ref: 734c3d2b66b063e9ebcf0bc4ceb9ae3a9baacd31
dir: /vp8/encoder/encodemv.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp8/common/common.h" #include "encodemv.h" #include "vp8/common/entropymode.h" #include "vp8/common/systemdependent.h" #include "vpx_ports/system_state.h" #include <math.h> #ifdef VP8_ENTROPY_STATS extern unsigned int active_section; #endif static void encode_mvcomponent(vp8_writer *const w, const int v, const struct mv_context *mvc) { const vp8_prob *p = mvc->prob; const int x = v < 0 ? -v : v; if (x < mvnum_short) { /* Small */ vp8_write(w, 0, p[mvpis_short]); vp8_treed_write(w, vp8_small_mvtree, p + MVPshort, x, 3); if (!x) return; /* no sign bit */ } else { /* Large */ int i = 0; vp8_write(w, 1, p[mvpis_short]); do vp8_write(w, (x >> i) & 1, p[MVPbits + i]); while (++i < 3); i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */ do vp8_write(w, (x >> i) & 1, p[MVPbits + i]); while (--i > 3); if (x & 0xFFF0) vp8_write(w, (x >> 3) & 1, p[MVPbits + 3]); } vp8_write(w, v < 0, p[MVPsign]); } #if 0 static int max_mv_r = 0; static int max_mv_c = 0; #endif void vp8_encode_motion_vector(vp8_writer *w, const MV *mv, const MV_CONTEXT *mvc) { #if 0 { if (abs(mv->row >> 1) > max_mv_r) { FILE *f = fopen("maxmv.stt", "a"); max_mv_r = abs(mv->row >> 1); fprintf(f, "New Mv Row Max %6d\n", (mv->row >> 1)); if ((abs(mv->row) / 2) != max_mv_r) fprintf(f, "MV Row conversion error %6d\n", abs(mv->row) / 2); fclose(f); } if (abs(mv->col >> 1) > max_mv_c) { FILE *f = fopen("maxmv.stt", "a"); fprintf(f, "New Mv Col Max %6d\n", (mv->col >> 1)); max_mv_c = abs(mv->col >> 1); fclose(f); } } #endif encode_mvcomponent(w, mv->row >> 1, &mvc[0]); encode_mvcomponent(w, mv->col >> 1, &mvc[1]); } static unsigned int cost_mvcomponent(const int v, const struct mv_context *mvc) { const vp8_prob *p = mvc->prob; const int x = v; unsigned int cost; if (x < mvnum_short) { cost = vp8_cost_zero(p[mvpis_short]) + vp8_treed_cost(vp8_small_mvtree, p + MVPshort, x, 3); if (!x) return cost; } else { int i = 0; cost = vp8_cost_one(p[mvpis_short]); do { cost += vp8_cost_bit(p[MVPbits + i], (x >> i) & 1); } while (++i < 3); i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */ do { cost += vp8_cost_bit(p[MVPbits + i], (x >> i) & 1); } while (--i > 3); if (x & 0xFFF0) cost += vp8_cost_bit(p[MVPbits + 3], (x >> 3) & 1); } return cost; /* + vp8_cost_bit( p [MVPsign], v < 0); */ } void vp8_build_component_cost_table(int *mvcost[2], const MV_CONTEXT *mvc, int mvc_flag[2]) { int i = 1; unsigned int cost0 = 0; unsigned int cost1 = 0; vpx_clear_system_state(); i = 1; if (mvc_flag[0]) { mvcost[0][0] = cost_mvcomponent(0, &mvc[0]); do { cost0 = cost_mvcomponent(i, &mvc[0]); mvcost[0][i] = cost0 + vp8_cost_zero(mvc[0].prob[MVPsign]); mvcost[0][-i] = cost0 + vp8_cost_one(mvc[0].prob[MVPsign]); } while (++i <= mv_max); } i = 1; if (mvc_flag[1]) { mvcost[1][0] = cost_mvcomponent(0, &mvc[1]); do { cost1 = cost_mvcomponent(i, &mvc[1]); mvcost[1][i] = cost1 + vp8_cost_zero(mvc[1].prob[MVPsign]); mvcost[1][-i] = cost1 + vp8_cost_one(mvc[1].prob[MVPsign]); } while (++i <= mv_max); } } /* Motion vector probability table update depends on benefit. * Small correction allows for the fact that an update to an MV probability * may have benefit in subsequent frames as well as the current one. */ #define MV_PROB_UPDATE_CORRECTION -1 static void calc_prob(vp8_prob *p, const unsigned int ct[2]) { const unsigned int tot = ct[0] + ct[1]; if (tot) { const vp8_prob x = ((ct[0] * 