ref: 5b11e38aa776142c1d94ab6c6493b6bad7273a43
dir: /vp9/encoder/vp9_ratectrl.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <limits.h> #include <assert.h> #include <math.h> #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_common.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/common/vp9_entropymode.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_seg_common.h" #define MIN_BPB_FACTOR 0.005 #define MAX_BPB_FACTOR 50 // Bits Per MB at different Q (Multiplied by 512) #define BPER_MB_NORMBITS 9 // % adjustment to target kf size based on seperation from previous frame static const int kf_boost_seperation_adjustment[16] = { 30, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 100, 100, 100, }; static const int gf_adjust_table[101] = { 100, 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, 240, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, }; static const int gf_intra_usage_adjustment[20] = { 125, 120, 115, 110, 105, 100, 95, 85, 80, 75, 70, 65, 60, 55, 50, 50, 50, 50, 50, 50, }; static const int gf_interval_table[101] = { 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, }; static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 }; // These functions use formulaic calculations to make playing with the // quantizer tables easier. If necessary they can be replaced by lookup // tables if and when things settle down in the experimental bitstream double vp9_convert_qindex_to_q(int qindex) { // Convert the index to a real Q value (scaled down to match old Q values) return vp9_ac_quant(qindex, 0) / 4.0; } int vp9_gfboost_qadjust(int qindex) { const double q = vp9_convert_qindex_to_q(qindex); return (int)((0.00000828 * q * q * q) + (-0.0055 * q * q) + (1.32 * q) + 79.3); } static int kfboost_qadjust(int qindex) { const double q = vp9_convert_qindex_to_q(qindex); return (int)((0.00000973 * q * q * q) + (-0.00613 * q * q) + (1.316 * q) + 121.2); } int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex, double correction_factor) { const double q = vp9_convert_qindex_to_q(qindex); int enumerator = frame_type == KEY_FRAME ? 4000000 : 2500000; // q based adjustment to baseline enumerator enumerator += (int)(enumerator * q) >> 12; return (int)(0.5 + (enumerator * correction_factor / q)); } void vp9_save_coding_context(VP9_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; // Stores a snapshot of key state variables which can subsequently be // restored with a call to vp9_restore_coding_context. These functions are // intended for use in a re-code loop in vp9_compress_frame where the // quantizer value is adjusted between loop iterations. cc->nmvc = cm->fc.nmvc; vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); vp9_copy(cc->inter_mode_probs, cm->fc.inter_mode_probs); vp9_copy(cc->y_mode_prob, cm->fc.y_mode_prob); vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob); vp9_copy(cc->partition_prob, cm->fc.partition_prob); vp9_copy(cc->segment_pred_probs, xd->seg.pred_probs); vp9_copy(cc->intra_inter_prob, cm->fc.intra_inter_prob); vp9_copy(cc->comp_inter_prob, cm->fc.comp_inter_prob); vp9_copy(cc->single_ref_prob, cm->fc.single_ref_prob); vp9_copy(cc->comp_ref_prob, cm->fc.comp_ref_prob); vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols)); vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas); vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas); vp9_copy(cc->coef_probs, cm->fc.coef_probs); vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob); vp9_copy(cc->tx_probs_8x8p, cm->fc.tx_probs_8x8p); vp9_copy(cc->tx_probs_16x16p, cm->fc.tx_probs_16x16p); vp9_copy(cc->tx_probs_32x32p, cm->fc.tx_probs_32x32p); vp9_copy(cc->mbskip_probs, cm->fc.mbskip_probs); } void vp9_restore_coding_context(VP9_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; // Restore key state variables to the snapshot state stored in the // previous call to vp9_save_coding_context. cm->fc.nmvc = cc->nmvc; vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); vp9_copy(cm->fc.inter_mode_probs, cc->inter_mode_probs); vp9_copy(cm->fc.y_mode_prob, cc->y_mode_prob); vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob); vp9_copy(cm->fc.partition_prob, cc->partition_prob); vp9_copy(xd->seg.pred_probs, cc->segment_pred_probs); vp9_copy(cm->fc.intra_inter_prob, cc->intra_inter_prob); vp9_copy(cm->fc.comp_inter_prob, cc->comp_inter_prob); vp9_copy(cm->fc.single_ref_prob, cc->single_ref_prob); vp9_copy(cm->fc.comp_ref_prob, cc->comp_ref_prob); vpx_memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy, (cm->mi_rows * cm->mi_cols)); vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas); vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas); vp9_copy(cm->fc.coef_probs, cc->coef_probs); vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob); vp9_copy(cm->fc.tx_probs_8x8p, cc->tx_probs_8x8p); vp9_copy(cm->fc.tx_probs_16x16p, cc->tx_probs_16x16p); vp9_copy(cm->fc.tx_probs_32x32p, cc->tx_probs_32x32p); vp9_copy(cm->fc.mbskip_probs, cc->mbskip_probs); } void