ref: 6e5149b68d97ea0bd1f149645da83169bc447e39
dir: /vp9/encoder/vp9_encoder.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdio.h> #include <limits.h> #include "./vpx_config.h" #include "./vpx_scale_rtcd.h" #include "vpx/internal/vpx_psnr.h" #include "vpx_ports/vpx_timer.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_idct.h" #if CONFIG_VP9_POSTPROC #include "vp9/common/vp9_postproc.h" #endif #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_aq_complexity.h" #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/encoder/vp9_aq_variance.h" #include "vp9/encoder/vp9_bitstream.h" #include "vp9/encoder/vp9_context_tree.h" #include "vp9/encoder/vp9_encodeframe.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_firstpass.h" #include "vp9/encoder/vp9_mbgraph.h" #include "vp9/encoder/vp9_encoder.h" #include "vp9/encoder/vp9_picklpf.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_rd.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_speed_features.h" #if CONFIG_INTERNAL_STATS #include "vp9/encoder/vp9_ssim.h" #endif #include "vp9/encoder/vp9_temporal_filter.h" #include "vp9/encoder/vp9_resize.h" #include "vp9/encoder/vp9_svc_layercontext.h" void vp9_coef_tree_initialize(); #define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */ #define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv // for altref computation. #define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision // mv. Choose a very high value for // now so that HIGH_PRECISION is always // chosen. // #define OUTPUT_YUV_REC #ifdef OUTPUT_YUV_DENOISED FILE *yuv_denoised_file = NULL; #endif #ifdef OUTPUT_YUV_SRC FILE *yuv_file; #endif #ifdef OUTPUT_YUV_REC FILE *yuv_rec_file; #endif #if 0 FILE *framepsnr; FILE *kf_list; FILE *keyfile; #endif static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) { switch (mode) { case NORMAL: *hr = 1; *hs = 1; break; case FOURFIVE: *hr = 4; *hs = 5; break; case THREEFIVE: *hr = 3; *hs = 5; break; case ONETWO: *hr = 1; *hs = 2; break; default: *hr = 1; *hs = 1; assert(0); break; } } void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) { MACROBLOCK *const mb = &cpi->mb; cpi->common.allow_high_precision_mv = allow_high_precision_mv; if (cpi->common.allow_high_precision_mv) { mb->mvcost = mb->nmvcost_hp; mb->mvsadcost = mb->nmvsadcost_hp; } else { mb->mvcost = mb->nmvcost; mb->mvsadcost = mb->nmvsadcost; } } static void setup_frame(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; // Set up entropy context depending on frame type. The decoder mandates // the use of the default context, index 0, for keyframes and inter // frames where the error_resilient_mode or intra_only flag is set. For // other inter-frames the encoder currently uses only two contexts; // context 1 for ALTREF frames and context 0 for the others. if (frame_is_intra_only(cm) || cm->error_resilient_mode) { vp9_setup_past_independence(cm); } else { if (!cpi->use_svc) cm->frame_context_idx = cpi->refresh_alt_ref_frame; } if (cm->frame_type == KEY_FRAME) { if (!is_spatial_svc(cpi)) cpi->refresh_golden_frame = 1; cpi->refresh_alt_ref_frame = 1; } else { cm->fc = cm->frame_contexts[cm->frame_context_idx]; } } void vp9_initialize_enc() { static int init_done = 0; if (!init_done) { vp9_init_neighbors(); vp9_coef_tree_initialize(); vp9_tokenize_initialize(); vp9_init_me_luts(); vp9_rc_init_minq_luts(); vp9_entropy_mv_init(); vp9_entropy_mode_init(); vp9_temporal_filter_init(); init_done = 1; } } static void dealloc_compressor_data(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int i; // Delete sementation map vpx_free(cpi->segmentation_map); cpi->segmentation_map = NULL; vpx_free(cm->last_frame_seg_map); cm->last_frame_seg_map = NULL; vpx_free(cpi->coding_context.last_frame_seg_map_copy); cpi->coding_context.last_frame_seg_map_copy = NULL; vpx_free(cpi->complexity_map); cpi->complexity_map = NULL; vp9_cyclic_refresh_free(cpi->cyclic_refresh); cpi->cyclic_refresh = NULL; vp9_free_ref_frame_buffers(cm); vp9_free_context_buffers(cm); vp9_free_frame_buffer(&cpi->last_frame_uf); vp9_free_frame_buffer(&cpi->scaled_source); vp9_free_frame_buffer(&cpi->scaled_last_source); vp9_free_frame_buffer(&cpi->alt_ref_buffer); vp9_lookahead_destroy(cpi->lookahead); vpx_free(cpi->tok); cpi->tok = 0; vp9_free_pc_tree(cpi); for (i = 0; i < cpi->svc.number_spatial_layers; ++i) { LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i]; vpx_free(lc->rc_twopass_stats_in.buf); lc->rc_twopass_stats_in.buf = NULL; lc->rc_twopass_stats_in.sz = 0; } if (cpi->source_diff_var != NULL) { vpx_free(cpi->source_diff_var); cpi->source_diff_var = NULL; } for (i = 0; i < MAX_LAG_BUFFERS; ++i) { vp9_free_frame_buffer(&cpi->svc.scaled_frames[i]); } vpx_memset(&cpi->svc.scaled_frames[0], 0, MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0])); } static void save_coding_context(VP9_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; VP9_COMMON *cm = &cpi->common; // Stores a snapshot of key state variables which can subsequently be // restored with a call to vp9_restore_coding_context. These functions are // intended for use in a re-code loop in vp9_compress_frame where the // quantizer value is adjusted between loop iterations. vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols)); vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); cc->fc = cm->fc; } static void restore_coding_context(VP9_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; VP9_COMMON *cm = &cpi->common; // Restore key state variables to the snapshot state stored in the // previous call to vp9_save_coding_context. vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); vpx_memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy, (cm->mi_rows * cm->mi_cols)); vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); cm->fc = cc->fc; } static void configure_static_seg_features(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; struct segmentation *const seg = &cm->seg; int high_q = (int)(rc->avg_q > 48.0); int qi_delta; // Disable and clear down for KF if (cm->frame_type == KEY_FRAME) { // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; cpi->static_mb_pct = 0; // Disable segmentation vp9_disable_segmentation(seg); // Clear down the segment features. vp9_clearall_segfeatures(seg); } else if (cpi->refresh_alt_ref_frame) { // If this is an alt ref frame // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; cpi->static_mb_pct = 0; // Disable segmentation and individual segment features by default vp9_disable_segmentation(seg); vp9_clearall_segfeatures(seg); // Scan frames from current to arf frame. // This function re-enables segmentation if appropriate. vp9_update_mbgraph_stats(cpi); // If segmentation was enabled set those features needed for the // arf itself. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875); vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2); vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); // Where relevant assume segment data is delta data seg->abs_delta = SEGMENT_DELTADATA; } } else if (seg->enabled) { // All other frames if segmentation has been enabled // First normal frame in a valid gf or alt ref group if (rc->frames_since_golden == 0) { // Set up segment features for normal frames in an arf group if (rc->source_alt_ref_active) { seg->update_map = 0; seg->update_data = 1; seg->abs_delta = SEGMENT_DELTADATA; qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125); vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); // Segment coding disabled for compred testing if (high_q || (cpi->static_mb_pct == 100)) { vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); } } else { // Disable segmentation and clear down features if alt ref // is not active for this group vp9_disable_segmentation(seg); vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); seg->update_map = 0; seg->update_data = 0; vp9_clearall_segfeatures(seg); } } else if (rc->is_src_frame_alt_ref) { // Special case where we are coding over the top of a previous // alt ref frame. // Segment coding disabled for compred testing // Enable ref frame features for segment 0 as well vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME); vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); // All mbs should use ALTREF_FRAME vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME); vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME); vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME); vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); // Skip all MBs if high Q (0,0 mv and skip coeffs) if (high_q) { vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP); vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); } // Enable data update seg->update_data = 1; } else { // All other frames. // No updates.. leave things as they are. seg->update_map = 0; seg->update_data = 0; } } } static void update_reference_segmentation_map(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; uint8_t *cache_ptr = cm->last_frame_seg_map; int row, col; for (row = 0; row < cm->mi_rows; row++) { MODE_INFO **mi_8x8 = mi_8x8_ptr; uint8_t *cache = cache_ptr; for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++) cache[0] = mi_8x8[0]->mbmi.segment_id; mi_8x8_ptr += cm->mi_stride; cache_ptr += cm->mi_cols; } } static void set_speed_features(VP9_COMP *cpi) { #if CONFIG_INTERNAL_STATS int i; for (i = 0; i < MAX_MODES; ++i) cpi->mode_chosen_counts[i] = 0; #endif vp9_set_speed_features(cpi); // Set rd thresholds based on mode and speed setting vp9_set_rd_speed_thresholds(cpi); vp9_set_rd_speed_thresholds_sub8x8(cpi); } static void alloc_raw_frame_buffers(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; const VP9EncoderConfig *oxcf = &cpi->oxcf; cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height, cm->subsampling_x, cm->subsampling_y, oxcf->lag_in_frames); if (!cpi->lookahead) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate lag buffers"); if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate altref buffer"); } static void alloc_ref_frame_buffers(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; if (vp9_alloc_ref_frame_buffers(cm, cm->width, cm->height)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } static void alloc_util_frame_buffers(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; if (vp9_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); if (vp9_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate scaled source buffer"); if (vp9_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate scaled last source buffer"); } void vp9_alloc_compressor_data(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; vp9_alloc_context_buffers(cm, cm->width, cm->height); vpx_free(cpi->tok); { unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols); CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); } vp9_setup_pc_tree(&cpi->common, cpi); } static void update_frame_size(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; vp9_set_mb_mi(cm, cm->width, cm->height); vp9_init_context_buffers(cm); init_macroblockd(cm, xd); if (is_spatial_svc(cpi)) { if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to reallocate alt_ref_buffer"); } } void vp9_new_framerate(VP9_COMP *cpi, double framerate) { cpi->oxcf.framerate = framerate < 0.1 ? 30 : framerate; vp9_rc_update_framerate(cpi); } int64_t vp9_rescale(int64_t val, int64_t num, int denom) { int64_t llnum = num; int64_t llden = denom; int64_t llval = val; return (llval * llnum / llden); } static void set_tile_limits(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int min_log2_tile_cols, max_log2_tile_cols; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols); cm->log2_tile_rows = cpi->oxcf.tile_rows; } static void init_buffer_indices(VP9_COMP *cpi) { cpi->lst_fb_idx = 0; cpi->gld_fb_idx = 1; cpi->alt_fb_idx = 2; } static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) { VP9_COMMON *const cm = &cpi->common; cpi->oxcf = *oxcf; cm->profile = oxcf->profile; cm->bit_depth = oxcf->bit_depth; cm->color_space = UNKNOWN; cm->width = oxcf->width; cm->height = oxcf->height; vp9_alloc_compressor_data(cpi); // Spatial scalability. cpi->svc.number_spatial_layers = oxcf->ss_number_layers; // Temporal scalability. cpi->svc.number_temporal_layers = oxcf->ts_number_layers; if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || (cpi->svc.number_spatial_layers > 1 && cpi->oxcf.mode == TWO_PASS_SECOND_BEST)) { vp9_init_layer_context(cpi); } // change includes all joint functionality vp9_change_config(cpi, oxcf); cpi->static_mb_pct = 0; cpi->ref_frame_flags = 0; init_buffer_indices(cpi); set_tile_limits(cpi); } void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; if (cm->profile != oxcf->profile) cm->profile = oxcf->profile; cm->bit_depth = oxcf->bit_depth; if (cm->profile <= PROFILE_1) assert(cm->bit_depth == BITS_8); else assert(cm->bit_depth > BITS_8); cpi->oxcf = *oxcf; rc->baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 1; cm->refresh_frame_context = 1; cm->reset_frame_context = 0; vp9_reset_segment_features(&cm->seg); vp9_set_high_precision_mv(cpi, 0); { int i; for (i = 0; i < MAX_SEGMENTS; i++) cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; } cpi->encode_breakout = cpi->oxcf.encode_breakout; // local file playback mode == really big buffer if (cpi->oxcf.rc_mode == VPX_VBR) { cpi->oxcf.starting_buffer_level_ms = 60000; cpi->oxcf.optimal_buffer_level_ms = 60000; cpi->oxcf.maximum_buffer_size_ms = 240000; } rc->starting_buffer_level = vp9_rescale(cpi->oxcf.starting_buffer_level_ms, cpi->oxcf.target_bandwidth, 1000); // Set or reset optimal and maximum buffer levels. if (cpi->oxcf.optimal_buffer_level_ms == 0) rc->optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; else rc->optimal_buffer_level = vp9_rescale(cpi->oxcf.optimal_buffer_level_ms, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.maximum_buffer_size_ms == 0) rc->maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; else rc->maximum_buffer_size = vp9_rescale(cpi->oxcf.maximum_buffer_size_ms, cpi->oxcf.target_bandwidth, 1000); // Under a configuration change, where maximum_buffer_size may change, // keep buffer level clipped to the maximum allowed buffer size. rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size); rc->buffer_level = MIN(rc->buffer_level, rc->maximum_buffer_size); // Set up frame rate and related parameters rate control values. vp9_new_framerate(cpi, cpi->oxcf.framerate); // Set absolute upper and lower quality limits rc->worst_quality = cpi->oxcf.worst_allowed_q; rc->best_quality = cpi->oxcf.best_allowed_q; cm->interp_filter = cpi->sf.default_interp_filter; cm->display_width = cpi->oxcf.width; cm->display_height = cpi->oxcf.height; if (cpi->initial_width) { // Increasing the size of the frame beyond the first seen frame, or some // otherwise signaled maximum size, is not supported. // TODO(jkoleszar): exit gracefully. assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); } update_frame_size(cpi); if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || (cpi->svc.number_spatial_layers > 1 && cpi->oxcf.pass == 2)) { vp9_update_layer_context_change_config(cpi, (int)cpi->oxcf.target_bandwidth); } cpi->alt_ref_source = NULL; rc->is_src_frame_alt_ref = 0; #if 0 // Experimental RD Code cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif set_tile_limits(cpi); cpi->ext_refresh_frame_flags_pending = 0; cpi->ext_refresh_frame_context_pending = 0; #if CONFIG_VP9_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0) { vp9_denoiser_alloc(&(cpi->denoiser), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS); } #endif } #ifndef M_LOG2_E #define M_LOG2_E 0.693147180559945309417 #endif #define log2f(x) (log (x) / (float) M_LOG2_E) static void cal_nmvjointsadcost(int *mvjointsadcost) { mvjointsadcost[0] = 600; mvjointsadcost[1] = 300; mvjointsadcost[2] = 300; mvjointsadcost[3] = 300; } static void cal_nmvsadcosts(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) { unsigned int i, j; VP9_COMP *const cpi = vpx_memalign(32, sizeof(VP9_COMP)); VP9_COMMON *const cm = cpi != NULL ? &cpi->common : NULL; if (!cm) return NULL; vp9_zero(*cpi); if (setjmp(cm->error.jmp)) { cm->error.setjmp = 0; vp9_remove_compressor(cpi); return 0; } cm->error.setjmp = 1; vp9_rtcd(); cpi->use_svc = 0; init_config(cpi, oxcf); vp9_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc); cm->current_video_frame = 0; cpi->gold_is_last = 0; cpi->alt_is_last = 0; cpi->gold_is_alt = 0; cpi->skippable_frame = 0; // Create the encoder segmentation map and set all entries to 0 CHECK_MEM_ERROR(cm, cpi->segmentation_map, vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); // Create a complexity map used for rd adjustment CHECK_MEM_ERROR(cm, cpi->complexity_map, vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); // Create a map used for cyclic background refresh. CHECK_MEM_ERROR(cm, cpi->cyclic_refresh, vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols)); // And a place holder structure is the coding context // for use if we want to save and restore it CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy, vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); i++) { CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats, vpx_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); } #if CONFIG_FP_MB_STATS cpi->use_fp_mb_stats = 0; if (cpi->use_fp_mb_stats) { // a place holder used to store the first pass mb stats in the first pass CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf, vpx_calloc(cm->MBs * sizeof(uint8_t), 1)); } else { cpi->twopass.frame_mb_stats_buf = NULL; } #endif cpi->refresh_alt_ref_frame = 0; // Note that at the moment multi_arf will not work with svc. // For the current check in all the execution paths are defaulted to 0 // pending further tuning and testing. The code is left in place here // as a place holder in regard to the required paths. cpi->multi_arf_last_grp_enabled = 0; if (oxcf->pass == 2) { if (cpi->use_svc) { cpi->multi_arf_allowed = 0; cpi->multi_arf_enabled = 0; } else { // Disable by default for now. cpi->multi_arf_allowed = 0; cpi->multi_arf_enabled = 0; } } else { cpi->multi_arf_allowed = 0; cpi->multi_arf_enabled = 0; } cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; #if CONFIG_INTERNAL_STATS cpi->b_calculate_ssimg = 0; cpi->count = 0; cpi->bytes = 0; if (cpi->b_calculate_psnr) { cpi->total_y = 0.0; cpi->total_u = 0.0; cpi->total_v = 0.0; cpi->total = 0.0; cpi->total_sq_error = 0; cpi->total_samples = 0; cpi->totalp_y = 0.0; cpi->totalp_u = 0.0; cpi->totalp_v = 0.0; cpi->totalp = 0.0; cpi->totalp_sq_error = 0; cpi->totalp_samples = 0; cpi->tot_recode_hits = 0; cpi->summed_quality = 0; cpi->summed_weights = 0; cpi->summedp_quality = 0; cpi->summedp_weights = 0; } if (cpi->b_calculate_ssimg) { cpi->total_ssimg_y = 0; cpi->total_ssimg_u = 0; cpi->total_ssimg_v = 0; cpi->total_ssimg_all = 0; } #endif cpi->first_time_stamp_ever = INT64_MAX; cal_nmvjointsadcost(cpi->mb.nmvjointsadcost); cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX]; cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX]; cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX]; cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX]; cal_nmvsadcosts(cpi->mb.nmvsadcost); cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX]; cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX]; cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX]; cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX]; cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp); #if CONFIG_VP9_TEMPORAL_DENOISING #ifdef OUTPUT_YUV_DENOISED yuv_denoised_file = fopen("denoised.yuv", "ab"); #endif #endif #ifdef OUTPUT_YUV_SRC yuv_file = fopen("bd.yuv", "ab"); #endif #ifdef OUTPUT_YUV_REC yuv_rec_file = fopen("rec.yuv", "wb"); #endif #if 0 framepsnr = fopen("framepsnr.stt", "a"); kf_list = fopen("kf_list.stt", "w"); #endif cpi->output_pkt_list = oxcf->output_pkt_list; cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; if (oxcf->pass == 1) { vp9_init_first_pass(cpi); } else if (oxcf->pass == 2) { const size_t packet_sz = sizeof(FIRSTPASS_STATS); const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); if (cpi->svc.number_spatial_layers > 1 && cpi->svc.number_temporal_layers == 1) { FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf; FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = {0}; int i; for (i = 0; i < oxcf->ss_number_layers; ++i) { FIRSTPASS_STATS *const last_packet_for_layer = &stats[packets - oxcf->ss_number_layers + i]; const int layer_id = (int)last_packet_for_layer->spatial_layer_id; const int packets_in_layer = (int)last_packet_for_layer->count + 1; if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) { LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id]; vpx_free(lc->rc_twopass_stats_in.buf); lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz; CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf, vpx_malloc(lc->rc_twopass_stats_in.sz)); lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf; lc->twopass.stats_in = lc->twopass.stats_in_start; lc->twopass.stats_in_end = lc->twopass.stats_in_start + packets_in_layer - 1; stats_copy[layer_id] = lc->rc_twopass_stats_in.buf; } } for (i = 0; i < packets; ++i) { const int layer_id = (int)stats[i].spatial_layer_id; if (layer_id >= 0 && layer_id < oxcf->ss_number_layers && stats_copy[layer_id] != NULL) { *stats_copy[layer_id] = stats[i]; ++stats_copy[layer_id]; } } vp9_init_second_pass_spatial_svc(cpi); } else { #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { const size_t psz = cpi->common.MBs * sizeof(uint8_t); const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz); cpi->twopass.firstpass_mb_stats.mb_stats_start = oxcf->firstpass_mb_stats_in.buf; cpi->twopass.firstpass_mb_stats.mb_stats_end = cpi->twopass.firstpass_mb_stats.mb_stats_start + (ps - 1) * cpi->common.MBs * sizeof(uint8_t); } #endif cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; cpi->twopass.stats_in = cpi->twopass.stats_in_start; cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1]; vp9_init_second_pass(cpi); } } set_speed_features(cpi); // Allocate memory to store variances for a frame. CHECK_MEM_ERROR(cm, cpi->source_diff_var, vpx_calloc(cm->MBs, sizeof(diff))); cpi->source_var_thresh = 0; cpi->frames_till_next_var_check = 0; // Default rd threshold factors for mode selection for (i = 0; i < BLOCK_SIZES; ++i) { for (j = 0; j < MAX_MODES; ++j) cpi->rd.thresh_freq_fact[i][j] = 32; } #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF)\ cpi->fn_ptr[BT].sdf = SDF; \ cpi->fn_ptr[BT].sdaf = SDAF; \ cpi->fn_ptr[BT].vf = VF; \ cpi->fn_ptr[BT].svf = SVF; \ cpi->fn_ptr[BT].svaf = SVAF; \ cpi->fn_ptr[BT].sdx3f = SDX3F; \ cpi->fn_ptr[BT].sdx8f = SDX8F; \ cpi->fn_ptr[BT].sdx4df = SDX4DF; BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg, vp9_variance32x16, vp9_sub_pixel_variance32x16, vp9_sub_pixel_avg_variance32x16, NULL, NULL, vp9_sad32x16x4d) BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg, vp9_variance16x32, vp9_sub_pixel_variance16x32, vp9_sub_pixel_avg_variance16x32, NULL, NULL, vp9_sad16x32x4d) BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg, vp9_variance64x32, vp9_sub_pixel_variance64x32, vp9_sub_pixel_avg_variance64x32, NULL, NULL, vp9_sad64x32x4d) BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg, vp9_variance32x64, vp9_sub_pixel_variance32x64, vp9_sub_pixel_avg_variance32x64, NULL, NULL, vp9_sad32x64x4d) BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg, vp9_variance32x32, vp9_sub_pixel_variance32x32, vp9_sub_pixel_avg_variance32x32, vp9_sad32x32x3, vp9_sad32x32x8, vp9_sad32x32x4d) BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg, vp9_variance64x64, vp9_sub_pixel_variance64x64, vp9_sub_pixel_avg_variance64x64, vp9_sad64x64x3, vp9_sad64x64x8, vp9_sad64x64x4d) BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg, vp9_variance16x16, vp9_sub_pixel_variance16x16, vp9_sub_pixel_avg_variance16x16, vp9_sad16x16x3, vp9_sad16x16x8, vp9_sad16x16x4d) BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg, vp9_variance16x8, vp9_sub_pixel_variance16x8, vp9_sub_pixel_avg_variance16x8, vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d) BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg, vp9_variance8x16, vp9_sub_pixel_variance8x16, vp9_sub_pixel_avg_variance8x16, vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d) BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg, vp9_variance8x8, vp9_sub_pixel_variance8x8, vp9_sub_pixel_avg_variance8x8, vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d) BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg, vp9_variance8x4, vp9_sub_pixel_variance8x4, vp9_sub_pixel_avg_variance8x4, NULL, vp9_sad8x4x8, vp9_sad8x4x4d) BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg, vp9_variance4x8, vp9_sub_pixel_variance4x8, vp9_sub_pixel_avg_variance4x8, NULL, vp9_sad4x8x8, vp9_sad4x8x4d) BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg, vp9_variance4x4, vp9_sub_pixel_variance4x4, vp9_sub_pixel_avg_variance4x4, vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d) cpi->full_search_sad = vp9_full_search_sad; cpi->diamond_search_sad = vp9_diamond_search_sad; cpi->refining_search_sad = vp9_refining_search_sad; /* vp9_init_quantizer() is first called here. Add check in * vp9_frame_init_quantizer() so that vp9_init_quantizer is only * called later when needed. This will avoid unnecessary calls of * vp9_init_quantizer() for every frame. */ vp9_init_quantizer(cpi); vp9_loop_filter_init(cm); cm->error.setjmp = 0; return cpi; } void vp9_remove_compressor(VP9_COMP *cpi) { unsigned int i; if (!cpi) return; if (cpi && (cpi->common.current_video_frame > 0)) { #if CONFIG_INTERNAL_STATS vp9_clear_system_state(); // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count); if (cpi->oxcf.pass != 1) { FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / 10000000.000; double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded; if (cpi->b_calculate_psnr) { const double total_psnr = vpx_sse_to_psnr((double)cpi->total_samples, 255.0, (double)cpi->total_sq_error); const double totalp_psnr = vpx_sse_to_psnr((double)cpi->totalp_samples, 255.0, (double)cpi->totalp_sq_error); const double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); const double totalp_ssim = 100 * pow(cpi->summedp_quality / cpi->summedp_weights, 8.0); fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" "VPXSSIM\tVPSSIMP\t Time(ms)\n"); fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n", dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, totalp_psnr, total_ssim, totalp_ssim, total_encode_time); } if (cpi->b_calculate_ssimg) { fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n"); fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr, cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time); } fclose(f); } #endif #if 0 { printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); } #endif } #if CONFIG_VP9_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0) { vp9_denoiser_free(&(cpi->denoiser)); } #endif dealloc_compressor_data(cpi); vpx_free(cpi->tok); for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); ++i) { vpx_free(cpi->mbgraph_stats[i].mb_stats); } #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { vpx_free(cpi->twopass.frame_mb_stats_buf); cpi->twopass.frame_mb_stats_buf = NULL; } #endif vp9_remove_common(&cpi->common); vpx_free(cpi); #if CONFIG_VP9_TEMPORAL_DENOISING #ifdef OUTPUT_YUV_DENOISED fclose(yuv_denoised_file); #endif #endif #ifdef OUTPUT_YUV_SRC fclose(yuv_file); #endif #ifdef OUTPUT_YUV_REC fclose(yuv_rec_file); #endif #if 0 if (keyfile) fclose(keyfile); if (framepsnr) fclose(framepsnr); if (kf_list) fclose(kf_list); #endif } static int64_t get_sse(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, int width, int height) { const int dw = width % 16; const int dh = height % 16; int64_t total_sse = 0; unsigned int sse = 0; int sum = 0; int x, y; if (dw > 0) { variance(&a[width - dw], a_stride, &b[width - dw], b_stride, dw, height, &sse, &sum); total_sse += sse; } if (dh > 0) { variance(&a[(height - dh) * a_stride], a_stride, &b[(height - dh) * b_stride], b_stride, width - dw, dh, &sse, &sum); total_sse += sse; } for (y = 0; y < height / 16; ++y) { const uint8_t *pa = a; const uint8_t *pb = b; for (x = 0; x < width / 16; ++x) { vp9_mse16x16(pa, a_stride, pb, b_stride, &sse); total_sse += sse; pa += 16; pb += 16; } a += 16 * a_stride; b += 16 * b_stride; } return total_sse; } typedef struct { double psnr[4]; // total/y/u/v uint64_t sse[4]; // total/y/u/v uint32_t samples[4]; // total/y/u/v } PSNR_STATS; static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b, PSNR_STATS *psnr) { const int widths[3] = {a->y_width, a->uv_width, a->uv_width }; const int heights[3] = {a->y_height, a->uv_height, a->uv_height}; const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer }; const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride}; const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer }; const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride}; int i; uint64_t total_sse = 0; uint32_t total_samples = 0; for (i = 0; i < 3; ++i) { const int w = widths[i]; const int h = heights[i]; const uint32_t samples = w * h; const uint64_t sse = get_sse(a_planes[i], a_strides[i], b_planes[i], b_strides[i], w, h); psnr->sse[1 + i] = sse; psnr->samples[1 + i] = samples; psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, 255.0, (double)sse); total_sse += sse; total_samples += samples; } psnr->sse[0] = total_sse; psnr->samples[0] = total_samples; psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, 255.0, (double)total_sse); } static void generate_psnr_packet(VP9_COMP *cpi) { struct vpx_codec_cx_pkt pkt; int i; PSNR_STATS psnr; calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr); for (i = 0; i < 4; ++i) { pkt.data.psnr.samples[i] = psnr.samples[i]; pkt.data.psnr.sse[i] = psnr.sse[i]; pkt.data.psnr.psnr[i] = psnr.psnr[i]; } pkt.kind = VPX_CODEC_PSNR_PKT; vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); } int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) { if (ref_frame_flags > 7) return -1; cpi->ref_frame_flags = ref_frame_flags; return 0; } void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) { cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0; cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0; cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0; cpi->ext_refresh_frame_flags_pending = 1; } static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag) { MV_REFERENCE_FRAME ref_frame = NONE; if (ref_frame_flag == VP9_LAST_FLAG) ref_frame = LAST_FRAME; else if (ref_frame_flag == VP9_GOLD_FLAG) ref_frame = GOLDEN_FRAME; else if (ref_frame_flag == VP9_ALT_FLAG) ref_frame = ALTREF_FRAME; return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame); } int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); if (cfg) { vp8_yv12_copy_frame(cfg, sd); return 0; } else { return -1; } } int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); if (cfg) { vp8_yv12_copy_frame(sd, cfg); return 0; } else { return -1; } } int vp9_update_entropy(VP9_COMP * cpi, int update) { cpi->ext_refresh_frame_context = update; cpi->ext_refresh_frame_context_pending = 1; return 0; } #if defined(OUTPUT_YUV_SRC) void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s, FILE *f) { uint8_t *src = s->y_buffer; int h = s->y_height; do { fwrite(src, s->y_width, 1, f); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, f); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, f); src += s->uv_stride; } while (--h); } #endif #if CONFIG_VP9_TEMPORAL_DENOISING #if defined(OUTPUT_YUV_DENOISED) // The denoiser buffer is allocated as a YUV 440 buffer. This function writes it // as YUV 420. We simply use the top-left pixels of the UV buffers, since we do // not denoise the UV channels at this time. If ever we implement UV channel // denoising we will have to modify this. void vp9_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) { uint8_t *src = s->y_buffer; int h = s->y_height; do { fwrite(src, s->y_width, 1, f); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height / 2; do { fwrite(src, s->uv_width / 2, 1, f); src += s->uv_stride + s->uv_width / 2; } while (--h); src = s->v_buffer; h = s->uv_height / 2; do { fwrite(src, s->uv_width / 2, 1, f); src += s->uv_stride + s->uv_width / 2; } while (--h); } #endif #endif #ifdef OUTPUT_YUV_REC void vp9_write_yuv_rec_frame(VP9_COMMON *cm) { YV12_BUFFER_CONFIG *s = cm->frame_to_show; uint8_t *src = s->y_buffer; int h = cm->height; do { fwrite(src, s->y_width, 1, yuv_rec_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); fflush(yuv_rec_file); } #endif static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst) { // TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t int i; const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer}; const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride}; const int src_widths[3] = {src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int src_heights[3] = {src->y_crop_height, src->uv_crop_height, src->uv_crop_height}; uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer}; const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride}; const int dst_widths[3] = {dst->y_crop_width, dst->uv_crop_width, dst->uv_crop_width}; const int dst_heights[3] = {dst->y_crop_height, dst->uv_crop_height, dst->uv_crop_height}; for (i = 0; i < MAX_MB_PLANE; ++i) vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]); vp9_extend_frame_borders(dst); } static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst) { const int src_w = src->y_crop_width; const int src_h = src->y_crop_height; const int dst_w = dst->y_crop_width; const int dst_h = dst->y_crop_height; const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer}; const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride}; uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer}; const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride}; const InterpKernel *const kernel = vp9_get_interp_kernel(EIGHTTAP); int x, y, i; for (y = 0; y < dst_h; y += 16) { for (x = 0; x < dst_w; x += 16) { for (i = 0; i < MAX_MB_PLANE; ++i) { const int factor = (i == 0 || i == 3 ? 1 : 2); const int x_q4 = x * (16 / factor) * src_w / dst_w; const int y_q4 = y * (16 / factor) * src_h / dst_h; const int src_stride = src_strides[i]; const int dst_stride = dst_strides[i]; const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h * src_stride + (x / factor) * src_w / dst_w; uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor); vp9_convolve8(src_ptr, src_stride, dst_ptr, dst_stride, kernel[x_q4 & 0xf], 16 * src_w / dst_w, kernel[y_q4 & 0xf], 16 * src_h / dst_h, 16 / factor, 16 / factor); } } } vp9_extend_frame_borders(dst); } #define WRITE_RECON_BUFFER 0 #if WRITE_RECON_BUFFER void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) { FILE *yframe; int i; char filename[255]; snprintf(filename, sizeof(filename), "cx\\y%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->y_height; i++) fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); fclose(yframe); snprintf(filename, sizeof(filename), "cx\\u%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); snprintf(filename, sizeof(filename), "cx\\v%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); } #endif // Function to test for conditions that indicate we should loop // back and recode a frame. static int recode_loop_test(const VP9_COMP *cpi, int high_limit, int low_limit, int q, int maxq, int minq) { const VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; int force_recode = 0; // Special case trap if maximum allowed frame size exceeded. if (rc->projected_frame_size > rc->max_frame_bandwidth) { force_recode = 1; // Is frame recode allowed. // Yes if either recode mode 1 is selected or mode 2 is selected // and the frame is a key frame, golden frame or alt_ref_frame } else if ((cpi->sf.recode_loop == ALLOW_RECODE) || ((cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF) && (cm->frame_type == KEY_FRAME || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { // General over and under shoot tests if ((rc->projected_frame_size > high_limit && q < maxq) || (rc->projected_frame_size < low_limit && q > minq)) { force_recode = 1; } else if (cpi->oxcf.rc_mode == VPX_CQ) { // Deal with frame undershoot and whether or not we are // below the automatically set cq level. if (q > oxcf->cq_level && rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { force_recode = 1; } } } return force_recode; } void vp9_update_reference_frames(VP9_COMP *cpi) { VP9_COMMON * const cm = &cpi->common; // At this point the new frame has been encoded. // If any buffer copy / swapping is signaled it should be done here. if (cm->frame_type == KEY_FRAME) { ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); } else if (vp9_preserve_existing_gf(cpi)) { // We have decided to preserve the previously existing golden frame as our // new ARF frame. However, in the short term in function // vp9_bitstream.c::get_refresh_mask() we left it in the GF slot and, if // we're updating the GF with the current decoded frame, we save