255) / tot) & -2; *p = x ? x : 1; } } static void update(vp8_writer *const w, const unsigned int ct[2], vp8_prob *const cur_p, const vp8_prob new_p, const vp8_prob update_p, int *updated) { const int cur_b = vp8_cost_branch(ct, *cur_p); const int new_b = vp8_cost_branch(ct, new_p); const int cost = 7 + MV_PROB_UPDATE_CORRECTION + ((vp8_cost_one(update_p) - vp8_cost_zero(update_p) + 128) >> 8); if (cur_b - new_b > cost) { *cur_p = new_p; vp8_write(w, 1, update_p); vp8_write_literal(w, new_p >> 1, 7); *updated = 1; } else vp8_write(w, 0, update_p); } static void write_component_probs(vp8_writer *const w, struct mv_context *cur_mvc, const struct mv_context *default_mvc_, const struct mv_context *update_mvc, const unsigned int events[MVvals], unsigned int rc, int *updated) { vp8_prob *Pcur = cur_mvc->prob; const vp8_prob *default_mvc = default_mvc_->prob; const vp8_prob *Pupdate = update_mvc->prob; unsigned int is_short_ct[2], sign_ct[2]; unsigned int bit_ct[mvlong_width][2]; unsigned int short_ct[mvnum_short]; unsigned int short_bct[mvnum_short - 1][2]; vp8_prob Pnew[MVPcount]; (void)rc; vp8_copy_array(Pnew, default_mvc, MVPcount); vp8_zero(is_short_ct) vp8_zero(sign_ct) vp8_zero(bit_ct) vp8_zero(short_ct) vp8_zero(short_bct) /* j=0 */ { const int c = events[mv_max]; is_short_ct[0] += c; /* Short vector */ short_ct[0] += c; /* Magnitude distribution */ } /* j: 1 ~ mv_max (1023) */ { int j = 1; do { const int c1 = events[mv_max + j]; /* positive */ const int c2 = events[mv_max - j]; /* negative */ const int c = c1 + c2; int a = j; sign_ct[0] += c1; sign_ct[1] += c2; if (a < mvnum_short) { is_short_ct[0] += c; /* Short vector */ short_ct[a] += c; /* Magnitude distribution */ } else { int k = mvlong_width - 1; is_short_ct[1] += c; /* Long vector */ /* bit 3 not always encoded. */ do { bit_ct[k][(a >> k) & 1] += c; } while (--k >= 0); } } while (++j <= mv_max); } calc_prob(Pnew + mvpis_short, is_short_ct); calc_prob(Pnew + MVPsign, sign_ct); { vp8_prob p[mvnum_short - 1]; /* actually only need branch ct */ int j = 0; vp8_tree_probs_from_distribution(8, vp8_small_mvencodings, vp8_small_mvtree, p, short_bct, short_ct, 256, 1); do { calc_prob(Pnew + MVPshort + j, short_bct[j]); } while (++j < mvnum_short - 1); } { int j = 0; do { calc_prob(Pnew + MVPbits + j, bit_ct[j]); } while (++j < mvlong_width); } update(w, is_short_ct, Pcur + mvpis_short, Pnew[mvpis_short], *Pupdate++, updated); update(w, sign_ct, Pcur + MVPsign, Pnew[MVPsign], *Pupdate++, updated); { const vp8_prob *const new_p = Pnew + MVPshort; vp8_prob *const cur_p = Pcur + MVPshort; int j = 0; do { update(w, short_bct[j], cur_p + j, new_p[j], *Pupdate++, updated); } while (++j < mvnum_short - 1); } { const vp8_prob *const new_p = Pnew + MVPbits; vp8_prob *const cur_p = Pcur + MVPbits; int j = 0; do { update(w, bit_ct[j], cur_p + j, new_p[j], *Pupdate++, updated); } while (++j < mvlong_width); } } void vp8_write_mvprobs(VP8_COMP *cpi) { vp8_writer *const w = cpi->bc; MV_CONTEXT *mvc = cpi->common.fc.mvc; int flags[2] = { 0, 0 }; #ifdef VP8_ENTROPY_STATS active_section = 4; #endif write_component_probs(w, &mvc[0], &vp8_default_mv_context[0], &vp8_mv_update_probs[0], cpi->mb.MVcount[0], 0, &flags[0]); write_component_probs(w, &mvc[1], &vp8_default_mv_context[1], &vp8_mv_update_probs[1], cpi->mb.MVcount[1], 1, &flags[1]); if (flags[0] || flags[1]) { vp8_build_component_cost_table( cpi->mb.mvcost, (const MV_CONTEXT *)cpi->common.fc.mvc, flags); } #ifdef VP8_ENTROPY_STATS active_section = 5; #endif }