vp9_setup_key_frame(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; vp9_setup_past_independence(cm, xd); // interval before next GF cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; /* All buffers are implicitly updated on key frames. */ cpi->refresh_golden_frame = 1; cpi->refresh_alt_ref_frame = 1; } void vp9_setup_inter_frame(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; if (cm->error_resilient_mode || cm->intra_only) vp9_setup_past_independence(cm, xd); assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS); cm->fc = cm->frame_contexts[cm->frame_context_idx]; } static int estimate_bits_at_q(int frame_kind, int q, int mbs, double correction_factor) { const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor)); // Attempt to retain reasonable accuracy without overflow. The cutoff is // chosen such that the maximum product of Bpm and MBs fits 31 bits. The // largest Bpm takes 20 bits. return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs : (bpm * mbs) >> BPER_MB_NORMBITS; } static void calc_iframe_target_size(VP9_COMP *cpi) { // boost defaults to half second int target; // Clear down mmx registers to allow floating point in what follows vp9_clear_system_state(); // __asm emms; // New Two pass RC target = cpi->per_frame_bandwidth; if (cpi->oxcf.rc_max_intra_bitrate_pct) { int max_rate = cpi->per_frame_bandwidth * cpi->oxcf.rc_max_intra_bitrate_pct / 100; if (target > max_rate) target = max_rate; } cpi->this_frame_target = target; } // Do the best we can to define the parameters for the next GF based // on what information we have available. // // In this experimental code only two pass is supported // so we just use the interval determined in the two pass code. static void calc_gf_params(VP9_COMP *cpi) { // Set the gf interval cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; } static void calc_pframe_target_size(VP9_COMP *cpi) { const int min_frame_target = MAX(cpi->min_frame_bandwidth, cpi->av_per_frame_bandwidth >> 5); if (cpi->refresh_alt_ref_frame) { // Special alt reference frame case // Per frame bit target for the alt ref frame cpi->per_frame_bandwidth = cpi->twopass.gf_bits; cpi->this_frame_target = cpi->per_frame_bandwidth; } else { // Normal frames (gf,and inter) cpi->this_frame_target = cpi->per_frame_bandwidth; } // Sanity check that the total sum of adjustments is not above the maximum allowed // That is that having allowed for KF and GF penalties we have not pushed the // current interframe target to low. If the adjustment we apply here is not capable of recovering // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over // a longer time span via other buffer / rate control mechanisms. if (cpi->this_frame_target < min_frame_target) cpi->this_frame_target = min_frame_target; if (!cpi->refresh_alt_ref_frame) // Note the baseline target data rate for this inter frame. cpi->inter_frame_target = cpi->this_frame_target; // Adjust target frame size for Golden Frames: if (cpi->frames_till_gf_update_due == 0) { const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; cpi->refresh_golden_frame = 1; calc_gf_params(cpi); // If we are using alternate ref instead of gf then do not apply the boost // It will instead be applied to the altref update // Jims modified boost if (!cpi->source_alt_ref_active) { if (cpi->oxcf.fixed_q < 0) { // The spend on the GF is defined in the two pass code // for two pass encodes cpi->this_frame_target = cpi->per_frame_bandwidth; } else { cpi->this_frame_target = (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0) * cpi->last_boost) / 100; } } else { // If there is an active ARF at this location use the minimum // bits on this frame even if it is a constructed arf. // The active maximum quantizer insures that an appropriate // number of bits will be spent if needed for constructed ARFs. cpi->this_frame_target = 0; } } } void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { const int q = cpi->common.base_qindex; int correction_factor = 100; double rate_correction_factor; double adjustment_limit; int projected_size_based_on_q = 0; // Clear down mmx registers to allow floating point in what follows vp9_clear_system_state(); // __asm emms; if (cpi->common.frame_type == KEY_FRAME) { rate_correction_factor = cpi->key_frame_rate_correction_factor; } else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) rate_correction_factor = cpi->gf_rate_correction_factor; else rate_correction_factor = cpi->rate_correction_factor; } // Work out how big we would have expected the frame to be at this Q given // the current correction factor. // Stay in double to avoid int overflow when values are large projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q, cpi->common.MBs, rate_correction_factor); // Work out a size correction factor. // if ( cpi->this_frame_target > 0 ) // correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target; if (projected_size_based_on_q > 0) correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q; // More heavily damped adjustment used if we have been oscillating either side of