it to the // ARF slot instead. // We now have to update the ARF with the current frame and swap gld_fb_idx // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF // slot and, if we're updating the GF, the current frame becomes the new GF. int tmp; ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); tmp = cpi->alt_fb_idx; cpi->alt_fb_idx = cpi->gld_fb_idx; cpi->gld_fb_idx = tmp; if (is_spatial_svc(cpi)) { cpi->svc.layer_context[0].gold_ref_idx = cpi->gld_fb_idx; cpi->svc.layer_context[0].alt_ref_idx = cpi->alt_fb_idx; } } else { /* For non key/golden frames */ if (cpi->refresh_alt_ref_frame) { int arf_idx = cpi->alt_fb_idx; if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; arf_idx = gf_group->arf_update_idx[gf_group->index]; } ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx); } if (cpi->refresh_golden_frame) { ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); } } if (cpi->refresh_last_frame) { ref_cnt_fb(cm->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx); } #if CONFIG_VP9_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0) { vp9_denoiser_update_frame_info(&cpi->denoiser, *cpi->Source, cpi->common.frame_type, cpi->refresh_alt_ref_frame, cpi->refresh_golden_frame, cpi->refresh_last_frame); } #endif } static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) { MACROBLOCKD *xd = &cpi->mb.e_mbd; struct loopfilter *lf = &cm->lf; if (xd->lossless) { lf->filter_level = 0; } else { struct vpx_usec_timer timer; vp9_clear_system_state(); vpx_usec_timer_start(&timer); vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick); vpx_usec_timer_mark(&timer); cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); } if (lf->filter_level > 0) { vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0); } vp9_extend_frame_inner_borders(cm->frame_to_show); } void vp9_scale_references(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; const VP9_REFFRAME ref_mask[3] = {VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG}; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)]; const YV12_BUFFER_CONFIG *const ref = &cm->frame_bufs[idx].buf; // Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1). if ((cpi->ref_frame_flags & ref_mask[ref_frame - 1]) && (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height)) { const int new_fb = get_free_fb(cm); vp9_realloc_frame_buffer(&cm->frame_bufs[new_fb].buf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL); scale_and_extend_frame(ref, &cm->frame_bufs[new_fb].buf); cpi->scaled_ref_idx[ref_frame - 1] = new_fb; } else { cpi->scaled_ref_idx[ref_frame - 1] = idx; cm->frame_bufs[idx].ref_count++; } } } static void release_scaled_references(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; int i; for (i = 0; i < 3; i++) cm->frame_bufs[cpi->scaled_ref_idx[i]].ref_count--; } static void full_to_model_count(unsigned int *model_count, unsigned int *full_count) { int n; model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN]; model_count[ONE_TOKEN] = full_count[ONE_TOKEN]; model_count[TWO_TOKEN] = full_count[TWO_TOKEN]; for (n = THREE_TOKEN; n < EOB_TOKEN; ++n) model_count[TWO_TOKEN] += full_count[n]; model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN]; } static void full_to_model_counts(vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) { int i, j, k, l; for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]); } #if 0 && CONFIG_INTERNAL_STATS static void output_frame_level_debug_stats(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w"); int recon_err; vp9_clear_system_state(); recon_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); if (cpi->twopass.total_left_stats.coded_error != 0.0) fprintf(f, "%10u %10d %10d %10d %10d" "%10"PRId64" %10"PRId64" %10"PRId64" %10"PRId64" %10d " "%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf" "%6d %6d %5d %5d %5d " "%10"PRId64" %10.3lf" "%10lf %8u %10d %10d %10d\n", cpi->common.current_video_frame, cpi->rc.this_frame_target, cpi->rc.projected_frame_size, cpi->rc.projected_frame_size / cpi->common.MBs, (cpi->rc.projected_frame_size - cpi->rc.this_frame_target), cpi->rc.vbr_bits_off_target, cpi->rc.total_target_vs_actual, (cpi->rc.starting_buffer_level - cpi->rc.bits_off_target), cpi->rc.total_actual_bits, cm->base_qindex, vp9_convert_qindex_to_q(cm->base_qindex), (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0, cpi->rc.avg_q, vp9_convert_qindex_to_q(cpi->rc.ni_av_qi), vp9_convert_qindex_to_q(cpi->oxcf.cq_level), cpi->refresh_last_frame, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost, cpi->twopass.bits_left, cpi->twopass.total_left_stats.coded_error, cpi->twopass.bits_left / (1 + cpi->twopass.total_left_stats.coded_error), cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost, cpi->twopass.kf_zeromotion_pct); fclose(f); if (0) { FILE *const fmodes = fopen("Modes.stt", "a"); int i; fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, cm->frame_type, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame); for (i = 0; i < MAX_MODES; ++i) fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); fprintf(fmodes, "\n"); fclose(fmodes); } } #endif static void encode_without_recode_loop(VP9_COMP *cpi, int q) { VP9_COMMON *const cm = &cpi->common; vp9_clear_system_state(); vp9_set_quantizer(cm, q); setup_frame(cpi); // Variance adaptive and in frame q adjustment experiments are mutually // exclusive. if (cpi->oxcf.aq_mode == VARIANCE_AQ) { vp9_vaq_frame_setup(cpi); } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { vp9_setup_in_frame_q_adj(cpi); } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { vp9_cyclic_refresh_setup(cpi); } // transform / motion compensation build reconstruction frame vp9_encode_frame(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. // update_base_skip_probs(cpi); vp9_clear_system_state(); } static void encode_with_recode_loop(VP9_COMP *cpi, size_t *size, uint8_t *dest, int q, int bottom_index, int top_index) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int loop_count = 0; int loop = 0; int overshoot_seen = 0; int undershoot_seen = 0; int q_low = bottom_index, q_high = top_index; int frame_over_shoot_limit; int frame_under_shoot_limit; // Decide frame size bounds vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, &frame_under_shoot_limit, &frame_over_shoot_limit); do { vp9_clear_system_state(); vp9_set_quantizer(cm, q); if (loop_count == 0) setup_frame(cpi); // Variance adaptive and in frame q adjustment experiments are mutually // exclusive. if (cpi->oxcf.aq_mode == VARIANCE_AQ) { vp9_vaq_frame_setup(cpi); } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { vp9_setup_in_frame_q_adj(cpi); } // transform / motion compensation build reconstruction frame vp9_encode_frame(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. // update_base_skip_probs(cpi); vp9_clear_system_state(); // Dummy pack of the bitstream using up to date stats to get an // accurate estimate of output frame size to determine if we need // to recode. if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) { save_coding_context(cpi); cpi->dummy_packing = 1; if (!cpi->sf.use_nonrd_pick_mode) vp9_pack_bitstream(cpi, dest, size); rc->projected_frame_size = (int)(*size) << 3; restore_coding_context(cpi); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; } if (cpi->oxcf.rc_mode == VPX_Q) { loop = 0; } else { if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced && (rc->projected_frame_size < rc->max_frame_bandwidth)) { int last_q = q; int kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); int high_err_target = cpi->ambient_err; int low_err_target = cpi->ambient_err >> 1; // Prevent possible divide by zero error below for perfect KF kf_err += !kf_err; // The key frame is not good enough or we can afford // to make it better without undue risk of popping. if ((kf_err > high_err_target && rc->projected_frame_size <= frame_over_shoot_limit) || (kf_err > low_err_target && rc->projected_frame_size <= frame_under_shoot_limit)) { // Lower q_high q_high = q > q_low ? q - 1 : q_low; // Adjust Q q = (q * high_err_target) / kf_err; q = MIN(q, (q_high + q_low) >> 1); } else if (kf_err < low_err_target && rc->projected_frame_size >= frame_under_shoot_limit) { // The key frame is much better than the previous frame // Raise q_low q_low = q < q_high ? q + 1 : q_high; // Adjust Q q = (q * low_err_target) / kf_err; q = MIN(q, (q_high + q_low + 1) >> 1); } // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = q != last_q; } else if (recode_loop_test( cpi, frame_over_shoot_limit, frame_under_shoot_limit, q, MAX(q_high, top_index), bottom_index)) { // Is the projected frame size out of range and are we allowed // to attempt to recode. int last_q = q; int retries = 0; // Frame size out of permitted range: // Update correction factor & compute new Q to try... // Frame is too large if (rc->projected_frame_size > rc->this_frame_target) { // Special case if the projected size is > the max allowed. if (rc->projected_frame_size >= rc->max_frame_bandwidth) q_high = rc->worst_quality; // Raise Qlow as to at least the current value q_low = q < q_high ? q + 1 : q_high; if (undershoot_seen || loop_count > 1) { // Update rate_correction_factor unless vp9_rc_update_rate_correction_factors(cpi, 1); q = (q_high + q_low + 1) / 2; } else { // Update rate_correction_factor