ref: 7e9664934625daf58e33828b2c9fb87e8f1ff75b
dir: /vp9/encoder/vp9_firstpass.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <limits.h> #include <math.h> #include <stdio.h> #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/system_state.h" #include "vpx_scale/vpx_scale.h" #include "vpx_scale/yv12config.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes() #include "vp9/encoder/vp9_aq_variance.h" #include "vp9/encoder/vp9_block.h" #include "vp9/encoder/vp9_encodeframe.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_encoder.h" #include "vp9/encoder/vp9_ethread.h" #include "vp9/encoder/vp9_extend.h" #include "vp9/encoder/vp9_firstpass.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_rd.h" #include "vpx_dsp/variance.h" #define OUTPUT_FPF 0 #define ARF_STATS_OUTPUT 0 #define COMPLEXITY_STATS_OUTPUT 0 #define FIRST_PASS_Q 10.0 #define NORMAL_BOOST 100 #define MIN_ARF_GF_BOOST 240 #define MIN_DECAY_FACTOR 0.01 #define NEW_MV_MODE_PENALTY 32 #define DARK_THRESH 64 #define SECTION_NOISE_DEF 250.0 #define LOW_I_THRESH 24000 #define NCOUNT_INTRA_THRESH 8192 #define NCOUNT_INTRA_FACTOR 3 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) #if ARF_STATS_OUTPUT unsigned int arf_count = 0; #endif // Resets the first pass file to the given position using a relative seek from // the current position. static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { p->stats_in = position; } // Read frame stats at an offset from the current position. static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || (offset < 0 && p->stats_in + offset < p->stats_in_start)) { return NULL; } return &p->stats_in[offset]; } static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { if (p->stats_in >= p->stats_in_end) return EOF; *fps = *p->stats_in; ++p->stats_in; return 1; } static void output_stats(FIRSTPASS_STATS *stats, struct vpx_codec_pkt_list *pktlist) { struct vpx_codec_cx_pkt pkt; pkt.kind = VPX_CODEC_STATS_PKT; pkt.data.twopass_stats.buf = stats; pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); vpx_codec_pkt_list_add(pktlist, &pkt); // TEMP debug code #if OUTPUT_FPF { FILE *fpfile; fpfile = fopen("firstpass.stt", "a"); fprintf(fpfile, "%12.0lf %12.4lf %12.2lf %12.2lf %12.2lf %12.0lf %12.4lf %12.4lf" "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.4lf %12.0lf" "%12.4lf" "\n", stats->frame, stats->weight, stats->intra_error, stats->coded_error, stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter, stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, stats->pcnt_intra_low, stats->pcnt_intra_high, stats->intra_skip_pct, stats->intra_smooth_pct, stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration); fclose(fpfile); } #endif } #if CONFIG_FP_MB_STATS static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm, struct vpx_codec_pkt_list *pktlist) { struct vpx_codec_cx_pkt pkt; pkt.kind = VPX_CODEC_FPMB_STATS_PKT; pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t); vpx_codec_pkt_list_add(pktlist, &pkt); } #endif static void zero_stats(FIRSTPASS_STATS *section) { section->frame = 0.0; section->weight = 0.0; section->intra_error = 0.0; section->coded_error = 0.0; section->sr_coded_error = 0.0; section->frame_noise_energy = 0.0; section->pcnt_inter = 0.0; section->pcnt_motion = 0.0; section->pcnt_second_ref = 0.0; section->pcnt_neutral = 0.0; section->intra_skip_pct = 0.0; section->intra_smooth_pct = 0.0; section->pcnt_intra_low = 0.0; section->pcnt_intra_high = 0.0; section->inactive_zone_rows = 0.0; section->inactive_zone_cols = 0.0; section->MVr = 0.0; section->mvr_abs = 0.0; section->MVc = 0.0; section->mvc_abs = 0.0; section->MVrv = 0.0; section->MVcv = 0.0; section->mv_in_out_count = 0.0; section->count = 0.0; section->duration = 1.0; section->spatial_layer_id = 0; } static void accumulate_stats(FIRSTPASS_STATS *section, const FIRSTPASS_STATS *frame) { section->frame += frame->frame; section->weight += frame->weight; section->spatial_layer_id = frame->spatial_layer_id; section->intra_error += frame->intra_error; section->coded_error += frame->coded_error; section->sr_coded_error += frame->sr_coded_error; section->frame_noise_energy += frame->frame_noise_energy; section->pcnt_inter += frame->pcnt_inter; section->pcnt_motion += frame->pcnt_motion; section->pcnt_second_ref += frame->pcnt_second_ref; section->pcnt_neutral += frame->pcnt_neutral; section->intra_skip_pct += frame->intra_skip_pct; section->intra_smooth_pct += frame->intra_smooth_pct; section->pcnt_intra_low += frame->pcnt_intra_low; section->pcnt_intra_high += frame->pcnt_intra_high; section->inactive_zone_rows += frame->inactive_zone_rows; section->inactive_zone_cols += frame->inactive_zone_cols; section->MVr += frame->MVr; section->mvr_abs += frame->mvr_abs; section->MVc += frame->MVc; section->mvc_abs += frame->mvc_abs; section->MVrv += frame->MVrv; section->MVcv += frame->MVcv; section->mv_in_out_count += frame->mv_in_out_count; section->count += frame->count; section->duration += frame->duration; } static void subtract_stats(FIRSTPASS_STATS *section, const FIRSTPASS_STATS *frame) { section->frame -= frame->frame; section->weight -= frame->weight; section->intra_error -= frame->intra_error; section->coded_error -= frame->coded_error; section->sr_coded_error -= frame->sr_coded_error; section->frame_noise_energy -= frame->frame_noise_energy; section->pcnt_inter -= frame->pcnt_inter; section->pcnt_motion -= frame->pcnt_motion; section->pcnt_second_ref -= frame->pcnt_second_ref; section->pcnt_neutral -= frame->pcnt_neutral; section->intra_skip_pct -= frame->intra_skip_pct; section->intra_smooth_pct -= frame->intra_smooth_pct; section->pcnt_intra_low -= frame->pcnt_intra_low; section->pcnt_intra_high -= frame->pcnt_intra_high; section->inactive_zone_rows -= frame->inactive_zone_rows; section->inactive_zone_cols -= frame->inactive_zone_cols; section->MVr -= frame->MVr; section->mvr_abs -= frame->mvr_abs; section->MVc -= frame->MVc; section->mvc_abs -= frame->mvc_abs; section->MVrv -= frame->MVrv; section->MVcv -= frame->MVcv; section->mv_in_out_count -= frame->mv_in_out_count; section->count -= frame->count; section->duration -= frame->duration; } // Calculate an active area of the image that discounts formatting // bars and partially discounts other 0 energy areas. #define MIN_ACTIVE_AREA 0.5 #define MAX_ACTIVE_AREA 1.0 static double calculate_active_area(const VP9_COMP *cpi, const FIRSTPASS_STATS *this_frame) { double active_pct; active_pct = 1.0 - ((this_frame->intra_skip_pct / 2) + ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows)); return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); } // Get the average weighted error for the clip (or corpus) static double get_distribution_av_err(VP9_COMP *cpi, TWO_PASS *const twopass) { const double av_weight = twopass->total_stats.weight / twopass->total_stats.count; if (cpi->oxcf.vbr_corpus_complexity) return av_weight * twopass->mean_mod_score; else return (twopass->total_stats.coded_error * av_weight) / twopass->total_stats.count; } #define ACT_AREA_CORRECTION 0.5 // Calculate a modified Error used in distributing bits between easier and // harder frames. static double calculate_mod_frame_score(const VP9_COMP *cpi, const VP9EncoderConfig *oxcf, const FIRSTPASS_STATS *this_frame, const double av_err) { double modified_score = av_err * pow(this_frame->coded_error * this_frame->weight / DOUBLE_DIVIDE_CHECK(av_err), oxcf->two_pass_vbrbias / 100.0); // Correction for active area. Frames with a reduced active area // (eg due to formatting bars) have a higher error per mb for the // remaining active MBs. The correction here assumes that coding // 0.5N blocks of complexity 2X is a little easier than coding N // blocks of complexity X. modified_score *= pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); return modified_score; } static double calculate_norm_frame_score(const VP9_COMP *cpi, const TWO_PASS *twopass, const VP9EncoderConfig *oxcf, const FIRSTPASS_STATS *this_frame, const double av_err) { double modified_score = av_err * pow(this_frame->coded_error * this_frame->weight / DOUBLE_DIVIDE_CHECK(av_err), oxcf->two_pass_vbrbias / 100.0); const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0; const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0; // Correction for active area. Frames with a reduced active area // (eg due to formatting bars) have a higher error per mb for the // remaining active MBs. The correction here assumes