ref: 6d44dad4aade3a20a651406f7ec073df3d8fb733
dir: /vp9/common/x86/vp9_subpixel_8t_intrin_avx2.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> #include "vpx_ports/mem.h" // filters for 16_h8 and 16_v8 DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = { 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 }; DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = { 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 }; DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = { 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 }; #if defined(__clang__) # if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ <= 3) || \ (defined(__APPLE__) && __clang_major__ == 5 && __clang_minor__ == 0) # define MM256_BROADCASTSI128_SI256(x) \ _mm_broadcastsi128_si256((__m128i const *)&(x)) # else // clang > 3.3, and not 5.0 on macosx. # define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) # endif // clang <= 3.3 #elif defined(__GNUC__) # if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6) # define MM256_BROADCASTSI128_SI256(x) \ _mm_broadcastsi128_si256((__m128i const *)&(x)) # elif __GNUC__ == 4 && __GNUC_MINOR__ == 7 # define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x) # else // gcc > 4.7 # define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) # endif // gcc <= 4.6 #else // !(gcc || clang) # define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) #endif // __clang__ void vp9_filter_block1d16_h8_avx2(unsigned char *src_ptr, unsigned int src_pixels_per_line, unsigned char *output_ptr, unsigned int output_pitch, unsigned int output_height, int16_t *filter) { __m128i filtersReg; __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; __m256i srcReg32b1, srcReg32b2, filtersReg32; unsigned int i; unsigned int src_stride, dst_stride; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2); filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2); filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2); filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2); // multiple the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i-=2) { // load the 2 strides of source srcReg32b1 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr-3))); srcReg32b1 = _mm256_inserti128_si256(srcReg32b1, _mm_loadu_si128((__m128i *) (src_ptr+src_pixels_per_line-3)), 1); // filter the source buffer srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg); srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); // filter the source buffer srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); // reading 2 strides of the next 16 bytes // (part of it was being read by earlier read) srcReg32b2 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+5))); srcReg32b2 = _mm256_inserti128_si256(srcReg32b2, _mm_loadu_si128((__m128i *) (src_ptr+src_pixels_per_line+5)), 1); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); // filter the source buffer srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2); // filter the source buffer srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg); srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64); srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7); srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); src_ptr+=src_stride; // save 16 bytes _mm_store_si128((__m128i*)output_ptr, _mm256_castsi256_si128(srcRegFilt32b1_1)); // save the next 16 bits _mm_store_si128((__m128i*)(output_ptr+output_pitch), _mm256_extractf128_si256(srcRegFilt32b1_1, 1)); output_ptr+=dst_stride; } // if the number of strides is odd. // process only 16 bytes if (i > 0) { __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1; __m128i srcRegFilt2, srcRegFilt3; srcReg1 = _mm_loadu_si128((__m128i *)(src_ptr-3)); // filter the source buffer srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); srcRegFilt2= _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); // reading the next 16 bytes // (part of it was being read by earlier read) srcReg2 = _mm_loadu_si128((__m128i *)(src_ptr+5)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); // filter the source buffer srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt1Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt4Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); // filter the source buffer srcRegFilt3 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt2Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg64)); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm256_castsi256_si128(addFilterReg64)); // shift by 7 bit each 16 bit srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7); srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); // save 16 bytes _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1); } } void vp9_filter_block1d16_v8_avx2(unsigned char *src_ptr, unsigned int src_pitch, unsigned char *output_ptr, unsigned int out_pitch, unsigned int output_height, int16_t *filter) { __m128i filtersReg; __m256i addFilterReg64; __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; __m256i srcReg32b11, srcReg32b12, filtersReg32; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; unsigned int i; unsigned int src_stride, dst_stride; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; // load 16 bytes 7 times in stride of src_pitch srcReg32b1 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr))); srcReg32b2 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch))); srcReg32b3 