shithub: libvpx

ref: 7317ce8bd4bd1c9d59dce938dbbc36a72eb49c26
dir: /vpx_dsp/arm/idct_neon.h/

View raw version
/*
 *  Copyright (c) 2016 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef VPX_DSP_ARM_IDCT_NEON_H_
#define VPX_DSP_ARM_IDCT_NEON_H_

#include <arm_neon.h>

#include "./vpx_config.h"
#include "vpx_dsp/arm/transpose_neon.h"
#include "vpx_dsp/vpx_dsp_common.h"

//------------------------------------------------------------------------------

// Helper function used to load tran_low_t into int16, narrowing if necessary.
static INLINE int16x8_t load_tran_low_to_s16(const tran_low_t *buf) {
#if CONFIG_VP9_HIGHBITDEPTH
  const int32x4_t v0 = vld1q_s32(buf);
  const int32x4_t v1 = vld1q_s32(buf + 4);
  const int16x4_t s0 = vmovn_s32(v0);
  const int16x4_t s1 = vmovn_s32(v1);
  return vcombine_s16(s0, s1);
#else
  return vld1q_s16(buf);
#endif
}

// Multiply a by a_const. Saturate, shift and narrow by 14.
static INLINE int16x8_t multiply_shift_and_narrow_s16(const int16x8_t a,
                                                      const int16_t a_const) {
  // Shift by 14 + rounding will be within 16 bits for well formed streams.
  // See WRAPLOW and dct_const_round_shift for details.
  // This instruction doubles the result and returns the high half, essentially
  // resulting in a right shift by 15. By multiplying the constant first that
  // becomes a right shift by 14.
  // The largest possible value used here is
  // vpx_dsp/txfm_common.h:cospi_1_64 = 16364 (* 2 = 32728) a which falls *just*
  // within the range of int16_t (+32767 / -32768) even when negated.
  return vqrdmulhq_n_s16(a, a_const * 2);
}

// Add a and b, then multiply by ab_const. Shift and narrow by 14.
static INLINE int16x8_t add_multiply_shift_and_narrow_s16(
    const int16x8_t a, const int16x8_t b, const int16_t ab_const) {
  // In both add_ and it's pair, sub_, the input for well-formed streams will be
  // well within 16 bits (input to the idct is the difference between two frames
  // and will be within -255 to 255, or 9 bits)
  // However, for inputs over about 25,000 (valid for int16_t, but not for idct
  // input) this function can not use vaddq_s16.
  // In order to match existing behavior and intentionally out of range tests,
  // expand the addition up to 32 bits to prevent truncation.
  int32x4_t temp_low = vaddl_s16(vget_low_s16(a), vget_low_s16(b));
  int32x4_t temp_high = vaddl_s16(vget_high_s16(a), vget_high_s16(b));
  temp_low = vmulq_n_s32(temp_low, ab_const);
  temp_high = vmulq_n_s32(temp_high, ab_const);
  return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}

// Subtract b from a, then multiply by ab_const. Shift and narrow by 14.
static INLINE int16x8_t sub_multiply_shift_and_narrow_s16(
    const int16x8_t a, const int16x8_t b, const int16_t ab_const) {
  int32x4_t temp_low = vsubl_s16(vget_low_s16(a), vget_low_s16(b));
  int32x4_t temp_high = vsubl_s16(vget_high_s16(a), vget_high_s16(b));
  temp_low = vmulq_n_s32(temp_low, ab_const);
  temp_high = vmulq_n_s32(temp_high, ab_const);
  return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}

// Multiply a by a_const and b by b_const, then accumulate. Shift and narrow by
// 14.
static INLINE int16x8_t multiply_accumulate_shift_and_narrow_s16(
    const int16x8_t a, const int16_t a_const, const int16x8_t b,
    const int16_t b_const) {
  int32x4_t temp_low = vmull_n_s16(vget_low_s16(a), a_const);
  int32x4_t temp_high = vmull_n_s16(vget_high_s16(a), a_const);
  temp_low = vmlal_n_s16(temp_low, vget_low_s16(b), b_const);
  temp_high = vmlal_n_s16(temp_high, vget_high_s16(b), b_const);
  return vcombine_s16(vrshrn_n_s32(temp_low, 14), vrshrn_n_s32(temp_high, 14));
}

static INLINE void load_and_transpose_s16_8x8(const int16_t *a, int a_stride,
                                              int16x8_t *a0, int16x8_t *a1,
                                              int16x8_t *a2, int16x8_t *a3,
                                              int16x8_t *a4, int16x8_t *a5,
                                              int16x8_t *a6, int16x8_t *a7) {
  *a0 = vld1q_s16(a);
  a += a_stride;
  *a1 = vld1q_s16(a);
  a += a_stride;
  *a2 = vld1q_s16(a);
  a += a_stride;
  *a3 = vld1q_s16(a);
  a += a_stride;
  *a4 = vld1q_s16(a);
  a += a_stride;
  *a5 = vld1q_s16(a);
  a += a_stride;
  *a6 = vld1q_s16(a);
  a += a_stride;
  *a7 = vld1q_s16(a);

  transpose_s16_8x8(a0, a1, a2, a3, a4, a5, a6, a7);
}

// Shift the output down by 6 and add it to the destination buffer.
static INLINE void add_and_store_u8_s16(const int16x8_t a0, const int16x8_t a1,
                                        const int16x8_t a2, const int16x8_t a3,
                                        const int16x8_t a4, const int16x8_t a5,
                                        const int16x8_t a6, const int16x8_t a7,
                                        uint8_t *b, const int b_stride) {
  uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7;
  int16x8_t c0, c1, c2, c3, c4, c5, c6, c7;
  b0 = vld1_u8(b);
  b += b_stride;
  b1 = vld1_u8(b);
  b += b_stride;
  b2 = vld1_u8(b);
  b += b_stride;
  b3 = vld1_u8(b);
  b += b_stride;
  b4 = vld1_u8(b);
  b += b_stride;
  b5 = vld1_u8(b);
  b += b_stride;
  b6 = vld1_u8(b);
  b += b_stride;
  b7 = vld1_u8(b);
  b -= (7 * b_stride);

  // c = b + (a >> 6)
  c0 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b0)), a0, 6);
  c1 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b1)), a1, 6);
  c2 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b2)), a2, 6);
  c3 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b3)), a3, 6);
  c4 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b4)), a4, 6);
  c5 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b5)), a5, 6);
  c6 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b6)), a6, 6);
  c7 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b7)), a7, 6);

  b0 = vqmovun_s16(c0);
  b1 = vqmovun_s16(c1);
  b2 = vqmovun_s16(c2);
  b3 = vqmovun_s16(c3);
  b4 = vqmovun_s16(c4);
  b5 = vqmovun_s16(c5);
  b6 = vqmovun_s16(c6);
  b7 = vqmovun_s16(c7);

  vst1_u8(b, b0);
  b += b_stride;
  vst1_u8(b, b1);
  b += b_stride;
  vst1_u8(b, b2);
  b += b_stride;
  vst1_u8(b, b3);
  b += b_stride;
  vst1_u8(b, b4);
  b += b_stride;
  vst1_u8(b, b5);
  b += b_stride;
  vst1_u8(b, b6);
  b += b_stride;
  vst1_u8(b, b7);
}
#endif  // VPX_DSP_ARM_IDCT_NEON_H_