unless vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, MAX(q_high, top_index)); while (q < q_low && retries < 10) { vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, MAX(q_high, top_index)); retries++; } } overshoot_seen = 1; } else { // Frame is too small q_high = q > q_low ? q - 1 : q_low; if (overshoot_seen || loop_count > 1) { vp9_rc_update_rate_correction_factors(cpi, 1); q = (q_high + q_low) / 2; } else { vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index); // Special case reset for qlow for constrained quality. // This should only trigger where there is very substantial // undershoot on a frame and the auto cq level is above // the user passsed in value. if (cpi->oxcf.rc_mode == VPX_CQ && q < q_low) { q_low = q; } while (q > q_high && retries < 10) { vp9_rc_update_rate_correction_factors(cpi, 0); q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index); retries++; } } undershoot_seen = 1; } // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = q != last_q; } else { loop = 0; } } // Special case for overlay frame. if (rc->is_src_frame_alt_ref && rc->projected_frame_size < rc->max_frame_bandwidth) loop = 0; if (loop) { loop_count++; #if CONFIG_INTERNAL_STATS cpi->tot_recode_hits++; #endif } } while (loop); } static void get_ref_frame_flags(VP9_COMP *cpi) { if (cpi->refresh_last_frame & cpi->refresh_golden_frame) cpi->gold_is_last = 1; else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame) cpi->gold_is_last = 0; if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame) cpi->alt_is_last = 1; else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame) cpi->alt_is_last = 0; if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame) cpi->gold_is_alt = 1; else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame) cpi->gold_is_alt = 0; cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP9_GOLD_FLAG; if (cpi->rc.frames_till_gf_update_due == INT_MAX && !is_spatial_svc(cpi)) cpi->ref_frame_flags &= ~VP9_GOLD_FLAG; if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP9_ALT_FLAG; if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP9_ALT_FLAG; } static void set_ext_overrides(VP9_COMP *cpi) { // Overrides the defaults with the externally supplied values with // vp9_update_reference() and vp9_update_entropy() calls // Note: The overrides are valid only for the next frame passed // to encode_frame_to_data_rate() function if (cpi->ext_refresh_frame_context_pending) { cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context; cpi->ext_refresh_frame_context_pending = 0; } if (cpi->ext_refresh_frame_flags_pending) { cpi->refresh_last_frame = cpi->ext_refresh_last_frame; cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame; cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame; cpi->ext_refresh_frame_flags_pending = 0; } } YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled) { if (cm->mi_cols * MI_SIZE != unscaled->y_width || cm->mi_rows * MI_SIZE != unscaled->y_height) { scale_and_extend_frame_nonnormative(unscaled, scaled); return scaled; } else { return unscaled; } } static void configure_skippable_frame(VP9_COMP *cpi) { // If the current frame does not have non-zero motion vector detected in the // first pass, and so do its previous and forward frames, then this frame // can be skipped for partition check, and the partition size is assigned // according to the variance SVC *const svc = &cpi->svc; TWO_PASS *const twopass = is_spatial_svc(cpi) ? &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass; cpi->skippable_frame = (!frame_is_intra_only(&cpi->common) && twopass->stats_in - 2 > twopass->stats_in_start && twopass->stats_in < twopass->stats_in_end && (twopass->stats_in - 1)->pcnt_inter - (twopass->stats_in - 1)->pcnt_motion == 1 && (twopass->stats_in - 2)->pcnt_inter - (twopass->stats_in - 2)->pcnt_motion == 1 && twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); } static void set_arf_sign_bias(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int arf_sign_bias; if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; arf_sign_bias = cpi->rc.source_alt_ref_active && (!cpi->refresh_alt_ref_frame || (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)); } else { arf_sign_bias = (cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame); } cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias; } static void encode_frame_to_data_rate(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { VP9_COMMON *const cm = &cpi->common; TX_SIZE t; int q; int top_index; int bottom_index; const SPEED_FEATURES *const sf = &cpi->sf; const unsigned int max_mv_def = MIN(cm->width, cm->height); struct segmentation *const seg = &cm->seg; set_ext_overrides(cpi); cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source); if (cpi->unscaled_last_source != NULL) cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source, &cpi->scaled_last_source); vp9_scale_references(cpi); vp9_clear_system_state(); // Enable or disable mode based tweaking of the zbin. // For 2 pass only used where GF/ARF prediction quality // is above a threshold. cpi->zbin_mode_boost = 0; cpi->zbin_mode_boost_enabled = 0; // Set the arf sign bias for this frame. set_arf_sign_bias(cpi); // Set default state for segment based loop filter update flags. cm->lf.mode_ref_delta_update = 0; // Initialize cpi->mv_step_param to default based on max resolution. cpi->mv_step_param = vp9_init_search_range(max_mv_def); // Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate. if (sf->mv.auto_mv_step_size) { if (frame_is_intra_only(cm)) { // Initialize max_mv_magnitude for use in the first INTER frame // after a key/intra-only frame. cpi->max_mv_magnitude = max_mv_def; } else { if (cm->show_frame) // Allow mv_steps to correspond to twice the max mv magnitude found // in the previous frame, capped by the default max_mv_magnitude based // on resolution. cpi->mv_step_param = vp9_init_search_range(MIN(max_mv_def, 2 * cpi->max_mv_magnitude)); cpi->max_mv_magnitude = 0; } } // Set various flags etc to special state if it is a key frame. if (frame_is_intra_only(cm)) { // Reset the loop filter deltas and segmentation map. vp9_reset_segment_features(&cm->seg); // If segmentation is enabled force a map update for key frames. if (seg->enabled) { seg->update_map = 1; seg->update_data = 1; } // The alternate reference frame cannot be active for a key frame. cpi->rc.source_alt_ref_active = 0; cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0); cm->frame_parallel_decoding_mode = (cpi->oxcf.frame_parallel_decoding_mode != 0); // By default, encoder assumes decoder can use prev_mi. if (cm->error_resilient_mode) { cm->frame_parallel_decoding_mode = 1; cm->reset_frame_context = 0; cm->refresh_frame_context = 0; } else if (cm->intra_only) { // Only reset the current context. cm->reset_frame_context = 2; } } // Configure experimental use of segmentation for enhanced coding of // static regions if indicated. // Only allowed in second pass of two pass (as requires lagged coding) // and if the relevant speed feature flag is set. if (cpi->oxcf.pass == 2 && cpi->sf.static_segmentation) configure_static_seg_features(cpi); // Check if the current frame is skippable for the partition search in the // second pass according to the first pass stats if (cpi->oxcf.pass == 2 && (!cpi->use_svc || is_spatial_svc(cpi))) { configure_skippable_frame(cpi); } // For 1 pass CBR, check if we are dropping this frame. // Never drop on key frame. if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR && cm->frame_type != KEY_FRAME) { if (vp9_rc_drop_frame(cpi)) { vp9_rc_postencode_update_drop_frame(cpi); ++cm->current_video_frame; return; } } vp9_clear_system_state(); #if CONFIG_VP9_POSTPROC if (cpi->oxcf.noise_sensitivity > 0) { int l = 0; switch (cpi->oxcf.noise_sensitivity) { case 1: l = 20; break; case 2: l = 40; break; case 3: l = 60; break; case 4: case 5: l = 100; break; case 6: l = 150; break; } vp9_denoise(cpi->Source, cpi->Source, l); } #endif #ifdef OUTPUT_YUV_SRC vp9_write_yuv_frame(cpi->Source, yuv_file); #endif set_speed_features(cpi); // Decide q and q bounds. q = vp9_rc_pick_q_and_bounds(cpi, &bottom_index, &top_index); if (!frame_is_intra_only(cm)) { cm->interp_filter = cpi->sf.default_interp_filter; /* TODO: Decide this more intelligently */ vp9_set_high_precision_mv(cpi, q < HIGH_PRECISION_MV_QTHRESH); } if (cpi->sf.recode_loop == DISALLOW_RECODE) { encode_without_recode_loop(cpi, q); } else { encode_with_recode_loop(cpi, size, dest, q, bottom_index, top_index); } #if CONFIG_VP9_TEMPORAL_DENOISING #ifdef OUTPUT_YUV_DENOISED if (cpi->oxcf.noise_sensitivity > 0) { vp9_write_yuv_frame_420(&cpi->denoiser.running_avg_y[INTRA_FRAME], yuv_denoised_file); } #endif #endif // Special case code to reduce pulsing when key frames are forced at a // fixed interval. Note the reconstruction error if it is the frame before // the force key frame if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); } // If the encoder forced a KEY_FRAME decision if (cm->frame_type == KEY_FRAME) cpi->refresh_last_frame = 1; cm->frame_to_show = get_frame_new_buffer(cm); #if WRITE_RECON_BUFFER if (cm->show_frame) write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame); else write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 