ref: 626ca102f3c5777471c29412aec3dac05a9566ef
dir: /vp9/encoder/vp9_aq_cyclicrefresh.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <limits.h> #include <math.h> #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_ports/system_state.h" #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_segmentation.h" static const uint8_t VP9_VAR_OFFS[64] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) { size_t last_coded_q_map_size; CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr)); if (cr == NULL) return NULL; cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map)); if (cr->map == NULL) { vp9_cyclic_refresh_free(cr); return NULL; } last_coded_q_map_size = mi_rows * mi_cols * sizeof(*cr->last_coded_q_map); cr->last_coded_q_map = vpx_malloc(last_coded_q_map_size); if (cr->last_coded_q_map == NULL) { vp9_cyclic_refresh_free(cr); return NULL; } assert(MAXQ <= 255); memset(cr->last_coded_q_map, MAXQ, last_coded_q_map_size); cr->counter_encode_maxq_scene_change = 0; return cr; } void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) { vpx_free(cr->map); vpx_free(cr->last_coded_q_map); vpx_free(cr); } // Check if this coding block, of size bsize, should be considered for refresh // (lower-qp coding). Decision can be based on various factors, such as // size of the coding block (i.e., below min_block size rejected), coding // mode, and rate/distortion. static int candidate_refresh_aq(const CYCLIC_REFRESH *cr, const MODE_INFO *mi, int64_t rate, int64_t dist, int bsize) { MV mv = mi->mv[0].as_mv; // Reject the block for lower-qp coding if projected distortion // is above the threshold, and any of the following is true: // 1) mode uses large mv // 2) mode is an intra-mode // Otherwise accept for refresh. if (dist > cr->thresh_dist_sb && (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh || mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh || !is_inter_block(mi))) return CR_SEGMENT_ID_BASE; else if (bsize >= BLOCK_16X16 && rate < cr->thresh_rate_sb && is_inter_block(mi) && mi->mv[0].as_int == 0 && cr->rate_boost_fac > 10) // More aggressive delta-q for bigger blocks with zero motion. return CR_SEGMENT_ID_BOOST2; else return CR_SEGMENT_ID_BOOST1; } // Compute delta-q for the segment. static int compute_deltaq(const VP9_COMP *cpi, int q, double rate_factor) { const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const RATE_CONTROL *const rc = &cpi->rc; int deltaq = vp9_compute_qdelta_by_rate(rc, cpi->common.frame_type, q, rate_factor, cpi->common.bit_depth); if ((-deltaq) > cr->max_qdelta_perc * q / 100) { deltaq = -cr->max_qdelta_perc * q / 100; } return deltaq; } // For the just encoded frame, estimate the bits, incorporating the delta-q // from non-base segment. For now ignore effect of multiple segments // (with different delta-q). Note this function is called in the postencode // (called from rc_update_rate_correction_factors()). int vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP *cpi, double correction_factor) { const VP9_COMMON *const cm = &cpi->common; const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; int estimated_bits; int mbs = cm->MBs; int num8x8bl = mbs << 2; // Weight for non-base segments: use actual number of blocks refreshed in // previous/just encoded frame. Note number of blocks here is in 8x8 units. double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl; double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl; // Take segment weighted average for estimated bits. estimated_bits = (int)((1.0 - weight_segment1 - weight_segment2) * vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs, correction_factor, cm->bit_depth) + weight_segment1 * vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex + cr->qindex_delta[1], mbs, correction_factor, cm->bit_depth) + weight_segment2 * vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex + cr->qindex_delta[2], mbs, correction_factor, cm->bit_depth)); return estimated_bits; } // Prior to encoding the frame, estimate the bits per mb, for a given q = i and // a corresponding delta-q (for segment 1). This function is called in the // rc_regulate_q() to set the base qp index. // Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or // to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding. int vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP *cpi, int i, double correction_factor) { const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; int bits_per_mb; int deltaq = 0; if (cpi->oxcf.speed < 8) deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta); else deltaq = -(cr->max_qdelta_perc * i) / 200; // Take segment weighted average for bits per mb. bits_per_mb = (int)((1.0 - cr->weight_segment) * vp9_rc_bits_per_mb(cm->frame_type, i, correction_factor, cm->bit_depth) + cr->weight_segment * vp9_rc_bits_per_mb(cm->frame_type, i + deltaq, correction_factor, cm->bit_depth)); return bits_per_mb; } // Prior to coding a given prediction block, of size bsize at (mi_row, mi_col), // check if we should reset the segment_id, and update the cyclic_refresh map // and segmentation map. void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi, MODE_INFO *const mi, int mi_row, int mi_col, BLOCK_SIZE bsize, int64_t rate, int64_t dist, int skip, struct macroblock_plane *const p) { const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); const int block_index = mi_row * cm->mi_cols + mi_col; int refresh_this_block = candidate_refresh_aq(cr, mi, rate, dist, bsize); // Default is to not update the refresh map. int new_map_value = cr->map[block_index]; int x = 0; int y = 0; int is_skin = 0; if (refresh_this_block == 0 && bsize <= BLOCK_16X16 && cpi->use_skin_detection) { is_skin = vp9_compute_skin_block(p[0].src.buf, p[1].src.buf, p[2].src.buf, p[0].src.stride, p[1].src.stride, bsize, 0, 0); if (is_skin) refresh_this_block = 1; } if (cpi->oxcf.rc_mode == VPX_VBR && mi->ref_frame[0] == GOLDEN_FRAME) refresh_this_block = 0; // If this block is labeled for refresh, check if we should reset the // segment_id. if (cyclic_refresh_segment_id_boosted(mi->segment_id)) { mi->segment_id = refresh_this_block; // Reset segment_id if it will be skipped. if (skip) mi->segment_id = CR_SEGMENT_ID_BASE; } // Update the cyclic refresh map, to be used for setting segmentation map // for the next frame. If the block will be refreshed this frame, mark it // as clean. The magnitude of the -ve influences how long before we consider // it for refresh again. if (cyclic_refresh_segment_id_boosted(mi->segment_id)) { new_map_value = -cr->time_for_refresh; } else if (refresh_this_block) { // Else if it is accepted as candidate for refresh, and has not already // been refreshed (marked as 1) then mark it as a candidate for cleanup // for future time (marked as 0), otherwise don't update it. if (cr->map[block_index] == 1) new_map_value = 0; } else { // Leave it marked as block that is not candidate for refresh. new_map_value = 1; } // Update entries in the cyclic refresh map with new_map_value, and // copy mbmi->segment_id into global segmentation map. for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) { int map_offset = block_index + y * cm->mi_cols + x; cr->map[map_offset] = new_map_value; cpi->segmentation_map[map_offset] = mi->segment_id; } } void vp9_cyclic_refresh_update_sb_postencode(VP9_COMP *const cpi, const MODE_INFO *const mi, int mi_row, int mi_col, BLOCK_SIZE bsize) { const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); const int block_index = mi_row * cm->mi_cols + mi_col; int x, y; for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) { int map_offset = block_index + y * cm->mi_cols + x; // Inter skip blocks were clearly not coded at the current qindex, so // don't update the map for them. For cases where motion is non-zero or // the reference frame isn't the previous frame, the previous value in // the map for this spatial location is not entirely correct. if ((!is_inter_block(mi) || !mi->skip) && mi->segment_id <= CR_SEGMENT_ID_BOOST2) { cr->last_coded_q_map[map_offset] = clamp(cm->base_qindex + cr->qindex_delta[mi->segment_id], 0, MAXQ); } else if (is_inter_block(mi) && mi->skip && mi->segment_id <= CR_SEGMENT_ID_BOOST2) { cr->last_coded_q_map[map_offset] = VPXMIN( clamp(cm->base_qindex + cr->qindex_delta[mi->segment_id], 0, MAXQ), cr->last_coded_q_map[map_offset]); } } } // From the just encoded frame: update the actual number of blocks that were // applied the segment delta q, and the amount of low motion in the frame. // Also check conditions for forcing golden update, or preventing golden // update if the period is up. void vp9_cyclic_refresh_postencode(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; MODE_INFO **mi = cm->mi_grid_visible; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; RATE_CONTROL *const rc = &cpi->rc; unsigned char *const seg_map = cpi->segmentation_map; double fraction_low = 0.0; int force_gf_refresh = 0; int low_content_frame = 0; int mi_row, mi_col; cr->actual_num_seg1_blocks = 0; cr->actual_num_seg2_blocks = 0; for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { MV mv = mi[0]->mv[0].as_mv; int map_index = mi_row * cm->mi_cols + mi_col; if (cyclic_refresh_segment_id(seg_map[map_index]) == CR_SEGMENT_ID_BOOST1) cr->actual_num_seg1_blocks++; else if (cyclic_refresh_segment_id(seg_map[map_index]) == CR_SEGMENT_ID_BOOST2) cr->actual_num_seg2_blocks++; // Accumulate low_content_frame. if (is_inter_block(mi[0]) && abs(mv.row) < 16 && abs(mv.col) < 16) low_content_frame++; mi++; } mi += 8; } // Check for golden frame update: only for non-SVC and non-golden boost. if (!cpi->use_svc && cpi->ext_refresh_frame_flags_pending == 0 && !cpi->oxcf.gf_cbr_boost_pct) { // Force this frame as a golden update frame if this frame changes the // resolution (resize_pending != 0). if (cpi->resize_pending != 0) { vp9_cyclic_refresh_set_golden_update(cpi); rc->frames_till_gf_update_due = rc->baseline_gf_interval; if (rc->frames_till_gf_update_due > rc->frames_to_key) rc->frames_till_gf_update_due = rc->frames_to_key; cpi->refresh_golden_frame = 1; force_gf_refresh = 1; } // Update average of low content/motion in the frame. fraction_low = (double)low_content_frame / (cm->mi_rows * cm->mi_cols); cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4; if (!force_gf_refresh && cpi->refresh_golden_frame == 1 && rc->frames_since_key > rc->frames_since_golden + 1) { // Don't update golden reference if the amount of low_content for the // current encoded frame is small, or if the recursive average of the // low_content over the update interval window falls below threshold. if (fraction_low < 0.65 || cr->low_content_avg < 0.6) { cpi->refresh_golden_frame = 0; } // Reset for next internal. cr->low_content_avg = fraction_low; } } } // Set golden frame update interval, for non-svc 1 pass CBR mode. void vp9_cyclic_refresh_set_golden_update(VP9_COMP *const cpi) { RATE_CONTROL *const rc = &cpi->rc; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; // Set minimum gf_interval for GF update to a multiple of the refresh period, // with some max limit. Depending on past encoding stats, GF flag may be // reset and update may not occur until next baseline_gf_interval. if (cr->percent_refresh > 0) rc->baseline_gf_interval = VPXMIN(4 * (100 / cr->percent_refresh), 40); else rc->baseline_gf_interval = 40; if (cpi->oxcf.rc_mode == VPX_VBR) rc->baseline_gf_interval = 20; if (rc->avg_frame_low_motion < 50 && rc->frames_since_key > 40) rc->baseline_gf_interval = 10; } static int is_superblock_flat_static(VP9_COMP *const cpi, int sb_row_index, int sb_col_index) { unsigned int source_variance; const uint8_t *src_y = cpi->Source->y_buffer; const int ystride = cpi->Source->y_stride; unsigned int sse; const BLOCK_SIZE bsize = BLOCK_64X64; src_y += (sb_row_index << 6) * ystride + (sb_col_index << 6); source_variance = cpi->fn_ptr[bsize].vf(src_y, ystride, VP9_VAR_OFFS, 0, &sse); if (source_variance == 0) { uint64_t block_sad; const uint8_t *last_src_y = cpi->Last_Source->y_buffer; const int last_ystride = cpi->Last_Source->y_stride; last_src_y += (sb_row_index << 6) * ystride + (sb_col_index << 6); block_sad = cpi->fn_ptr[bsize].sdf(src_y, ystride, last_src_y, last_ystride); if (block_sad == 0) return 1; } return 0; } // Update the segmentation map, and related quantities: cyclic refresh map, // refresh sb_index, and