ref: 77c959654c7defafa6b740f37000b973c8ee202a
dir: /tools/3D-Reconstruction/MotionEST/MotionEST.py/
## Copyright (c) 2020 The WebM project authors. All Rights Reserved. ## ## Use of this source code is governed by a BSD-style license ## that can be found in the LICENSE file in the root of the source ## tree. An additional intellectual property rights grant can be found ## in the file PATENTS. All contributing project authors may ## be found in the AUTHORS file in the root of the source tree. ## #coding : utf - 8 import numpy as np import numpy.linalg as LA import matplotlib.pyplot as plt from Util import drawMF, MSE """The Base Class of Estimators""" class MotionEST(object): """ constructor: cur_f: current frame ref_f: reference frame blk_sz: block size """ def __init__(self, cur_f, ref_f, blk_sz): self.cur_f = cur_f self.ref_f = ref_f self.blk_sz = blk_sz #convert RGB to YUV self.cur_yuv = np.array(self.cur_f.convert('YCbCr'), dtype=np.int) self.ref_yuv = np.array(self.ref_f.convert('YCbCr'), dtype=np.int) #frame size self.width = self.cur_f.size[0] self.height = self.cur_f.size[1] #motion field size self.num_row = self.height // self.blk_sz self.num_col = self.width // self.blk_sz #initialize motion field self.mf = np.zeros((self.num_row, self.num_col, 2)) """estimation function Override by child classes""" def motion_field_estimation(self): pass """ distortion of a block: cur_r: current row cur_c: current column mv: motion vector metric: distortion metric """ def block_dist(self, cur_r, cur_c, mv, metric=MSE): cur_x = cur_c * self.blk_sz cur_y = cur_r * self.blk_sz h = min(self.blk_sz, self.height - cur_y) w = min(self.blk_sz, self.width - cur_x) cur_blk = self.cur_yuv[cur_y:cur_y + h, cur_x:cur_x + w, :] ref_x = int(cur_x + mv[1]) ref_y = int(cur_y + mv[0]) if 0 <= ref_x < self.width - w and 0 <= ref_y < self.height - h: ref_blk = self.ref_yuv[ref_y:ref_y + h, ref_x:ref_x + w, :] else: ref_blk = np.zeros((h, w, 3)) return metric(cur_blk, ref_blk) """ distortion of motion field """ def distortion(self, mask=None, metric=MSE): loss = 0 count = 0 for i in xrange(self.num_row): for j in xrange(self.num_col): if mask is not None and mask[i, j]: continue loss += self.block_dist(i, j, self.mf[i, j], metric) count += 1 return loss / count """evaluation compare the difference with ground truth""" def motion_field_evaluation(self, ground_truth): loss = 0 count = 0 gt = ground_truth.mf mask = ground_truth.mask for i in xrange(self.num_row): for j in xrange(self.num_col): if mask is not None and mask[i][j]: continue loss += LA.norm(gt[i, j] - self.mf[i, j]) count += 1 return loss / count """render the motion field""" def show(self, ground_truth=None, size=10): cur_mf = drawMF(self.cur_f, self.blk_sz, self.mf) if ground_truth is None: n_row = 1 else: gt_mf = drawMF(self.cur_f, self.blk_sz, ground_truth) n_row = 2 plt.figure(figsize=(n_row * size, size * self.height / self.width)) plt.subplot(1, n_row, 1) plt.imshow(cur_mf) plt.title('Estimated Motion Field') if ground_truth is not None: plt.subplot(1, n_row, 2) plt.imshow(gt_mf) plt.title('Ground Truth') plt.tight_layout() plt.show()