ref: 5eeabfffcb9eb03d8f52693f6201380ec7110818
dir: /tools/3D-Reconstruction/MotionEST/Anandan.py/
#!/usr/bin/env python # coding: utf-8 import numpy as np import numpy.linalg as LA from scipy.ndimage.filters import gaussian_filter from scipy.sparse import csc_matrix from scipy.sparse.linalg import inv from MotionEST import MotionEST """Anandan Model""" class Anandan(MotionEST): """ constructor: cur_f: current frame ref_f: reference frame blk_sz: block size beta: smooth constrain weight k1,k2,k3: confidence coefficients max_iter: maximum number of iterations """ def __init__(self, cur_f, ref_f, blk_sz, beta, k1, k2, k3, max_iter=100): super(Anandan, self).__init__(cur_f, ref_f, blk_sz) self.levels = int(np.log2(blk_sz)) self.intensity_hierarchy() self.c_maxs = [] self.c_mins = [] self.e_maxs = [] self.e_mins = [] for l in xrange(self.levels + 1): c_max, c_min, e_max, e_min = self.get_curvature(self.cur_Is[l]) self.c_maxs.append(c_max) self.c_mins.append(c_min) self.e_maxs.append(e_max) self.e_mins.append(e_min) self.beta = beta self.k1, self.k2, self.k3 = k1, k2, k3 self.max_iter = max_iter """ build intensity hierarchy """ def intensity_hierarchy(self): level = 0 self.cur_Is = [] self.ref_Is = [] #build each level itensity by using gaussian filters while level <= self.levels: cur_I = gaussian_filter(self.cur_yuv[:, :, 0], sigma=(2**level) * 0.56) ref_I = gaussian_filter(self.ref_yuv[:, :, 0], sigma=(2**level) * 0.56) self.ref_Is.append(ref_I) self.cur_Is.append(cur_I) level += 1 """ get curvature of each block """ def get_curvature(self, I): c_max = np.zeros((self.num_row, self.num_col)) c_min = np.zeros((self.num_row, self.num_col)) e_max = np.zeros((self.num_row, self.num_col, 2)) e_min = np.zeros((self.num_row, self.num_col, 2)) for r in xrange(self.num_row): for c in xrange(self.num_col): h11, h12, h21, h22 = 0, 0, 0, 0 for i in xrange(r * self.blk_sz, r * self.blk_sz + self.blk_sz): for j in xrange(c * self.blk_sz, c * self.blk_sz + self.blk_sz): if 0 <= i < self.height - 1 and 0 <= j < self.width - 1: Ix = I[i][j + 1] - I[i][j] Iy = I[i + 1][j] - I[i][j] h11 += Iy * Iy h12 += Ix * Iy h21 += Ix * Iy h22 += Ix * Ix U, S, _ = LA.svd(np.array([[h11, h12], [h21, h22]])) c_max[r, c], c_min[r, c] = S[0], S[1] e_max[r, c] = U[:, 0] e_min[r, c] = U[:, 1] return c_max, c_min, e_max, e_min """ get ssd of motion vector: cur_I: current intensity ref_I: reference intensity center: current position mv: motion vector """ def get_ssd(self, cur_I, ref_I, center, mv): ssd = 0 for r in xrange(int(center[0]), int(center[0]) + self.blk_sz): for c in xrange(int(center[1]), int(center[1]) + self.blk_sz): if 0 <= r < self.height and 0 <= c < self.width: tr, tc = r + int(mv[0]), c + int(mv[1]) if 0 <= tr < self.height and 0 <= tc < self.width: ssd += (ref_I[tr, tc] - cur_I[r, c])**2 else: ssd += cur_I[r, c]**2 return ssd """ get region match of level l l: current level last_mvs: matchine results of last level radius: movenment radius """ def region_match(self, l, last_mvs, radius): mvs = np.zeros((self.num_row, self.num_col, 2)) min_ssds = np.zeros((self.num_row, self.num_col)) for r in xrange(self.num_row): for c in xrange(self.num_col): center = np.array([r * self.blk_sz, c * self.blk_sz]) #use overlap hierarchy policy init_mvs = [] if last_mvs is None: init_mvs = [np.array([0, 0])] else: for i, j in {(r, c), (r, c + 1), (r + 1, c), (r + 1, c + 1)}: if 0 <= i < last_mvs.shape[0] and 0 <= j < last_mvs.shape[1]: init_mvs.append(last_mvs[i, j]) #use last matching results as the start postion as current level min_ssd = None min_mv = None for init_mv in init_mvs: for i in xrange(-2, 3): for j in xrange(-2, 3): mv = init_mv + np.array([i, j]) * radius ssd = self.get_ssd(self.cur_Is[l], self.ref_Is[l], center, mv) if min_ssd is None or ssd < min_ssd: min_ssd = ssd min_mv = mv min_ssds[r, c] = min_ssd mvs[r, c] = min_mv return mvs, min_ssds """ smooth motion field based on neighbor constraint uvs: current estimation mvs: matching results min_ssds: minimum ssd of matching results l: current level """ def smooth(self, uvs, mvs, min_ssds, l): sm_uvs = np.zeros((self.num_row, self.num_col, 2)) c_max = self.c_maxs[l] c_min = self.c_mins[l] e_max = self.e_maxs[l] e_min = self.e_mins[l] for r in xrange(self.num_row): for c in xrange(self.num_col): w_max = c_max[r, c] / ( self.k1 + self.k2 * min_ssds[r, c] + self.k3 * c_max[r, c]) w_min = c_min[r, c] / ( self.k1 + self.k2 * min_ssds[r, c] + self.k3 * c_min[r, c]) w = w_max * w_min / (w_max + w_min + 1e-6) if w < 0: w = 0 avg_uv = np.array([0.0, 0.0]) for i, j in {(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)}: if 0 <= i < self.num_row and 0 <= j < self.num_col: avg_uv += 0.25 * uvs[i, j] sm_uvs[r, c] = (w * w * mvs[r, c] + self.beta * avg_uv) / ( self.beta + w * w) return sm_uvs """ motion field estimation """ def motion_field_estimation(self): last_mvs = None for l in xrange(self.levels, -1, -1): mvs, min_ssds = self.region_match(l, last_mvs, 2**l) uvs = np.zeros(mvs.shape) for _ in xrange(self.max_iter): uvs = self.smooth(uvs, mvs, min_ssds, l) last_mvs = uvs for r in xrange(self.num_row): for c in xrange(self.num_col): self.mf[r, c] = uvs[r, c]