target number of blocks to be refreshed. // The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to // 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock. // Blocks labeled as BOOST1 may later get set to BOOST2 (during the // encoding of the superblock). static void cyclic_refresh_update_map(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; unsigned char *const seg_map = cpi->segmentation_map; int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame; int xmis, ymis, x, y; int consec_zero_mv_thresh = 0; int qindex_thresh = 0; int count_sel = 0; int count_tot = 0; memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols); sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; sbs_in_frame = sb_cols * sb_rows; // Number of target blocks to get the q delta (segment 1). block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100; // Set the segmentation map: cycle through the superblocks, starting at // cr->mb_index, and stopping when either block_count blocks have been found // to be refreshed, or we have passed through whole frame. assert(cr->sb_index < sbs_in_frame); i = cr->sb_index; cr->target_num_seg_blocks = 0; if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) { consec_zero_mv_thresh = 100; } qindex_thresh = cpi->oxcf.content == VP9E_CONTENT_SCREEN ? vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST2, cm->base_qindex) : vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST1, cm->base_qindex); // More aggressive settings for noisy content. if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium) { consec_zero_mv_thresh = 60; qindex_thresh = VPXMAX(vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST1, cm->base_qindex), cm->base_qindex); } do { int sum_map = 0; int consec_zero_mv_thresh_block = consec_zero_mv_thresh; // Get the mi_row/mi_col corresponding to superblock index i. int sb_row_index = (i / sb_cols); int sb_col_index = i - sb_row_index * sb_cols; int mi_row = sb_row_index * MI_BLOCK_SIZE; int mi_col = sb_col_index * MI_BLOCK_SIZE; int flat_static_blocks = 0; int compute_content = 1; assert(mi_row >= 0 && mi_row < cm->mi_rows); assert(mi_col >= 0 && mi_col < cm->mi_cols); #if CONFIG_VP9_HIGHBITDEPTH if (cpi->common.use_highbitdepth) compute_content = 0; #endif if (cpi->Last_Source == NULL || cpi->Last_Source->y_width != cpi->Source->y_width || cpi->Last_Source->y_height != cpi->Source->y_height) compute_content = 0; bl_index = mi_row * cm->mi_cols + mi_col; // Loop through all 8x8 blocks in superblock and update map. xmis = VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]); ymis = VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]); if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium && (xmis <= 2 || ymis <= 2)) consec_zero_mv_thresh_block = 4; for (y = 0; y < ymis; y++) { for (x = 0; x < xmis; x++) { const int bl_index2 = bl_index + y * cm->mi_cols + x; // If the block is as a candidate for clean up then mark it // for possible boost/refresh (segment 1). The segment id may get // reset to 0 later depending on the coding mode. if (cr->map[bl_index2] == 0) { count_tot++; if (cr->last_coded_q_map[bl_index2] > qindex_thresh || cpi->consec_zero_mv[bl_index2] < consec_zero_mv_thresh_block) { sum_map++; count_sel++; } } else if (cr->map[bl_index2] < 0) { cr->map[bl_index2]++; } } } // Enforce constant segment over superblock. // If segment is at least half of superblock, set to 1. if (sum_map >= xmis * ymis / 2) { // This superblock is a candidate for refresh: // compute spatial variance and exclude blocks that are spatially flat // and stationary. Note: this is currently only done for screne content // mode. if (compute_content && cr->skip_flat_static_blocks) flat_static_blocks = is_superblock_flat_static(cpi, sb_row_index, sb_col_index); if (!flat_static_blocks) { // Label this superblock as segment 1. for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) { seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1; } cr->target_num_seg_blocks += xmis * ymis; } } i++; if (i == sbs_in_frame) { i = 0; } } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index); cr->sb_index = i; cr->reduce_refresh = 0; if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) if (count_sel<(3 * count_tot)>> 2) cr->reduce_refresh = 1; } // Set cyclic refresh parameters. void vp9_cyclic_refresh_update_parameters(VP9_COMP *const cpi) { const RATE_CONTROL *const rc = &cpi->rc; const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; int num8x8bl = cm->MBs << 2; int target_refresh = 0; double weight_segment_target = 0; double weight_segment = 0; int thresh_low_motion = (cm->width < 720) ? 