scan[j]] = (output_ref_block[j] / 1828) * 1828; } ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size)); for (int j = 0; j < block_size; ++j) { const int diff = dst1[j] - dst2[j]; const int error = diff * diff; if (max_error < error) max_error = error; } } EXPECT_EQ(0, max_error) << "Error: partial inverse transform produces different results"; } TEST_P(Vp10PartialIDctTest, ResultsMatch) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int size; switch (tx_size_) { case TX_4X4: size = 4; break; case TX_8X8: size = 8; break; case TX_16X16: size = 16; break; case TX_32X32: size = 32; break; default: FAIL() << "Wrong Size!"; break; } DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); const int count_test_block = 1000; const int max_coeff = 32766 / 4; const int block_size = size * size; int max_error = 0; for (int i = 0; i < count_test_block; ++i) { // clear out destination buffer memset(dst1, 0, sizeof(*dst1) * block_size); memset(dst2, 0, sizeof(*dst2) * block_size); memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); int max_energy_leftover = max_coeff * max_coeff; for (int j = 0; j < last_nonzero_; ++j) { int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) * (rnd.Rand16() - 32768) / 65536); max_energy_leftover -= coef * coef; if (max_energy_leftover < 0) { max_energy_leftover = 0; coef = 0; } test_coef_block1[vp10_default_scan_orders[tx_size_].scan[j]] = coef; } memcpy(test_coef_block2, test_coef_block1, sizeof(*test_coef_block2) * block_size); ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size)); for (int j = 0; j < block_size; ++j) { const int diff = dst1[j] - dst2[j]; const int error = diff * diff; if (max_error < error) max_error = error; } } EXPECT_EQ(0, max_error) << "Error: partial inverse transform produces different results"; } using std::tr1::make_tuple; INSTANTIATE_TEST_CASE_P( C, Vp10PartialIDctTest, ::testing::Values( make_tuple(&vpx_fdct32x32_c, &vp10_idct32x32_1024_add_c, &vp10_idct32x32_34_add_c, TX_32X32, 34), make_tuple(&vpx_fdct32x32_c, &vp10_idct32x32_1024_add_c, &vp10_idct32x32_1_add_c, TX_32X32, 1), make_tuple(&vpx_fdct16x16_c, &vp10_idct16x16_256_add_c, &vp10_idct16x16_10_add_c, TX_16X16, 10), make_tuple(&vpx_fdct16x16_c, &vp10_idct16x16_256_add_c, &vp10_idct16x16_1_add_c, TX_16X16, 1), make_tuple(&vpx_fdct8x8_c, &vp10_idct8x8_64_add_c, &vp10_idct8x8_12_add_c, TX_8X8, 12), make_tuple(&vpx_fdct8x8_c, &vp10_idct8x8_64_add_c, &vp10_idct8x8_1_add_c, TX_8X8, 1), make_tuple(&vpx_fdct4x4_c, &vp10_idct4x4_16_add_c, &vp10_idct4x4_1_add_c, TX_4X4, 1))); } // namespace