that coding // 0.5N blocks of complexity 2X is a little easier than coding N // blocks of complexity X. modified_score *= pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); // Normalize to a midpoint score. modified_score /= DOUBLE_DIVIDE_CHECK(twopass->mean_mod_score); return fclamp(modified_score, min_score, max_score); } // This function returns the maximum target rate per frame. static int frame_max_bits(const RATE_CONTROL *rc, const VP9EncoderConfig *oxcf) { int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * (int64_t)oxcf->two_pass_vbrmax_section) / 100; if (max_bits < 0) max_bits = 0; else if (max_bits > rc->max_frame_bandwidth) max_bits = rc->max_frame_bandwidth; return (int)max_bits; } void vp9_init_first_pass(VP9_COMP *cpi) { zero_stats(&cpi->twopass.total_stats); } void vp9_end_first_pass(VP9_COMP *cpi) { output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); vpx_free(cpi->twopass.fp_mb_float_stats); cpi->twopass.fp_mb_float_stats = NULL; } static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { switch (bsize) { case BLOCK_8X8: return vpx_mse8x8; case BLOCK_16X8: return vpx_mse16x8; case BLOCK_8X16: return vpx_mse8x16; default: return vpx_mse16x16; } } static unsigned int get_prediction_error(BLOCK_SIZE bsize, const struct buf_2d *src, const struct buf_2d *ref) { unsigned int sse; const vpx_variance_fn_t fn = get_block_variance_fn(bsize); fn(src->buf, src->stride, ref->buf, ref->stride, &sse); return sse; } #if CONFIG_VP9_HIGHBITDEPTH static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, int bd) { switch (bd) { default: switch (bsize) { case BLOCK_8X8: return vpx_highbd_8_mse8x8; case BLOCK_16X8: return vpx_highbd_8_mse16x8; case BLOCK_8X16: return vpx_highbd_8_mse8x16; default: return vpx_highbd_8_mse16x16; } break; case 10: switch (bsize) { case BLOCK_8X8: return vpx_highbd_10_mse8x8; case BLOCK_16X8: return vpx_highbd_10_mse16x8; case BLOCK_8X16: return vpx_highbd_10_mse8x16; default: return vpx_highbd_10_mse16x16; } break; case 12: switch (bsize) { case BLOCK_8X8: return vpx_highbd_12_mse8x8; case BLOCK_16X8: return vpx_highbd_12_mse16x8; case BLOCK_8X16: return vpx_highbd_12_mse8x16; default: return vpx_highbd_12_mse16x16; } break; } } static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, const struct buf_2d *src, const struct buf_2d *ref, int bd) { unsigned int sse; const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); fn(src->buf, src->stride, ref->buf, ref->stride, &sse); return sse; } #endif // CONFIG_VP9_HIGHBITDEPTH // Refine the motion search range according to the frame dimension // for first pass test. static int get_search_range(const VP9_COMP *cpi) { int sr = 0; const int dim = VPXMIN(cpi->initial_width, cpi->initial_height); while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; return sr; } static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, const MV *ref_mv, MV *best_mv, int *best_motion_err) { MACROBLOCKD *const xd = &x->e_mbd; MV tmp_mv = { 0, 0 }; MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; int num00, tmp_err, n; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; int step_param = 3; int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; const int sr = get_search_range(cpi); step_param += sr; further_steps -= sr; // Override the default variance function to use MSE. v_fn_ptr.vf = get_block_variance_fn(bsize); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); } #endif // CONFIG_VP9_HIGHBITDEPTH // Center the initial step/diamond search on best mv. tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, step_param, x->sadperbit16, &num00, &v_fn_ptr, ref_mv); if (tmp_err < INT_MAX) tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; *best_mv = tmp_mv; } // Carry out further step/diamond searches as necessary. n = num00; num00 = 0; while (n < further_steps) { ++n; if (num00) { --num00; } else { tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, step_param + n, x->sadperbit16, &num00, &v_fn_ptr, ref_mv); if (tmp_err < INT_MAX) tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; *best_mv = tmp_mv; } } } } static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) { if (2 * mb_col + 1 < cm->mi_cols) { return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8; } else { return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8; } } static int find_fp_qindex(vpx_bit_depth_t bit_depth) { int i; for (i = 0; i < QINDEX_RANGE; ++i) if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; if (i == QINDEX_RANGE) i--; return i; } static void set_first_pass_params(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; if (!cpi->refresh_alt_ref_frame && (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { cm->frame_type = KEY_FRAME; } else { cm->frame_type = INTER_FRAME; } // Do not use periodic key frames. cpi->rc.frames_to_key = INT_MAX; } // Scale an sse threshold to account for 8/10/12 bit. static int scale_sse_threshold(VP9_COMMON *cm, int thresh) { int ret_val = thresh; #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) { switch (cm->bit_depth) { case VPX_BITS_8: ret_val = thresh; break; case VPX_BITS_10: ret_val = thresh << 4; break; default: assert(cm->bit_depth == VPX_BITS_12); ret_val = thresh << 8; break; } } #else (void)cm; #endif // CONFIG_VP9_HIGHBITDEPTH return ret_val; } // This threshold is used to track blocks where to all intents and purposes // the intra prediction error 0. Though the metric we test against // is technically a sse we are mainly interested in blocks where all the pixels // in the 8 bit domain have an error of <= 1 (where error = sse) so a // linear scaling for 10 and 12 bit gives similar results. #define UL_INTRA_THRESH 50 static int get_ul_intra_threshold(VP9_COMMON *cm) { int ret_val = UL_INTRA_THRESH; #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) { switch (cm->bit_depth) { case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break; case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break; default: assert(cm->bit_depth == VPX_BITS_12); ret_val = UL_INTRA_THRESH << 4; break; } } #else (void)cm; #endif // CONFIG_VP9_HIGHBITDEPTH return ret_val; } #define SMOOTH_INTRA_THRESH 4000 static int get_smooth_intra_threshold(VP9_COMMON *cm) { int ret_val = SMOOTH_INTRA_THRESH; #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) { switch (cm->bit_depth) { case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break; case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break; default: assert(cm->bit_depth == VPX_BITS_12); ret_val = SMOOTH_INTRA_THRESH << 8; break; } } #else (void)cm; #endif // CONFIG_VP9_HIGHBITDEPTH return ret_val; } #define FP_DN_THRESH 8 #define FP_MAX_DN_THRESH 24 #define KERNEL_SIZE 3 // Baseline Kernal weights for first pass noise metric static uint8_t fp_dn_kernal_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4, 2, 1, 2, 1 }; // Estimate noise at a single point based on the impace of a spatial kernal // on the point value static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) { int sum_weight = 0; int sum_val = 0; int i, j; int max_diff = 0; int diff; int dn_diff; uint8_t *tmp_ptr; uint8_t *kernal_ptr; uint8_t dn_val; uint8_t centre_val = *src_ptr; kernal_ptr = fp_dn_kernal_3; // Apply the kernal tmp_ptr = src_ptr - stride - 1; for (i = 0; i < KERNEL_SIZE; ++i) { for (j = 0; j < KERNEL_SIZE; ++j) { diff = abs((int)centre_val - (int)tmp_ptr[j]); max_diff = VPXMAX(max_diff, diff); if (diff <= FP_DN_THRESH) { sum_weight += *kernal_ptr; sum_val += (int)tmp_ptr[j] * (int)*kernal_ptr; } ++kernal_ptr; } tmp_ptr += stride; } if (max_diff < FP_MAX_DN_THRESH) // Update the source value with the new filtered value dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; else dn_val = *src_ptr; // return the noise energy as the square of the difference between the // denoised and raw value. dn_diff = (int)*src_ptr - (int)dn_val; return dn_diff * dn_diff; } #if CONFIG_VP9_HIGHBITDEPTH static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) { int sum_weight = 0; int sum_val = 0; int i, j; int max_diff = 0; int diff; int dn_diff; uint8_t *tmp_ptr; uint16_t *tmp_ptr16; uint8_t *kernal_ptr; uint16_t dn_val; uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr); kernal_ptr = fp_dn_kernal_3; // Apply the kernal tmp_ptr = src_ptr - stride - 1; for (i = 0; i < KERNEL_SIZE; ++i) { tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr); for (j = 0; j < KERNEL_SIZE; ++j) { diff = abs((int)centre_val - (int)tmp_ptr16[j]); max_diff = VPXMAX(max_diff, diff); if (diff <= FP_DN_THRESH) { sum_weight += *kernal_ptr; sum_val += (int)tmp_ptr16[j] * (int)*kernal_ptr; } ++kernal_ptr; } tmp_ptr += stride; } if (max_diff < FP_MAX_DN_THRESH) // Update the source value with the new filtered value dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; else dn_val = *CONVERT_TO_SHORTPTR(src_ptr); // return the noise energy as the square of the difference between the // denoised and raw value. dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val; return dn_diff * dn_diff; } #endif // Estimate noise for a block. static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) { #if CONFIG_VP9_HIGHBITDEPTH MACROBLOCKD *xd = &x->e_mbd; #endif uint8_t *src_ptr = &x->plane[0].src.buf[0]; const int width = num_4x4_blocks_wide_lookup[bsize] * 4; const int height = num_4x4_blocks_high_lookup[bsize] * 4; int w, h; int stride = x->plane[0].src.stride; int block_noise = 0; // Sampled points to reduce cost overhead. for (h = 0; h < height; h += 2) { for (w = 0; w < width; w += 2) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) block_noise += fp_highbd_estimate_point_noise(src_ptr, stride); else block_noise += fp_estimate_point_noise(src_ptr, stride); #else block_noise += fp_estimate_point_noise(src_ptr, stride); #endif ++src_ptr; } src_ptr += (stride - width); } return block_noise << 2; // Scale << 2 to account for sampling. } // This function is called to test the functionality of row based // multi-threading in unit tests for bit-exactness static void accumulate_floating_point_stats(VP9_COMP *cpi, TileDataEnc *first_tile_col) { VP9_COMMON *const cm = &cpi->common; int mb_row, mb_col; first_tile_col->fp_data.intra_factor = 0; first_tile_col->fp_data.brightness_factor = 0; first_tile_col->fp_data.neutral_count = 0; for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { const int mb_index = mb_row * cm->mb_cols + mb_col; first_tile_col->fp_data.intra_factor += cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor; first_tile_col->fp_data.brightness_factor += cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor; first_tile_col->fp_data.neutral_count += cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count; } } } static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps, FIRSTPASS_DATA *fp_acc_data) { VP9_COMMON *const cm = &cpi->common; // The minimum error here insures some bit allocation to frames even // in static regions. The allocation per MB declines for larger formats // where the typical "real" energy per MB also falls. // Initial estimate here uses sqrt(mbs) to define the min_err, where the // number of mbs is proportional to the image area. const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs : cpi->common.MBs; const double min_err = 200 * sqrt(num_mbs); // Clamp the image start to rows/2. This number of rows is discarded top // and bottom as dead data so rows / 2 means the frame is blank. if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) || (fp_acc_data->image_data_start_row == INVALID_ROW)) { fp_acc_data->image_data_start_row = cm->mb_rows / 2; } // Exclude any image dead zone if (fp_acc_data->image_data_start_row > 0) { fp_acc_data->intra_skip_count = VPXMAX(0, fp_acc_data->intra_skip_count - (fp_acc_data->image_data_start_row * cm->mb_cols * 2)); } fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs; fp_acc_data->brightness_factor = fp_acc_data->brightness_factor / (double)num_mbs; fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor; fps->frame = cm->current_video_frame; fps->spatial_layer_id = cpi->svc.spatial_layer_id; fps->coded_error = ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs; fps->sr_coded_error = ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs; fps->intra_error = ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs; fps->frame_noise_energy = (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs; fps->count = 1.0; fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs; fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs; fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs; fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs; fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs; fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs; fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs; fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row); // Currently set to 0 as most issues relate to letter boxing. fps->inactive_zone_cols = (double)0; if (fp_acc_data->mvcount > 0) { fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount; fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount; fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount; fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount; fps->MVrv = ((double)(fp_acc_data->sum_mvrs) - ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) / fp_acc_data->mvcount)) / fp_acc_data->mvcount; fps->MVcv = ((double)(fp_acc_data->sum_mvcs) - ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) / fp_acc_data->mvcount)) / fp_acc_data->mvcount; fps->mv_in_out_count = (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2); fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs; } else { fps->MVr = 0.0; fps->mvr_abs = 0.0; fps->MVc = 0.0; fps->mvc_abs = 0.0; fps->MVrv = 0.0; fps->MVcv = 0.0; fps->mv_in_out_count = 0.0; fps->pcnt_motion = 0.0; } } static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile, FIRSTPASS_DATA *fp_acc_data) { this_tile->fp_data.intra_factor += fp_acc_data->intra_factor; this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor; this_tile->fp_data.coded_error += fp_acc_data->coded_error; this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error; this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy; this_tile->fp_data.intra_error += fp_acc_data->intra_error; this_tile->fp_data.intercount += fp_acc_data->intercount; this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count; this_tile->fp_data.neutral_count += fp_acc_data->neutral_count; this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low; this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high; this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count; this_tile->fp_data.mvcount += fp_acc_data->mvcount; this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr; this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs; this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc; this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs; this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs; this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs; this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors; this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count; this_tile->fp_data.image_data_start_row = VPXMIN(this_tile->fp_data.image_data_start_row, fp_acc_data->image_data_start_row) == INVALID_ROW ? VPXMAX(this_tile->fp_data.image_data_start_row, fp_acc_data->image_data_start_row) : VPXMIN(this_tile->fp_data.image_data_start_row, fp_acc_data->image_data_start_row); } #define NZ_MOTION_PENALTY 128 #define INTRA_MODE_PENALTY 1024 void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td, FIRSTPASS_DATA *fp_acc_data, TileDataEnc *tile_data, MV *best_ref_mv, int mb_row) { int mb_col; MACROBLOCK *const x = &td->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; TileInfo tile = tile_data->tile_info; const int mb_col_start = ROUND_POWER_OF_TWO(tile.mi_col_start, 1); const int mb_col_end = ROUND_POWER_OF_TWO(tile.mi_col_end, 1); struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const PICK_MODE_CONTEXT *ctx = &td->pc_root->none; int i, c; int num_mb_cols = get_num_cols(tile_data->tile_info, 1); int recon_yoffset, recon_uvoffset; const int intrapenalty = INTRA_MODE_PENALTY; const MV zero_mv = { 0, 0 }; int recon_y_stride, recon_uv_stride, uv_mb_height; YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; MODE_INFO mi_above, mi_left; double mb_intra_factor; double mb_brightness_factor; double mb_neutral_count; int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH); // First pass code requires valid last and new frame buffers. assert(new_yv12 != NULL); assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) + mb_col_start; xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + mb_col_start; for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][1]; p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; p[i].eobs = ctx->eobs_pbuf[i][1]; } recon_y_stride = new_yv12->y_stride; recon_uv_stride = new_yv12->uv_stride; uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); // Reset above block coeffs. recon_yoffset = (mb_row * recon_y_stride * 16) + mb_col_start * 16; recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height) + mb_col_start * uv_mb_height; // Set up limit values for motion vectors to prevent them extending // outside the UMV borders. x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); x->mv_limits.row_max = ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; for (mb_col = mb_col_start, c = 0; mb_col < mb_col_end; ++mb_col, c++) { int this_error; int this_intra_error; const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); double log_intra; int level_sample; const int mb_index = mb_row * cm->mb_cols + mb_col; #if CONFIG_FP_MB_STATS const int mb_index = mb_row * cm->mb_cols + mb_col; #endif (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c); // Adjust to the next column of MBs. x->plane[0].src.buf = cpi->Source->y_buffer + mb_row * 16 * x->plane[0].src.stride + mb_col * 16; x->plane[1].src.buf = cpi->Source->u_buffer + mb_row * uv_mb_height * x->plane[1].src.stride + mb_col * uv_mb_height; x->plane[2].src.buf = cpi->Source->v_buffer + mb_row * uv_mb_height * x->plane[1].src.stride + mb_col * uv_mb_height; vpx_clear_system_state(); xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; xd->mi[0]->sb_type = bsize; xd->mi[0]->ref_frame[0] = INTRA_FRAME; set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize], mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols); // Are edges available for intra prediction? // Since the firstpass does not populate the mi_grid_visible, // above_mi/left_mi must be overwritten with a nonzero value when edges // are available. Required by vp9_predict_intra_block(). xd->above_mi = (mb_row != 0) ? &mi_above : NULL; xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL; // Do intra 16x16 prediction. x->skip_encode = 0; x->fp_src_pred = 0; // Do intra prediction based on source pixels for tile boundaries if (mb_col == mb_col_start && mb_col != 0) { xd->left_mi = &mi_left; x->fp_src_pred = 1; } xd->mi[0]->mode = DC_PRED; xd->mi[0]->tx_size = use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; // Fix - zero the 16x16 block first. This ensures correct this_error for // block sizes smaller than 16x16. vp9_zero_array(x->plane[0].src_diff, 256); vp9_encode_intra_block_plane(x, bsize, 0, 0); this_error = vpx_get_mb_ss(x->plane[0].src_diff); this_intra_error = this_error; // Keep a record of blocks that have very low intra error residual // (i.e. are in effect completely flat and untextured in the intra // domain). In natural videos this is uncommon, but it is much more // common in animations, graphics and screen content, so may be used // as a signal to detect these types of content. if (this_error < get_ul_intra_threshold(cm)) { ++(fp_acc_data->intra_skip_count); } else if ((mb_col > 0) && (fp_acc_data->image_data_start_row == INVALID_ROW)) { fp_acc_data->image_data_start_row = mb_row; } // Blocks that are mainly smooth in the intra domain. // Some special accounting for CQ but also these are better for testing // noise levels. if (this_error < get_smooth_intra_threshold(cm)) { ++(fp_acc_data->intra_smooth_count); } // Special case noise measurement for first frame. if (cm->current_video_frame == 0) { if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) { fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); } else { fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; } } #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) { switch (cm->bit_depth) { case VPX_BITS_8: break; case VPX_BITS_10: this_error >>= 4; break; default: assert(cm->bit_depth == VPX_BITS_12); this_error >>= 8; break; } } #endif // CONFIG_VP9_HIGHBITDEPTH vpx_clear_system_state(); log_intra = log(this_error + 1.0); if (log_intra < 10.0) { mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05); fp_acc_data->intra_factor += mb_intra_factor; if (cpi->row_mt_bit_exact) cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = mb_intra_factor; } else { fp_acc_data->intra_factor += 1.0; if (cpi->row_mt_bit_exact) cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0; } #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; else level_sample = x->plane[0].src.buf[0]; #else level_sample = x->plane[0].src.buf[0]; #endif if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) { mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample)); fp_acc_data->brightness_factor += mb_brightness_factor; if (cpi->row_mt_bit_exact) cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = mb_brightness_factor; } else { fp_acc_data->brightness_factor += 1.0; if (cpi->row_mt_bit_exact) cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = 1.0; } // Intrapenalty below deals with situations where the intra and inter // error scores are very low (e.g. a plain black frame). // We do not have special cases in first pass for 0,0 and nearest etc so // all inter modes carry an overhead cost estimate for the mv. // When the error score is very low this causes us to pick all or lots of // INTRA modes and throw lots of key frames. // This penalty adds a cost matching that of a 0,0 mv to the intra case. this_error += intrapenalty; // Accumulate the intra error. fp_acc_data->intra_error += (int64_t)this_error; #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { // initialization cpi->twopass.frame_mb_stats_buf[mb_index] = 0; } #endif // Set up limit values for motion vectors to prevent them extending // outside the UMV borders. x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); x->mv_limits.col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; // Other than for the first frame do a motion search. if (cm->current_video_frame > 0) { int tmp_err, motion_error, this_motion_error, raw_motion_error; // Assume 0,0 motion with no mv overhead. MV mv = { 0, 0 }, tmp_mv = { 0, 0 }; struct buf_2d unscaled_last_source_buf_2d; vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { motion_error = highbd_get_prediction_error( bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); this_motion_error = highbd_get_prediction_error( bsize, &x->plane[0].src, &xd->plane[0].pre[0], 8); } else { motion_error = get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); this_motion_error = motion_error; } #else motion_error = get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); this_motion_error = motion_error; #endif // CONFIG_VP9_HIGHBITDEPTH // Compute the motion error of the 0,0 motion using the last source // frame as the reference. Skip the further motion search on // reconstructed frame if this error is very small. unscaled_last_source_buf_2d.buf = cpi->unscaled_last_source->y_buffer + recon_yoffset; unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { raw_motion_error = highbd_get_prediction_error( bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); } else { raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, &unscaled_last_source_buf_2d); } #else raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, &unscaled_last_source_buf_2d); #endif // CONFIG_VP9_HIGHBITDEPTH if (raw_motion_error > NZ_MOTION_PENALTY) { // Test last reference frame using the previous best mv as the // starting point (best reference) for the search. first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error); v_fn_ptr.vf = get_block_variance_fn(bsize); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, 8); } #endif // CONFIG_VP9_HIGHBITDEPTH this_motion_error = vp9_get_mvpred_var(x, &mv, best_ref_mv, &v_fn_ptr, 0); // If the current best reference mv is not centered on 0,0 then do a // 0,0 based search as well. if (!is_zero_mv(best_ref_mv)) { tmp_err = INT_MAX; first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err); if (tmp_err < motion_error) { motion_error = tmp_err; mv = tmp_mv; this_motion_error = vp9_get_mvpred_var(x, &tmp_mv, &zero_mv, &v_fn_ptr, 0); } } // Search in an older reference frame. if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { // Assume 0,0 motion with no mv overhead. int gf_motion_error; xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { gf_motion_error = highbd_get_prediction_error( bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); } else { gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); } #else gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); #endif // CONFIG_VP9_HIGHBITDEPTH first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error); if (gf_motion_error < motion_error && gf_motion_error < this_error) ++(fp_acc_data->second_ref_count); // Reset to last frame as reference buffer. xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; // In accumulating a score for the older reference frame take the // best of the motion predicted score and the intra coded error // (just as will be done for) accumulation of "coded_error" for // the last frame. if (gf_motion_error < this_error) fp_acc_data->sr_coded_error += gf_motion_error; else fp_acc_data->sr_coded_error += this_error; } else { fp_acc_data->sr_coded_error += motion_error; } } else { fp_acc_data->sr_coded_error += motion_error; } // Start by assuming that intra mode is best. best_ref_mv->row = 0; best_ref_mv->col = 0; #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { // intra prediction statistics cpi->twopass.frame_mb_stats_buf[mb_index] = 0; cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; if (this_error > FPMB_ERROR_LARGE_TH) { cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; } else if (this_error < FPMB_ERROR_SMALL_TH) { cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; } } #endif if (motion_error <= this_error) { vpx_clear_system_state(); // Keep a count of cases where the inter and intra were very close // and very low. This helps with scene cut detection for example in // cropped clips with black bars at the sides or top and bottom. if (((this_error - intrapenalty) * 9 <= motion_error * 10) && (this_error < (2 * intrapenalty))) { fp_acc_data->neutral_count += 1.0; if (cpi->row_mt_bit_exact) cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = 1.0; // Also track cases where the intra is not much worse than the inter // and use this in limiting the GF/arf group length. } else if ((this_error > NCOUNT_INTRA_THRESH) && (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { mb_neutral_count = (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); fp_acc_data->neutral_count += mb_neutral_count; if (cpi->row_mt_bit_exact) cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = mb_neutral_count; } mv.row *= 8; mv.col *= 8; this_error = motion_error; xd->mi[0]->mode = NEWMV; xd->mi[0]->mv[0].as_mv = mv; xd->mi[0]->tx_size = TX_4X4; xd->mi[0]->ref_frame[0] = LAST_FRAME; xd->mi[0]->ref_frame[1] = NONE; vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize); vp9_encode_sby_pass1(x, bsize); fp_acc_data->sum_mvr += mv.row; fp_acc_data->sum_mvr_abs += abs(mv.row); fp_acc_data->sum_mvc += mv.col; fp_acc_data->sum_mvc_abs += abs(mv.col); fp_acc_data->sum_mvrs += mv.row * mv.row; fp_acc_data->sum_mvcs += mv.col * mv.col; ++(fp_acc_data->intercount); *best_ref_mv = mv; #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { // inter prediction statistics cpi->twopass.frame_mb_stats_buf[mb_index] = 0; cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; if (this_error > FPMB_ERROR_LARGE_TH) { cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; } else if (this_error < FPMB_ERROR_SMALL_TH) { cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; } } #endif if (!is_zero_mv(&mv)) { ++(fp_acc_data->mvcount); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_MOTION_ZERO_MASK; // check estimated motion direction if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) { // right direction cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_RIGHT_MASK; } else if (mv.as_mv.row < 0 && abs(mv.as_mv.row) >= abs(mv.as_mv.col)) { // up direction cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_UP_MASK; } else if (mv.as_mv.col < 0 && abs(mv.as_mv.col) >= abs(mv.as_mv.row)) { // left direction cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_LEFT_MASK; } else { // down direction cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_DOWN_MASK; } } #endif // Does the row vector point inwards or outwards? if (mb_row < cm->mb_rows / 2) { if (mv.row > 0) --(fp_acc_data->sum_in_vectors); else if (mv.row < 0) ++(fp_acc_data->sum_in_vectors); } else if (mb_row > cm->mb_rows / 2) { if (mv.row > 0) ++(fp_acc_data->sum_in_vectors); else if (mv.row < 0) --(fp_acc_data->sum_in_vectors); } // Does the col vector point inwards or outwards? if (mb_col < cm->mb_cols / 2) { if (mv.col > 0) --(fp_acc_data->sum_in_vectors); else if (mv.col < 0) ++(fp_acc_data->sum_in_vectors); } else if (mb_col > cm->mb_cols / 2) { if (mv.col > 0) ++(fp_acc_data->sum_in_vectors); else if (mv.col < 0) --(fp_acc_data->sum_in_vectors); } } if (this_intra_error < scaled_low_intra_thresh) { fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); } else { fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; } } else { // Intra < inter error if (this_intra_error < scaled_low_intra_thresh) { fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); if (this_motion_error < scaled_low_intra_thresh) { fp_acc_data->intra_count_low += 1.0; } else { fp_acc_data->intra_count_high += 1.0; } } else { fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; fp_acc_data->intra_count_high += 1.0; } } } else { fp_acc_data->sr_coded_error += (int64_t)this_error; } fp_acc_data->coded_error += (int64_t)this_error; recon_yoffset += 16; recon_uvoffset += uv_mb_height; // Accumulate row level stats to the corresponding tile stats if (cpi->row_mt && mb_col == mb_col_end - 1) accumulate_fp_mb_row_stat(tile_data, fp_acc_data); (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c, num_mb_cols); } vpx_clear_system_state(); } static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) { VP9_COMMON *const cm = &cpi->common; int mb_row; TileDataEnc tile_data; TileInfo *tile = &tile_data.tile_info; MV zero_mv = { 0, 0 }; MV best_ref_mv; // Tiling is ignored in the first pass. vp9_tile_init(tile, cm, 0, 0); for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { best_ref_mv = zero_mv; vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data, &best_ref_mv, mb_row); } } void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) { MACROBLOCK *const x = &cpi->td.mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; TWO_PASS *twopass = &cpi->twopass; YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; BufferPool *const pool = cm->buffer_pool; FIRSTPASS_DATA fp_temp_data; FIRSTPASS_DATA *fp_acc_data = &fp_temp_data; vpx_clear_system_state(); vp9_zero(fp_temp_data); fp_acc_data->image_data_start_row = INVALID_ROW; // First pass code requires valid last and new frame buffers. assert(new_yv12 != NULL); assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs); } #endif set_first_pass_params(cpi); vp9_set_quantizer(cm, find_fp_qindex(cm->bit_depth)); vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); vp9_setup_src_planes(x, cpi->Source, 0, 0); vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0); if (!frame_is_intra_only(cm)) { vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL); } xd->mi = cm->mi_grid_visible; xd->mi[0] = cm->mi; vp9_frame_init_quantizer(cpi); x->skip_recode = 0; vp9_init_mv_probs(cm); vp9_initialize_rd_consts(cpi); cm->log2_tile_rows = 0; if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL) CHECK_MEM_ERROR( cm, cpi->twopass.fp_mb_float_stats, vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1)); { FIRSTPASS_STATS fps; TileDataEnc *first_tile_col; if (!cpi->row_mt) { cm->log2_tile_cols = 0; cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy; cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy; first_pass_encode(cpi, fp_acc_data); first_pass_stat_calc(cpi, &fps, fp_acc_data); } else { cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read; cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write; if (cpi->row_mt_bit_exact) { cm->log2_tile_cols = 0; vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs); } vp9_encode_fp_row_mt(cpi); first_tile_col = &cpi->tile_data[0]; if (cpi->row_mt_bit_exact) accumulate_floating_point_stats(cpi, first_tile_col); first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data)); } // Dont allow a value of 0 for duration. // (Section duration is also defaulted to minimum of 1.0). fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start)); // Don't want to do output stats with a stack variable! twopass->this_frame_stats = fps; output_stats(&twopass->this_frame_stats, cpi->output_pkt_list); accumulate_stats(&twopass->total_stats, &fps); #if CONFIG_FP_MB_STATS if (cpi->use_fp_mb_stats) { output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list); } #endif } // Copy the previous Last Frame back into gf and and arf buffers if // the prediction is good enough... but also don't allow it to lag too far. if ((twopass->sr_update_lag > 3) || ((cm->current_video_frame > 0) && (twopass->this_frame_stats.pcnt_inter > 0.20) && ((twopass->this_frame_stats.intra_error / DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { if (gld_yv12 != NULL) { ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->ref_frame_map[cpi->lst_fb_idx]); } twopass->sr_update_lag = 1; } else { ++twopass->sr_update_lag; } vpx_extend_frame_borders(new_yv12); // The frame we just compressed now becomes the last frame. ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx); // Special case for the first frame. Copy into the GF buffer as a second // reference. if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) { ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], cm->ref_frame_map[cpi->lst_fb_idx]); } // Use this to see what the first pass reconstruction looks like. if (0) { char filename[512]; FILE *recon_file; snprintf(filename, sizeof(filename), "enc%04d.yuv", (int)cm->current_video_frame); if (cm->current_video_frame == 0) recon_file = fopen(filename, "wb"); else recon_file = fopen(filename, "ab"); (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); fclose(recon_file); } ++cm->current_video_frame; if (cpi->use_svc) vp9_inc_frame_in_layer(cpi); } static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75, 0.85, 0.90, 0.90, 0.90, 1.00, 1.25 }; static double calc_correction_factor(double err_per_mb, double err_divisor, int q) { const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor); const int index = q >> 5; double power_term; assert((index >= 0) && (index < (QINDEX_RANGE >> 5))); // Adjustment based on quantizer to the power term. power_term = q_pow_term[index] + (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0); // Calculate correction factor. if (power_term < 1.0) assert(error_term >= 0.0); return fclamp(pow(error_term, power_term), 0.05, 5.0); } static double wq_err_divisor(VP9_COMP *cpi) { const VP9_COMMON *const cm = &cpi->common; unsigned int screen_area = (cm->width * cm->height); // Use a different error per mb factor for calculating boost for // different formats. if (screen_area <= 640 * 360) { return 115.0; } else if (screen_area < 1280 * 720) { return 125.0; } else if (screen_area <= 1920 * 1080) { return 130.0; } else if (screen_area < 3840 * 2160) { return 150.0; } // Fall through to here only for 4K and above. return 200.0; } #define NOISE_FACTOR_MIN 0.9 #define NOISE_FACTOR_MAX 1.1 static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err, double inactive_zone, double section_noise, int section_target_bandwidth) { const RATE_CONTROL *const rc = &cpi->rc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; TWO_PASS *const twopass = &cpi->twopass; double last_group_rate_err; // Clamp the target rate to VBR min / max limts. const int target_rate = vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth); double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5); noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX); inactive_zone = fclamp(inactive_zone, 0.0, 1.0); // TODO(jimbankoski): remove #if here or below when this has been // well tested. #if CONFIG_ALWAYS_ADJUST_BPM // based on recent history adjust expectations of bits per macroblock. last_group_rate_err = (double)twopass->rolling_arf_group_actual_bits / DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); #endif if (target_rate <= 0) { return rc->worst_quality; // Highest value allowed } else { const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs : cpi->common.MBs; const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone); const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct); const double av_err_per_mb = section_err / active_pct; const double speed_term = 1.0 + 0.04 * oxcf->speed; const int target_norm_bits_per_mb = (int)(((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs); int q; // TODO(jimbankoski): remove #if here or above when this has been // well tested. #if !CONFIG_ALWAYS_ADJUST_BPM // based on recent history adjust expectations of bits per macroblock. last_group_rate_err = (double)twopass->rolling_arf_group_actual_bits / DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); #endif // Try and pick a max Q that will be high enough to encode the // content at the given rate. for (q = rc->best_quality; q < rc->worst_quality; ++q) { const double factor = calc_correction_factor(av_err_per_mb, wq_err_divisor(cpi), q); const int bits_per_mb = vp9_rc_bits_per_mb( INTER_FRAME, q, factor * speed_term * cpi->twopass.bpm_factor * noise_factor, cpi->common.bit_depth); if (bits_per_mb <= target_norm_bits_per_mb) break; } // Restriction on active max q for constrained quality mode. if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level); return q; } } static void setup_rf_level_maxq(VP9_COMP *cpi) { int i; RATE_CONTROL *const rc = &cpi->rc; for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality); rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality); } } static void init_subsampling(VP9_COMP *cpi) { const VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; const int w = cm->width; const int h = cm->height; int i; for (i = 0; i < FRAME_SCALE_STEPS; ++i) { // Note: Frames with odd-sized dimensions may result from this scaling. rc->frame_width[i] = (w * 16) / frame_scale_factor[i]; rc->frame_height[i] = (h * 16) / frame_scale_factor[i]; } setup_rf_level_maxq(cpi); } void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width, int *scaled_frame_height) { RATE_CONTROL *const rc = &cpi->rc; *scaled_frame_width = rc->frame_width[rc->frame_size_selector]; *scaled_frame_height = rc->frame_height[rc->frame_size_selector]; } void vp9_init_second_pass(VP9_COMP *cpi) { VP9EncoderConfig *const oxcf = &cpi->oxcf; RATE_CONTROL *const rc = &cpi->rc; TWO_PASS *const twopass = &cpi->twopass; double frame_rate; FIRSTPASS_STATS *stats; zero_stats(&twopass->total_stats); zero_stats(&twopass->total_left_stats); if (!twopass->stats_in_end) return; stats = &twopass->total_stats; *stats = *twopass->stats_in_end; twopass->total_left_stats = *stats; // Scan the first pass file and calculate a modified score for each // frame that is used to distribute bits. The modified score is assumed // to provide a linear basis for bit allocation. I.e a frame A with a score // that is double that of frame B will be allocated 2x as many bits. { double modified_score_total = 0.0; const FIRSTPASS_STATS *s = twopass->stats_in; double av_err; if (oxcf->vbr_corpus_complexity) { twopass->mean_mod_score = (double)oxcf->vbr_corpus_complexity / 10.0; av_err = get_distribution_av_err(cpi, twopass); } else { av_err = get_distribution_av_err(cpi, twopass); // The first scan is unclamped and gives a raw average. while (s < twopass->stats_in_end) { modified_score_total += calculate_mod_frame_score(cpi, oxcf, s, av_err); ++s; } // The average error from this first scan is used to define the midpoint // error for the rate distribution function. twopass->mean_mod_score = modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count); } // Second scan using clamps based on the previous cycle average. // This may modify the total and average somewhat but we dont bother with // further itterations. modified_score_total = 0.0; s = twopass->stats_in; while (s < twopass->stats_in_end) { modified_score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s, av_err); ++s; } twopass->normalized_score_left = modified_score_total; // If using Corpus wide VBR mode then update the clip target bandwidth to // reflect how the clip compares to the rest of the corpus. if (oxcf->vbr_corpus_complexity) { oxcf->target_bandwidth = (int64_t)((double)oxcf->target_bandwidth * (twopass->normalized_score_left / stats->count)); } #if COMPLEXITY_STATS_OUTPUT { FILE *compstats; compstats = fopen("complexity_stats.stt", "a"); fprintf(compstats, "%10.3lf\n", twopass->normalized_score_left / stats->count); fclose(compstats); } #endif } frame_rate = 10000000.0 * stats->count / stats->duration; // Each frame can have a different duration, as the frame rate in the source // isn't guaranteed to be constant. The frame rate prior to the first frame // encoded in the second pass is a guess. However, the sum duration is not. // It is calculated based on the