55 : 20; int qp_thresh = VPXMIN(20, rc->best_quality << 1); cr->apply_cyclic_refresh = 1; if (frame_is_intra_only(cm) || cpi->svc.temporal_layer_id > 0 || is_lossless_requested(&cpi->oxcf) || rc->avg_frame_qindex[INTER_FRAME] < qp_thresh || (cpi->use_svc && cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) || (!cpi->use_svc && rc->avg_frame_low_motion < thresh_low_motion && rc->frames_since_key > 40)) { cr->apply_cyclic_refresh = 0; return; } cr->percent_refresh = 10; if (cr->reduce_refresh) cr->percent_refresh = 5; cr->max_qdelta_perc = 60; cr->time_for_refresh = 0; cr->motion_thresh = 32; cr->rate_boost_fac = 15; // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4) // periods of the refresh cycle, after a key frame. // Account for larger interval on base layer for temporal layers. if (cr->percent_refresh > 0 && rc->frames_since_key < (4 * cpi->svc.number_temporal_layers) * (100 / cr->percent_refresh)) { cr->rate_ratio_qdelta = 3.0; } else { cr->rate_ratio_qdelta = 2.0; if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium) { // Reduce the delta-qp if the estimated source noise is above threshold. cr->rate_ratio_qdelta = 1.7; cr->rate_boost_fac = 13; } } // For screen-content: keep rate_ratio_qdelta to 2.0 (segment#1 boost) and // percent_refresh (refresh rate) to 10. But reduce rate boost for segment#2 // (rate_boost_fac = 10 disables segment#2). if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) { // Only enable feature of skipping flat_static blocks for top layer // under screen content mode. if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) cr->skip_flat_static_blocks = 1; cr->percent_refresh = (cr->skip_flat_static_blocks) ? 5 : 10; // Increase the amount of refresh on scene change that is encoded at max Q, // increase for a few cycles of the refresh period (~100 / percent_refresh). if (cr->counter_encode_maxq_scene_change < 30) cr->percent_refresh = (cr->skip_flat_static_blocks) ? 10 : 15; cr->rate_ratio_qdelta = 2.0; cr->rate_boost_fac = 10; } // Adjust some parameters for low resolutions. if (cm->width <= 352 && cm->height <= 288) { if (rc->avg_frame_bandwidth < 3000) { cr->motion_thresh = 16; cr->rate_boost_fac = 13; } else { cr->max_qdelta_perc = 70; cr->rate_ratio_qdelta = VPXMAX(cr->rate_ratio_qdelta, 2.5); } } if (cpi->oxcf.rc_mode == VPX_VBR) { // To be adjusted for VBR mode, e.g., based on gf period and boost. // For now use smaller qp-delta (than CBR), no second boosted seg, and // turn-off (no refresh) on golden refresh (since it's already boosted). cr->percent_refresh = 10; cr->rate_ratio_qdelta = 1.5; cr->rate_boost_fac = 10; if (cpi->refresh_golden_frame == 1) { cr->percent_refresh = 0; cr->rate_ratio_qdelta = 1.0; } } // Weight for segment prior to encoding: take the average of the target // number for the frame to be encoded and the actual from the previous frame. // Use the target if its less. To be used for setting the base qp for the // frame in vp9_rc_regulate_q. target_refresh = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100; weight_segment_target = (double)(target_refresh) / num8x8bl; weight_segment = (double)((target_refresh + cr->actual_num_seg1_blocks + cr->actual_num_seg2_blocks) >> 1) / num8x8bl; if (weight_segment_target < 7 * weight_segment / 8) weight_segment = weight_segment_target; // For screen-content: don't include target for the weight segment, // since for all flat areas the segment is reset, so its more accurate // to just use the previous actual number of seg blocks for the weight. if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) weight_segment = (double)(cr->actual_num_seg1_blocks + cr->actual_num_seg2_blocks) / num8x8bl; cr->weight_segment = weight_segment; } // Setup cyclic background refresh: set delta q and segmentation map. void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; struct segmentation *const seg = &cm->seg; int scene_change_detected = cpi->rc.high_source_sad || (cpi->use_svc && cpi->svc.high_source_sad_superframe); if (cm->current_video_frame == 0) cr->low_content_avg = 0.0; // Reset if resoluton change has occurred. if (cpi->resize_pending != 0) vp9_cyclic_refresh_reset_resize(cpi); if (!cr->apply_cyclic_refresh || (cpi->force_update_segmentation) || scene_change_detected) { // Set segmentation map to 0 and disable. unsigned char *const seg_map = cpi->segmentation_map; memset(seg_map, 0, cm->mi_rows * cm->mi_cols); vp9_disable_segmentation(&cm->seg); if (cm->frame_type == KEY_FRAME || scene_change_detected) { memset(cr->last_coded_q_map, MAXQ, cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map)); cr->sb_index = 0; cr->reduce_refresh = 0; cr->counter_encode_maxq_scene_change = 0; } return; } else { int qindex_delta = 0; int qindex2; const double q = vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth); cr->counter_encode_maxq_scene_change++; vpx_clear_system_state(); // Set rate threshold to some multiple (set to 2 for now) of the target // rate (target is given by sb64_target_rate and scaled by 256). cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2; // Distortion threshold, quadratic in Q, scale factor to be adjusted. // q will not exceed 457, so (q * q) is within 32bit; see: // vp9_convert_qindex_to_q(), vp9_ac_quant(), ac_qlookup*[]. cr->thresh_dist_sb = ((int64_t)(q * q)) << 2; // Set up segmentation. // Clear down the segment map. vp9_enable_segmentation(&cm->seg); vp9_clearall_segfeatures(seg); // Select delta coding method. seg->abs_delta = SEGMENT_DELTADATA; // Note: setting temporal_update has no effect, as the seg-map coding method // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(), // based on the coding cost of each method. For error_resilient mode on the // last_frame_seg_map is set to 0, so if temporal coding is used, it is // relative to 0 previous map. // seg->temporal_update = 0; // Segment BASE "Q" feature is disabled so it defaults to the baseline Q. vp9_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q); // Use segment BOOST1 for in-frame Q adjustment. vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q); // Use segment BOOST2 for more aggressive in-frame Q adjustment. vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q); // Set the q delta for segment BOOST1. qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta); cr->qindex_delta[1] = qindex_delta; // Compute rd-mult for segment BOOST1. qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ); cr->rdmult = vp9_compute_rd_mult(cpi, qindex2); vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta); // Set a more aggressive (higher) q delta for segment BOOST2. qindex_delta = compute_deltaq( cpi, cm->base_qindex, VPXMIN(CR_MAX_RATE_TARGET_RATIO, 0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta)); cr->qindex_delta[2] = qindex_delta; vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta); // Update the segmentation and refresh map. cyclic_refresh_update_map(cpi); } } int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) { return cr->rdmult; } void vp9_cyclic_refresh_reset_resize(VP9_COMP *const cpi) { const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; memset(cr->map, 0, cm->mi_rows * cm->mi_cols); memset(cr->last_coded_q_map, MAXQ, cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map)); cr->sb_index = 0; cpi->refresh_golden_frame = 1; cpi->refresh_alt_ref_frame = 1; cr->counter_encode_maxq_scene_change = 0; } void vp9_cyclic_refresh_limit_q(const VP9_COMP *cpi, int *q) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; // For now apply hard limit to frame-level decrease in q, if the cyclic // refresh is active (percent_refresh > 0). if (cr->percent_refresh > 0 && cpi->rc.q_1_frame - *q > 8) { *q = cpi->rc.q_1_frame - 8; } }