target switch (damp_var) { case 0: adjustment_limit = 0.75; break; case 1: adjustment_limit = 0.375; break; case 2: default: adjustment_limit = 0.25; break; } // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) if (correction_factor > 102) { // We are not already at the worst allowable quality correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit)); rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); // Keep rate_correction_factor within limits if (rate_correction_factor > MAX_BPB_FACTOR) rate_correction_factor = MAX_BPB_FACTOR; } // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) ) else if (correction_factor < 99) { // We are not already at the best allowable quality correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit)); rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); // Keep rate_correction_factor within limits if (rate_correction_factor < MIN_BPB_FACTOR) rate_correction_factor = MIN_BPB_FACTOR; } if (cpi->common.frame_type == KEY_FRAME) cpi->key_frame_rate_correction_factor = rate_correction_factor; else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) cpi->gf_rate_correction_factor = rate_correction_factor; else cpi->rate_correction_factor = rate_correction_factor; } } int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { int q = cpi->active_worst_quality; int i; int last_error = INT_MAX; int target_bits_per_mb; int bits_per_mb_at_this_q; double correction_factor; // Select the appropriate correction factor based upon type of frame. if (cpi->common.frame_type == KEY_FRAME) correction_factor = cpi->key_frame_rate_correction_factor; else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) correction_factor = cpi->gf_rate_correction_factor; else correction_factor = cpi->rate_correction_factor; } // Calculate required scaling factor based on target frame size and size of frame produced using previous Q if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int else target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; i = cpi->active_best_quality; do { bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i, correction_factor); if (bits_per_mb_at_this_q <= target_bits_per_mb) { if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) q = i; else q = i - 1; break; } else { last_error = bits_per_mb_at_this_q - target_bits_per_mb; } } while (++i <= cpi->active_worst_quality); return q; } static int estimate_keyframe_frequency(VP9_COMP *cpi) { int i; // Average key frame frequency int av_key_frame_frequency = 0; /* First key frame at start of sequence is a special case. We have no * frequency data. */ if (cpi->key_frame_count == 1) { /* Assume a default of 1 kf every 2 seconds, or the max kf interval, * whichever is smaller. */ int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; av_key_frame_frequency = (int)cpi->output_frame_rate * 2; if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) av_key_frame_frequency = cpi->oxcf.key_freq; cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] = av_key_frame_frequency; } else { unsigned int total_weight = 0; int last_kf_interval = (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; /* reset keyframe context and calculate weighted average of last * KEY_FRAME_CONTEXT keyframes */ for (i = 0; i < KEY_FRAME_CONTEXT; i++) { if (i < KEY_FRAME_CONTEXT - 1) cpi->prior_key_frame_distance[i] = cpi->prior_key_frame_distance[i + 1]; else cpi->prior_key_frame_distance[i] = last_kf_interval; av_key_frame_frequency += prior_key_frame_weight[i] * cpi->prior_key_frame_distance[i]; total_weight += prior_key_frame_weight[i]; } av_key_frame_frequency /= total_weight; } return av_key_frame_frequency; } void vp9_adjust_key_frame_context(VP9_COMP *cpi) { // Clear down mmx registers to allow floating point in what follows vp9_clear_system_state(); cpi->frames_since_key = 0; cpi->key_frame_count++; } void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit) { // Set-up bounds on acceptable frame size: if (cpi->oxcf.fixed_q >= 0) { // Fixed Q scenario: frame size never outranges target (there is no target!) *frame_under_shoot_limit = 0; *frame_over_shoot_limit = INT_MAX; } else { if (cpi->common.frame_type == KEY_FRAME) { *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; } else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) { *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; } else { // Stron overshoot limit for constrained quality if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; } else { *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; } } } // For very small rate targets where the fractional adjustment // (eg * 7/8) may be tiny make sure there is at least a minimum // range. *frame_over_shoot_limit += 200; *frame_under_shoot_limit -= 200; if (*frame_under_shoot_limit < 0) *frame_under_shoot_limit = 0; } } // return of 0 means drop frame int vp9_pick_frame_size(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; if (cm->frame_type == KEY_FRAME) calc_iframe_target_size(cpi); else calc_pframe_target_size(cpi); return 1; }