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*2))); srcReg32b4 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*3))); srcReg32b5 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*4))); srcReg32b6 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*5))); srcReg32b7 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*6))); // have each consecutive loads on the same 256 register srcReg32b1 = _mm256_inserti128_si256(srcReg32b1, _mm256_castsi256_si128(srcReg32b2), 1); srcReg32b2 = _mm256_inserti128_si256(srcReg32b2, _mm256_castsi256_si128(srcReg32b3), 1); srcReg32b3 = _mm256_inserti128_si256(srcReg32b3, _mm256_castsi256_si128(srcReg32b4), 1); srcReg32b4 = _mm256_inserti128_si256(srcReg32b4, _mm256_castsi256_si128(srcReg32b5), 1); srcReg32b5 = _mm256_inserti128_si256(srcReg32b5, _mm256_castsi256_si128(srcReg32b6), 1); srcReg32b6 = _mm256_inserti128_si256(srcReg32b6, _mm256_castsi256_si128(srcReg32b7), 1); // merge every two consecutive registers except the last one srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2); // save srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); // save srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4); // save srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); // save srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6); for (i = output_height; i > 1; i-=2) { // load the last 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcReg32b8 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7))); srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, _mm256_castsi256_si128(srcReg32b8), 1); srcReg32b9 = _mm256_castsi128_si256( _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*8))); srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, _mm256_castsi256_si128(srcReg32b9), 1); // merge every two consecutive registers // save srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8); // multiply 2 adjacent elements with the filter and add the result srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); // multiply 2 adjacent elements with the filter and add the result srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, _mm256_min_epi16(srcReg32b8, srcReg32b12)); srcReg32b10 = _mm256_adds_epi16(srcReg32b10, _mm256_max_epi16(srcReg32b8, srcReg32b12)); // multiply 2 adjacent elements with the filter and add the result srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters); srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6); // multiply 2 adjacent elements with the filter and add the result srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters); srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters); // add and saturate the results together srcReg32b1 = _mm256_adds_epi16(srcReg32b1, _mm256_min_epi16(srcReg32b8, srcReg32b12)); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, _mm256_max_epi16(srcReg32b8, srcReg32b12)); srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64); // shift by 7 bit each 16 bit srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7); srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1); src_ptr+=src_stride; // save 16 bytes _mm_store_si128((__m128i*)output_ptr, _mm256_castsi256_si128(srcReg32b1)); // save the next 16 bits _mm_store_si128((__m128i*)(output_ptr+out_pitch), _mm256_extractf128_si256(srcReg32b1, 1)); output_ptr+=dst_stride; // save part of the registers for next strides srcReg32b10 = srcReg32b11; srcReg32b1 = srcReg32b3; srcReg32b11 = srcReg32b2; srcReg32b3 = srcReg32b5; srcReg32b2 = srcReg32b4; srcReg32b5 = srcReg32b7; srcReg32b7 = srcReg32b9; } if (i > 0) { __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5; __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8; // load the last 16 bytes srcRegFilt8 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7)); // merge the last 2 results together srcRegFilt4 = _mm_unpacklo_epi8( _mm256_castsi256_si128(srcReg32b7), srcRegFilt8); srcRegFilt7 = _mm_unpackhi_epi8( _mm256_castsi256_si128(srcReg32b7), srcRegFilt8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), _mm256_castsi256_si128(firstFilters)); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters)); srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1), _mm256_castsi256_si128(firstFilters)); srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7); // multiply 2 adjacent elements with the filter and add the result srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), _mm256_castsi256_si128(secondFilters)); srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3), _mm256_castsi256_si128(secondFilters)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), _mm256_castsi256_si128(thirdFilters)); srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5), _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_min_epi16(srcRegFilt4, srcRegFilt6)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm_min_epi16(srcRegFilt5, srcRegFilt7)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_max_epi16(srcRegFilt4, srcRegFilt6)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm_max_epi16(srcRegFilt5, srcRegFilt7)); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg64)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm256_castsi256_si128(addFilterReg64)); // shift by 7 bit each 16 bit srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3); // save 16 bytes _mm_store_si128((__m128i*)output_ptr, srcRegFilt1); } }