1000); #endif // Pick the loop filter level for the frame. loopfilter_frame(cpi, cm); #if WRITE_RECON_BUFFER if (cm->show_frame) write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 2000); else write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 3000); #endif // build the bitstream cpi->dummy_packing = 0; vp9_pack_bitstream(cpi, dest, size); if (cm->seg.update_map) update_reference_segmentation_map(cpi); release_scaled_references(cpi); vp9_update_reference_frames(cpi); for (t = TX_4X4; t <= TX_32X32; t++) full_to_model_counts(cm->counts.coef[t], cpi->coef_counts[t]); if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) vp9_adapt_coef_probs(cm); if (!frame_is_intra_only(cm)) { if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { vp9_adapt_mode_probs(cm); vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } if (cpi->refresh_golden_frame == 1) cpi->frame_flags |= FRAMEFLAGS_GOLDEN; else cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN; if (cpi->refresh_alt_ref_frame == 1) cpi->frame_flags |= FRAMEFLAGS_ALTREF; else cpi->frame_flags &= ~FRAMEFLAGS_ALTREF; get_ref_frame_flags(cpi); cm->last_frame_type = cm->frame_type; vp9_rc_postencode_update(cpi, *size); #if 0 output_frame_level_debug_stats(cpi); #endif if (cm->frame_type == KEY_FRAME) { // Tell the caller that the frame was coded as a key frame *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY; } else { *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY; } // Clear the one shot update flags for segmentation map and mode/ref loop // filter deltas. cm->seg.update_map = 0; cm->seg.update_data = 0; cm->lf.mode_ref_delta_update = 0; // keep track of the last coded dimensions cm->last_width = cm->width; cm->last_height = cm->height; // reset to normal state now that we are done. if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame; if (cm->show_frame) { vp9_swap_mi_and_prev_mi(cm); // Don't increment frame counters if this was an altref buffer // update not a real frame ++cm->current_video_frame; if (cpi->use_svc) vp9_inc_frame_in_layer(&cpi->svc); } } static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { vp9_rc_get_svc_params(cpi); encode_frame_to_data_rate(cpi, size, dest, frame_flags); } static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { if (cpi->oxcf.rc_mode == VPX_CBR) { vp9_rc_get_one_pass_cbr_params(cpi); } else { vp9_rc_get_one_pass_vbr_params(cpi); } encode_frame_to_data_rate(cpi, size, dest, frame_flags); } static void Pass2Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags) { cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; vp9_rc_get_second_pass_params(cpi); encode_frame_to_data_rate(cpi, size, dest, frame_flags); vp9_twopass_postencode_update(cpi); } static void init_motion_estimation(VP9_COMP *cpi) { int y_stride = cpi->scaled_source.y_stride; if (cpi->sf.mv.search_method == NSTEP) { vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride); } else if (cpi->sf.mv.search_method == DIAMOND) { vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride); } } static void check_initial_width(VP9_COMP *cpi, int subsampling_x, int subsampling_y) { VP9_COMMON *const cm = &cpi->common; if (!cpi->initial_width) { cm->subsampling_x = subsampling_x; cm->subsampling_y = subsampling_y; alloc_raw_frame_buffers(cpi); alloc_ref_frame_buffers(cpi); alloc_util_frame_buffers(cpi); init_motion_estimation(cpi); cpi->initial_width = cm->width; cpi->initial_height = cm->height; } } int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time) { VP9_COMMON *cm = &cpi->common; struct vpx_usec_timer timer; int res = 0; const int subsampling_x = sd->uv_width < sd->y_width; const int subsampling_y = sd->uv_height < sd->y_height; check_initial_width(cpi, subsampling_x, subsampling_y); vpx_usec_timer_start(&timer); #if CONFIG_SPATIAL_SVC if (is_spatial_svc(cpi)) res = vp9_svc_lookahead_push(cpi, cpi->lookahead, sd, time_stamp, end_time, frame_flags); else #endif res = vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags); if (res) res = -1; vpx_usec_timer_mark(&timer); cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) && (subsampling_x != 1 || subsampling_y != 1)) { vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM, "Non-4:2:0 color space requires profile 1 or 3"); res = -1; } if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) && (subsampling_x == 1 && subsampling_y == 1)) { vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM, "4:2:0 color space requires profile 0 or 2"); res = -1; } return res; } static int frame_is_reference(const VP9_COMP *cpi) { const VP9_COMMON *cm = &cpi->common; return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame || cm->refresh_frame_context || cm->lf.mode_ref_delta_update || cm->seg.update_map || cm->seg.update_data; } void adjust_frame_rate(VP9_COMP *cpi) { int64_t this_duration; int step = 0; if (cpi->source->ts_start == cpi->first_time_stamp_ever) { this_duration = cpi->source->ts_end - cpi->source->ts_start; step = 1; } else { int64_t last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen; // do a step update if the duration changes by 10% if (last_duration) step = (int)((this_duration - last_duration) * 10 / last_duration); } if (this_duration) { if (step) { vp9_new_framerate(cpi, 10000000.0 / this_duration); } else { // Average this frame's rate into the last second's average // frame rate. If we haven't seen 1 second yet, then average // over the whole interval seen. const double interval = MIN((double)(cpi->source->ts_end - cpi->first_time_stamp_ever), 10000000.0); double avg_duration = 10000000.0 / cpi->oxcf.framerate; avg_duration *= (interval - avg_duration + this_duration); avg_duration /= interval; vp9_new_framerate(cpi, 10000000.0 / avg_duration); } } cpi->last_time_stamp_seen = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_end; } // Returns 0 if this is not an alt ref else the offset of the source frame // used as the arf midpoint. static int get_arf_src_index(VP9_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; int arf_src_index = 0; if (is_altref_enabled(cpi)) { if (cpi->oxcf.pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { arf_src_index = gf_group->arf_src_offset[gf_group->index]; } } else if (rc->source_alt_ref_pending) { arf_src_index = rc->frames_till_gf_update_due; } } return arf_src_index; } static void check_src_altref(VP9_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; if (cpi->oxcf.pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; rc->is_src_frame_alt_ref = (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE); } else { rc->is_src_frame_alt_ref = cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source); } if (rc->is_src_frame_alt_ref) { // Current frame is an ARF overlay frame. cpi->alt_ref_source = NULL; // Don't refresh the last buffer for an ARF overlay frame. It will // become the GF so preserve last as an alternative prediction option. cpi->refresh_last_frame = 0; } } int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags, size_t *size, uint8_t *dest, int64_t *time_stamp, int64_t *time_end, int flush) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; RATE_CONTROL *const rc = &cpi->rc; struct vpx_usec_timer cmptimer; YV12_BUFFER_CONFIG *force_src_buffer = NULL; MV_REFERENCE_FRAME ref_frame; int arf_src_index; if (!cpi) return -1; if (is_spatial_svc(cpi) && cpi->oxcf.pass == 2) { #if CONFIG_SPATIAL_SVC vp9_svc_lookahead_peek(cpi, cpi->lookahead, 0, 1); #endif vp9_restore_layer_context(cpi); } vpx_usec_timer_start(&cmptimer); cpi->source = NULL; cpi->last_source = NULL; vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV); // Normal defaults cm->reset_frame_context = 0; cm->refresh_frame_context = 1; cpi->refresh_last_frame = 1; cpi->refresh_golden_frame = 0; cpi->refresh_alt_ref_frame = 0; // Should we encode an arf frame. arf_src_index = get_arf_src_index(cpi); if (arf_src_index) { assert(arf_src_index <= rc->frames_to_key); #if CONFIG_SPATIAL_SVC if (is_spatial_svc(cpi)) cpi->source = vp9_svc_lookahead_peek(cpi, cpi->lookahead, arf_src_index, 0); else #endif cpi->source = vp9_lookahead_peek(cpi->lookahead, arf_src_index); if (cpi->source != NULL) { cpi->alt_ref_source = cpi->source; #if CONFIG_SPATIAL_SVC if (is_spatial_svc(cpi) && cpi->svc.spatial_layer_id > 0) { int i; // Reference a hidden frame from a lower layer for (i = cpi->svc.spatial_layer_id - 1; i >= 0; --i) { if (cpi->oxcf.ss_play_alternate[i]) { cpi->gld_fb_idx = cpi->svc.layer_context[i].alt_ref_idx; break; } } } cpi->svc.layer_context[cpi->svc.spatial_layer_id].has_alt_frame = 1; #endif if (cpi->oxcf.arnr_max_frames > 0) { // Produce the filtered ARF frame. vp9_temporal_filter(cpi, arf_src_index); vp9_extend_frame_borders(&cpi->alt_ref_buffer); force_src_buffer = &cpi->alt_ref_buffer; } cm->show_frame = 0; cpi->refresh_alt_ref_frame = 1; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 0; rc->is_src_frame_alt_ref = 0; rc->source_alt_ref_pending = 0; } else { rc->source_alt_ref_pending = 0; } } if (!cpi->source) { // Get last frame source. if (cm->current_video_frame > 0) { #if CONFIG_SPATIAL_SVC if (is_spatial_svc(cpi)) cpi->last_source = vp9_svc_lookahead_peek(cpi, cpi->lookahead, -1, 0); else #endif cpi->last_source = vp9_lookahead_peek(cpi->lookahead, -1); if (cpi->last_source == NULL) return -1; } // Read in the source frame. #if CONFIG_SPATIAL_SVC if (is_spatial_svc(cpi)) cpi->source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush); else #endif cpi->source = vp9_lookahead_pop(cpi->lookahead, flush); if (cpi->source != NULL) { cm->show_frame = 1; cm->intra_only = 0; // Check to see if the frame should be encoded as an arf overlay. check_src_altref(cpi); } } if (cpi->source) { cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img; if (cpi->last_source != NULL) { cpi->unscaled_last_source = &cpi->last_source->img; } else { cpi->unscaled_last_source = NULL; } *time_stamp = cpi->source->ts_start; *time_end = cpi->source->ts_end; *frame_flags = (cpi->source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; } else { *size = 0; if (flush && cpi->oxcf.pass == 1 && !cpi->twopass.first_pass_done) { vp9_end_first_pass(cpi); /* get last stats packet */ cpi->twopass.first_pass_done = 1; } return -1; } if (cpi->source->ts_start < cpi->first_time_stamp_ever) { cpi->first_time_stamp_ever = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_start; } // Clear down mmx registers vp9_clear_system_state(); // adjust frame rates based on timestamps given if (cm->show_frame) { adjust_frame_rate(cpi); } if (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) { vp9_update_temporal_layer_framerate(cpi); vp9_restore_layer_context(cpi); } // start with a 0 size frame *size = 0; /* find a free buffer for the new frame, releasing the reference previously * held. */ cm->frame_bufs[cm->new_fb_idx].ref_count--; cm->new_fb_idx = get_free_fb(cm); if (!cpi->use_svc && cpi->multi_arf_allowed) { if (cm->frame_type == KEY_FRAME) { init_buffer_indices(cpi); } else if (cpi->oxcf.pass == 2) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index]; } } cpi->frame_flags = *frame_flags; if (cpi->oxcf.pass == 2 && cm->current_video_frame == 0 && cpi->oxcf.allow_spatial_resampling && cpi->oxcf.rc_mode == VPX_VBR) { // Internal scaling is triggered on the first frame. vp9_set_size_literal(cpi, cpi->oxcf.scaled_frame_width, cpi->oxcf.scaled_frame_height); } // Reset the frame pointers to the current frame size vp9_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL); alloc_util_frame_buffers(cpi); init_motion_estimation(cpi); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)]; YV12_BUFFER_CONFIG *const buf = &cm->frame_bufs[idx].buf; RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1]; ref_buf->buf = buf; ref_buf->idx = idx; vp9_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width, cm->height); if (vp9_is_scaled(&ref_buf->sf)) vp9_extend_frame_borders(buf); } set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); if (cpi->oxcf.aq_mode == VARIANCE_AQ) { vp9_vaq_init(); } if (cpi->oxcf.pass == 1 && (!cpi->use_svc || is_spatial_svc(cpi))) { const int lossless = is_lossless_requested(&cpi->oxcf); cpi->mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vp9_fdct4x4; cpi->mb.itxm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; vp9_first_pass(cpi); } else if (cpi->oxcf.pass == 2 && (!cpi->use_svc || is_spatial_svc(cpi))) { Pass2Encode(cpi, size, dest, frame_flags); } else if (cpi->use_svc) { SvcEncode(cpi, size, dest, frame_flags); } else { // One pass encode Pass0Encode(cpi, size, dest, frame_flags); } if (cm->refresh_frame_context) cm->frame_contexts[cm->frame_context_idx] = cm->fc; // Frame was dropped, release scaled references. if (*size == 0) { release_scaled_references(cpi); } if (*size > 0) { cpi->droppable = !frame_is_reference(cpi); } // Save layer specific state. if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || (cpi->svc.number_spatial_layers > 1 && cpi->oxcf.pass == 2)) { vp9_save_layer_context(cpi); } vpx_usec_timer_mark(&cmptimer); cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); if (cpi->b_calculate_psnr && cpi->oxcf.pass != 1 && cm->show_frame) generate_psnr_packet(cpi); #if CONFIG_INTERNAL_STATS if (cpi->oxcf.pass != 1) { cpi->bytes += (int)(*size); if (cm->show_frame) { cpi->count++; if (cpi->b_calculate_psnr) { YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; PSNR_STATS psnr; calc_psnr(orig, recon, &psnr); cpi->total += psnr.psnr[0]; cpi->total_y += psnr.psnr[1]; cpi->total_u += psnr.psnr[2]; cpi->total_v += psnr.psnr[3]; cpi->total_sq_error += psnr.sse[0]; cpi->total_samples += psnr.samples[0]; { PSNR_STATS psnr2; double frame_ssim2 = 0, weight = 0; #if CONFIG_VP9_POSTPROC // TODO(agrange) Add resizing of post-proc buffer in here when the // encoder is changed to use on-demand buffer allocation. vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->lf.filter_level * 10 / 6); #endif vp9_clear_system_state(); calc_psnr(orig, pp, &psnr2); cpi->totalp += psnr2.psnr[0]; cpi->totalp_y += psnr2.psnr[1]; cpi->totalp_u += psnr2.psnr[2]; cpi->totalp_v += psnr2.psnr[3]; cpi->totalp_sq_error += psnr2.sse[0]; cpi->totalp_samples += psnr2.samples[0]; frame_ssim2 = vp9_calc_ssim(orig, recon, 1, &weight); cpi->summed_quality += frame_ssim2 * weight; cpi->summed_weights += weight; frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, 1, &weight); cpi->summedp_quality += frame_ssim2 * weight; cpi->summedp_weights += weight; #if 0 { FILE *f = fopen("q_used.stt", "a"); fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", cpi->common.current_video_frame, y2, u2, v2, frame_psnr2, frame_ssim2); fclose(f); } #endif } } if (cpi->b_calculate_ssimg) { double y, u, v, frame_all; frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v); cpi->total_ssimg_y += y; cpi->total_ssimg_u += u; cpi->total_ssimg_v += v; cpi->total_ssimg_all += frame_all; } } } #endif return 0; } int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest, vp9_ppflags_t *flags) { VP9_COMMON *cm = &cpi->common; #if !CONFIG_VP9_POSTPROC (void)flags; #endif if (!cm->show_frame) { return -1; } else { int ret; #if CONFIG_VP9_POSTPROC ret = vp9_post_proc_frame(cm, dest, flags); #else if (cm->frame_to_show) { *dest = *cm->frame_to_show; dest->y_width = cm->width; dest->y_height = cm->height; dest->uv_width = cm->width >> cm->subsampling_x; dest->uv_height = cm->height >> cm->subsampling_y; ret = 0; } else { ret = -1; } #endif // !CONFIG_VP9_POSTPROC vp9_clear_system_state(); return ret; } } int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols) { if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { const int mi_rows = cpi->common.mi_rows; const int mi_cols = cpi->common.mi_cols; if (map) { int r, c; for (r = 0; r < mi_rows; r++) { for (c = 0; c < mi_cols; c++) { cpi->segmentation_map[r * mi_cols + c] = !map[(r >> 1) * cols + (c >> 1)]; } } vp9_enable_segfeature(&cpi->common.seg, 1, SEG_LVL_SKIP); vp9_enable_segmentation(&cpi->common.seg); } else { vp9_disable_segmentation(&cpi->common.seg); } return 0; } else { return -1; } } int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING horiz_mode, VPX_SCALING vert_mode) { VP9_COMMON *cm = &cpi->common; int hr = 0, hs = 0, vr = 0, vs = 0; if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1; Scale2Ratio(horiz_mode, &hr, &hs); Scale2Ratio(vert_mode, &vr, &vs); // always go to the next whole number cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs; cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs; assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); return 0; } int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width, unsigned int height) { VP9_COMMON *cm = &cpi->common; check_initial_width(cpi, 1, 1); if (width) { cm->width = width; if (cm->width * 5 < cpi->initial_width) { cm->width = cpi->initial_width / 5 + 1; printf("Warning: Desired width too small, changed to %d\n", cm->width); } if (cm->width > cpi->initial_width) { cm->width = cpi->initial_width; printf("Warning: Desired width too large, changed to %d\n", cm->width); } } if (height) { cm->height = height; if (cm->height * 5 < cpi->initial_height) { cm->height = cpi->initial_height / 5 + 1; printf("Warning: Desired height too small, changed to %d\n", cm->height); } if (cm->height > cpi->initial_height) { cm->height = cpi->initial_height; printf("Warning: Desired height too large, changed to %d\n", cm->height); } } assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); return 0; } void vp9_set_svc(VP9_COMP *cpi, int use_svc) { cpi->use_svc = use_svc; return; } int vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b) { assert(a->y_crop_width == b->y_crop_width); assert(a->y_crop_height == b->y_crop_height); return (int)get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride, a->y_crop_width, a->y_crop_height); } int vp9_get_quantizer(VP9_COMP *cpi) { return cpi->common.base_qindex; } void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) { if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF)) { int ref = 7; if (flags & VP8_EFLAG_NO_REF_LAST) ref ^= VP9_LAST_FLAG; if (flags & VP8_EFLAG_NO_REF_GF) ref ^= VP9_GOLD_FLAG; if (flags & VP8_EFLAG_NO_REF_ARF) ref ^= VP9_ALT_FLAG; vp9_use_as_reference(cpi, ref); } if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF | VP8_EFLAG_FORCE_ARF)) { int upd = 7; if (flags & VP8_EFLAG_NO_UPD_LAST) upd ^= VP9_LAST_FLAG; if (flags & VP8_EFLAG_NO_UPD_GF) upd ^= VP9_GOLD_FLAG; if (flags & VP8_EFLAG_NO_UPD_ARF) upd ^= VP9_ALT_FLAG; vp9_update_reference(cpi, upd); } if (flags & VP8_EFLAG_NO_UPD_ENTROPY) { vp9_update_entropy(cpi, 0); } }