ref: 7adeccb33dee0a868bcebacbe2731c47d1064eec
dir: /vpx_dsp/arm/idct16x16_neon.c/
/* * Copyright (c) 2013 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/vpx_dsp_common.h" void vpx_idct16x16_256_add_neon_pass1(const int16_t *input, int16_t *output, int output_stride); void vpx_idct16x16_256_add_neon_pass2(const int16_t *src, int16_t *output, int16_t *pass1Output, int16_t skip_adding, uint8_t *dest, int dest_stride); void vpx_idct16x16_10_add_neon_pass1(const int16_t *input, int16_t *output, int output_stride); void vpx_idct16x16_10_add_neon_pass2(const int16_t *src, int16_t *output, int16_t *pass1Output, int16_t skip_adding, uint8_t *dest, int dest_stride); #if HAVE_NEON_ASM /* For ARM NEON, d8-d15 are callee-saved registers, and need to be saved. */ extern void vpx_push_neon(int64_t *store); extern void vpx_pop_neon(int64_t *store); #endif // HAVE_NEON_ASM void vpx_idct16x16_256_add_neon(const int16_t *input, uint8_t *dest, int dest_stride) { #if HAVE_NEON_ASM int64_t store_reg[8]; #endif int16_t pass1_output[16 * 16] = { 0 }; int16_t row_idct_output[16 * 16] = { 0 }; #if HAVE_NEON_ASM // save d8-d15 register values. vpx_push_neon(store_reg); #endif /* Parallel idct on the upper 8 rows */ // First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the // stage 6 result in pass1_output. vpx_idct16x16_256_add_neon_pass1(input, pass1_output, 8); // Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines // with result in pass1(pass1_output) to calculate final result in stage 7 // which will be saved into row_idct_output. vpx_idct16x16_256_add_neon_pass2(input + 1, row_idct_output, pass1_output, 0, dest, dest_stride); /* Parallel idct on the lower 8 rows */ // First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the // stage 6 result in pass1_output. vpx_idct16x16_256_add_neon_pass1(input + 8 * 16, pass1_output, 8); // Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines // with result in pass1(pass1_output) to calculate final result in stage 7 // which will be saved into row_idct_output. vpx_idct16x16_256_add_neon_pass2(input + 8 * 16 + 1, row_idct_output + 8, pass1_output, 0, dest, dest_stride); /* Parallel idct on the left 8 columns */ // First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the // stage 6 result in pass1_output. vpx_idct16x16_256_add_neon_pass1(row_idct_output, pass1_output, 8); // Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines // with result in pass1(pass1_output) to calculate final result in stage 7. // Then add the result to the destination data. vpx_idct16x16_256_add_neon_pass2(row_idct_output + 1, row_idct_output, pass1_output, 1, dest, dest_stride); /* Parallel idct on the right 8 columns */ // First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the // stage 6 result in pass1_output. vpx_idct16x16_256_add_neon_pass1(row_idct_output + 8 * 16, pass1_output, 8); // Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines // with result in pass1(pass1_output) to calculate final result in stage 7. // Then add the result to the destination data. vpx_idct16x16_256_add_neon_pass2(row_idct_output + 8 * 16 + 1, row_idct_output + 8, pass1_output, 1, dest + 8, dest_stride); #if HAVE_NEON_ASM // restore d8-d15 register values. vpx_pop_neon(store_reg); #endif } void vpx_idct16x16_10_add_neon(const int16_t *input, uint8_t *dest, int dest_stride) { #if HAVE_NEON_ASM int64_t store_reg[8]; #endif int16_t pass1_output[16 * 16] = { 0 }; int16_t row_idct_output[16 * 16] = { 0 }; #if HAVE_NEON_ASM // save d8-d15 register values. vpx_push_neon(store_reg); #endif /* Parallel idct on the upper 8 rows */ // First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the // stage 6 result in pass1_output. vpx_idct16x16_10_add_neon_pass1(input, pass1_output, 8); // Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines // with result in pass1(pass1_output) to calculate final result in stage 7 // which will be saved into row_idct_output. vpx_idct16x16_10_add_neon_pass2(input + 1, row_idct_output, pass1_output, 0, dest, dest_stride); /* Skip Parallel idct on the lower 8 rows as they are all 0s */ /* Parallel idct on the left 8 columns */ // First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the // stage 6 result in pass1_output. vpx_idct16x16_256_add_neon_pass1(row_idct_output, pass1_output, 8); // Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines // with result in pass1(pass1_output) to calculate final result in stage 7. // Then add the result to the destination data. vpx_idct16x16_256_add_neon_pass2(row_idct_output + 1, row_idct_output, pass1_output, 1, dest, dest_stride); /* Parallel idct on the right 8 columns */ // First pass processes even elements 0, 2, 4, 6, 8, 10, 12, 14 and save the // stage 6 result in pass1_output. vpx_idct16x16_256_add_neon_pass1(row_idct_output + 8 * 16, pass1_output, 8); // Second pass processes odd elements 1, 3, 5, 7, 9, 11, 13, 15 and combines // with result in pass1(pass1_output) to calculate final result in stage 7. // Then add the result to the destination data. vpx_idct16x16_256_add_neon_pass2(row_idct_output + 8 * 16 + 1, row_idct_output + 8, pass1_output, 1, dest + 8, dest_stride); #if HAVE_NEON_ASM // restore d8-d15 register values. vpx_pop_neon(store_reg); #endif }