actual durations of all frames from the // first pass. vp9_new_framerate(cpi, frame_rate); twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); // This variable monitors how far behind the second ref update is lagging. twopass->sr_update_lag = 1; // Reset the vbr bits off target counters rc->vbr_bits_off_target = 0; rc->vbr_bits_off_target_fast = 0; rc->rate_error_estimate = 0; // Static sequence monitor variables. twopass->kf_zeromotion_pct = 100; twopass->last_kfgroup_zeromotion_pct = 100; // Initialize bits per macro_block estimate correction factor. twopass->bpm_factor = 1.0; // Initialize actual and target bits counters for ARF groups so that // at the start we have a neutral bpm adjustment. twopass->rolling_arf_group_target_bits = 1; twopass->rolling_arf_group_actual_bits = 1; if (oxcf->resize_mode != RESIZE_NONE) { init_subsampling(cpi); } // Initialize the arnr strangth adjustment to 0 twopass->arnr_strength_adjustment = 0; } #define SR_DIFF_PART 0.0015 #define INTRA_PART 0.005 #define DEFAULT_DECAY_LIMIT 0.75 #define LOW_SR_DIFF_TRHESH 0.1 #define SR_DIFF_MAX 128.0 #define LOW_CODED_ERR_PER_MB 10.0 #define NCOUNT_FRAME_II_THRESH 6.0 static double get_sr_decay_rate(const VP9_COMP *cpi, const FIRSTPASS_STATS *frame) { double sr_diff = (frame->sr_coded_error - frame->coded_error); double sr_decay = 1.0; double modified_pct_inter; double modified_pcnt_intra; const double motion_amplitude_part = frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / (cpi->initial_height + cpi->initial_width)); modified_pct_inter = frame->pcnt_inter; if ((frame->coded_error > LOW_CODED_ERR_PER_MB) && ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < (double)NCOUNT_FRAME_II_THRESH)) { modified_pct_inter = frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral; } modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); if ((sr_diff > LOW_SR_DIFF_TRHESH)) { sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX); sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - motion_amplitude_part - (INTRA_PART * modified_pcnt_intra); } return VPXMAX(sr_decay, DEFAULT_DECAY_LIMIT); } // This function gives an estimate of how badly we believe the prediction // quality is decaying from frame to frame. static double get_zero_motion_factor(const VP9_COMP *cpi, const FIRSTPASS_STATS *frame) { const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; double sr_decay = get_sr_decay_rate(cpi, frame); return VPXMIN(sr_decay, zero_motion_pct); } #define ZM_POWER_FACTOR 0.75 static double get_prediction_decay_rate(const VP9_COMP *cpi, const FIRSTPASS_STATS *next_frame) { const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame); const double zero_motion_factor = (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), ZM_POWER_FACTOR)); return VPXMAX(zero_motion_factor, (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); } // Function to test for a condition where a complex transition is followed // by a static section. For example in slide shows where there is a fade // between slides. This is to help with more optimal kf and gf positioning. static int detect_transition_to_still(VP9_COMP *cpi, int frame_interval, int still_interval, double loop_decay_rate, double last_decay_rate) { TWO_PASS *const twopass = &cpi->twopass; RATE_CONTROL *const rc = &cpi->rc; // Break clause to detect very still sections after motion // For example a static image after a fade or other transition // instead of a clean scene cut. if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && last_decay_rate < 0.9) { int j; // Look ahead a few frames to see if static condition persists... for (j = 0; j < still_interval; ++j) { const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; if (stats >= twopass->stats_in_end) break; if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; } // Only if it does do we signal a transition to still. return j == still_interval; } return 0; } // This function detects a flash through the high relative pcnt_second_ref // score in the frame following a flash frame. The offset passed in should // reflect this. static int detect_flash(const TWO_PASS *twopass, int offset) { const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); // What we are looking for here is a situation where there is a // brief break in prediction (such as a flash) but subsequent frames // are reasonably well predicted by an earlier (pre flash) frame. // The recovery after a flash is indicated by a high pcnt_second_ref // useage or a second ref coded error notabley lower than the last // frame coded error. return next_frame != NULL && ((next_frame->sr_coded_error < next_frame->coded_error) || ((next_frame->pcnt_second_ref > next_frame->pcnt_inter) && (next_frame->pcnt_second_ref >= 0.5))); } // Update the motion related elements to the GF arf boost calculation. static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, double *mv_in_out, double *mv_in_out_accumulator, double *abs_mv_in_out_accumulator, double *mv_ratio_accumulator) { const double pct = stats->pcnt_motion; // Accumulate Motion In/Out of frame stats. *mv_in_out = stats->mv_in_out_count * pct; *mv_in_out_accumulator += *mv_in_out; *abs_mv_in_out_accumulator += fabs(*mv_in_out); // Accumulate a measure of how uniform (or conversely how random) the motion // field is (a ratio of abs(mv) / mv). if (pct > 0.05) { const double mvr_ratio = fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); const double mvc_ratio = fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); *mv_ratio_accumulator += pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); *mv_ratio_accumulator += pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); } } #define BASELINE_ERR_PER_MB 12500.0 #define GF_MAX_BOOST 96.0 static double calc_frame_boost(VP9_COMP *cpi, const FIRSTPASS_STATS *this_frame, double this_frame_mv_in_out) { double frame_boost; const double lq = vp9_convert_qindex_to_q( cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5); const double active_area = calculate_active_area(cpi, this_frame); // Underlying boost factor is based on inter error ratio. frame_boost = (BASELINE_ERR_PER_MB * active_area) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error); // Small adjustment for cases where there is a zoom out if (this_frame_mv_in_out > 0.0) frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); // Q correction and scalling frame_boost = frame_boost * boost_q_correction; return VPXMIN(frame_boost, GF_MAX_BOOST * boost_q_correction); } static double kf_err_per_mb(VP9_COMP *cpi) { const VP9_COMMON *const cm = &cpi->common; unsigned int screen_area = (cm->width * cm->height); // Use a different error per mb factor for calculating boost for // different formats. if (screen_area < 1280 * 720) { return 2000.0; } else if (screen_area < 1920 * 1080) { return 500.0; } return 250.0; } static double calc_kf_frame_boost(VP9_COMP *cpi, const FIRSTPASS_STATS *this_frame, double *sr_accumulator, double this_frame_mv_in_out, double max_boost) { double frame_boost; const double lq = vp9_convert_qindex_to_q( cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00); const double active_area = calculate_active_area(cpi, this_frame); // Underlying boost factor is based on inter error ratio. frame_boost = (kf_err_per_mb(cpi) * active_area) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator); // Update the accumulator for second ref error difference. // This is intended to give an indication of how much the coded error is // increasing over time. *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); *sr_accumulator = VPXMAX(0.0, *sr_accumulator); // Small adjustment for cases where there is a zoom out if (this_frame_mv_in_out > 0.0) frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); // Q correction and scaling // The 40.0 value here is an experimentally derived baseline minimum. // This value is in line with the minimum per frame boost in the alt_ref // boost calculation. frame_boost = ((frame_boost + 40.0) * boost_q_correction); return VPXMIN(frame_boost, max_boost * boost_q_correction); } static int calc_arf_boost(VP9_COMP *cpi, int f_frames, int b_frames) { TWO_PASS *const twopass = &cpi->twopass; int i; double boost_score = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; int arf_boost; int flash_detected = 0; // Search forward from the proposed arf/next gf position. for (i = 0; i < f_frames; ++i) { const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i); if (this_frame == NULL) break; // Update the motion related elements to the boost calculation. accumulate_frame_motion_stats( this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // We want to discount the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(twopass, i) || detect_flash(twopass, i + 1); // Accumulate the effect of prediction quality decay. if (!flash_detected) { decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame, this_frame_mv_in_out); } arf_boost = (int)boost_score; // Reset for backward looking loop. boost_score = 0.0; mv_ratio_accumulator = 0.0; decay_accumulator = 1.0; this_frame_mv_in_out = 0.0; mv_in_out_accumulator = 0.0; abs_mv_in_out_accumulator = 0.0; // Search backward towards last gf position. for (i = -1; i >= -b_frames; --i) { const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i); if (this_frame == NULL) break; // Update the motion related elements to the boost calculation. accumulate_frame_motion_stats( this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // We want to discount the the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(twopass, i) || detect_flash(twopass, i + 1); // Cumulative effect of prediction quality decay. if (!flash_detected) { decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame, this_frame_mv_in_out); } arf_boost += (int)boost_score; if (arf_boost < ((b_frames + f_frames) * 40)) arf_boost = ((b_frames + f_frames) * 40); arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST); return arf_boost; } // Calculate a section intra ratio used in setting max loop filter. static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, const FIRSTPASS_STATS *end, int section_length) { const FIRSTPASS_STATS *s = begin; double intra_error = 0.0; double coded_error = 0.0; int i = 0; while (s < end && i < section_length) { intra_error += s->intra_error; coded_error += s->coded_error; ++s; ++i; } return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); } // Calculate the total bits to allocate in this GF/ARF group. static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi, double gf_group_err) { const RATE_CONTROL *const rc = &cpi->rc; const TWO_PASS *const twopass = &cpi->twopass; const int max_bits = frame_max_bits(rc, &cpi->oxcf); int64_t total_group_bits; // Calculate the bits to be allocated to the group as a whole. if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) { total_group_bits = (int64_t)(twopass->kf_group_bits * (gf_group_err / twopass->kf_group_error_left)); } else { total_group_bits = 0; } // Clamp odd edge cases. total_group_bits = (total_group_bits < 0) ? 0 : (total_group_bits > twopass->kf_group_bits) ? twopass->kf_group_bits : total_group_bits; // Clip based on user supplied data rate variability limit. if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; return total_group_bits; } // Calculate the number bits extra to assign to boosted frames in a group. static int calculate_boost_bits(int frame_count, int boost, int64_t total_group_bits) { int allocation_chunks; // return 0 for invalid inputs (could arise e.g. through rounding errors) if (!boost || (total_group_bits <= 0) || (frame_count < 0)) return 0; allocation_chunks = (frame_count * NORMAL_BOOST) + boost; // Prevent overflow. if (boost > 1023) { int divisor = boost >> 10; boost /= divisor; allocation_chunks /= divisor; } // Calculate the number of extra bits for use in the boosted frame or frames. return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0); } // Used in corpus vbr: Calculates the total normalized group complexity score // for a given number of frames starting at the current position in the stats // file. static double calculate_group_score(VP9_COMP *cpi, double av_score, int frame_count) { VP9EncoderConfig *const oxcf = &cpi->oxcf; TWO_PASS *const twopass = &cpi->twopass; const FIRSTPASS_STATS *s = twopass->stats_in; double score_total = 0.0; int i = 0; // We dont ever want to return a 0 score here. if (frame_count == 0) return 1.0; while ((i < frame_count) && (s < twopass->stats_in_end)) { score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s, av_score); ++s; ++i; } return score_total; } static void find_arf_order(VP9_COMP *cpi, GF_GROUP *gf_group, int *index_counter, int depth, int start, int end) { TWO_PASS *twopass = &cpi->twopass; const FIRSTPASS_STATS *const start_pos = twopass->stats_in; FIRSTPASS_STATS fpf_frame; const int mid = (start + end + 1) >> 1; const int min_frame_interval = 2; int idx; // Process regular P frames if ((end - start < min_frame_interval) || (depth > gf_group->allowed_max_layer_depth)) { for (idx = start; idx <= end; ++idx) { gf_group->update_type[*index_counter] = LF_UPDATE; gf_group->arf_src_offset[*index_counter] = 0; gf_group->frame_gop_index[*index_counter] = idx; gf_group->rf_level[*index_counter] = INTER_NORMAL; gf_group->layer_depth[*index_counter] = depth; gf_group->gfu_boost[*index_counter] = NORMAL_BOOST; ++(*index_counter); } gf_group->max_layer_depth = VPXMAX(gf_group->max_layer_depth, depth); return; } assert(abs(mid - start) >= 1 && abs(mid - end) >= 1); // Process ARF frame gf_group->layer_depth[*index_counter] = depth; gf_group->update_type[*index_counter] = ARF_UPDATE; gf_group->arf_src_offset[*index_counter] = mid - start; gf_group->frame_gop_index[*index_counter] = mid; gf_group->rf_level[*index_counter] = GF_ARF_LOW; for (idx = 0; idx <= mid; ++idx) if (EOF == input_stats(twopass, &fpf_frame)) break; gf_group->gfu_boost[*index_counter] = VPXMAX(MIN_ARF_GF_BOOST, calc_arf_boost(cpi, end - mid + 1, mid - start) >> depth); reset_fpf_position(twopass, start_pos); ++(*index_counter); find_arf_order(cpi, gf_group, index_counter, depth + 1, start, mid - 1); gf_group->update_type[*index_counter] = USE_BUF_FRAME; gf_group->arf_src_offset[*index_counter] = 0; gf_group->frame_gop_index[*index_counter] = mid; gf_group->rf_level[*index_counter] = INTER_NORMAL; gf_group->layer_depth[*index_counter] = depth; ++(*index_counter); find_arf_order(cpi, gf_group, index_counter, depth + 1, mid + 1, end); } static INLINE void set_gf_overlay_frame_type(GF_GROUP *gf_group, int frame_index, int source_alt_ref_active) { if (source_alt_ref_active) { gf_group->update_type[frame_index] = OVERLAY_UPDATE; gf_group->rf_level[frame_index] = INTER_NORMAL; gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS - 1; gf_group->gfu_boost[frame_index] = NORMAL_BOOST; } else { gf_group->update_type[frame_index] = GF_UPDATE; gf_group->rf_level[frame_index] = GF_ARF_STD; gf_group->layer_depth[frame_index] = 0; } } static void define_gf_group_structure(VP9_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; TWO_PASS *const twopass = &cpi->twopass; GF_GROUP *const gf_group = &twopass->gf_group; int frame_index = 0; int key_frame = cpi->common.frame_type == KEY_FRAME; int layer_depth = 1; int gop_frames = rc->baseline_gf_interval - (key_frame || rc->source_alt_ref_pending); gf_group->frame_start = cpi->common.current_video_frame; gf_group->frame_end = gf_group->frame_start + rc->baseline_gf_interval; gf_group->max_layer_depth = 0; gf_group->allowed_max_layer_depth = 0; // For key frames the frame target rate is already set and it // is also the golden frame. // === [frame_index == 0] === if (!key_frame) set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_active); ++frame_index; // === [frame_index == 1] === if (rc->source_alt_ref_pending) { gf_group->update_type[frame_index] = ARF_UPDATE; gf_group->rf_level[frame_index] = GF_ARF_STD; gf_group->layer_depth[frame_index] = layer_depth; gf_group->arf_src_offset[frame_index] = (unsigned char)(rc->baseline_gf_interval - 1); gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval; gf_group->max_layer_depth = 1; ++frame_index; ++layer_depth; gf_group->allowed_max_layer_depth = cpi->oxcf.enable_auto_arf; } find_arf_order(cpi, gf_group, &frame_index, layer_depth, 1, gop_frames); set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_pending); gf_group->arf_src_offset[frame_index] = 0; gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval; // Set the frame ops number. gf_group->gf_group_size = frame_index; } static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits, int gf_arf_bits) { VP9EncoderConfig *const oxcf = &cpi->oxcf; RATE_CONTROL *const rc = &cpi->rc; TWO_PASS *const twopass = &cpi->twopass; GF_GROUP *const gf_group = &twopass->gf_group; FIRSTPASS_STATS frame_stats; int i; int frame_index = 0; int target_frame_size; int key_frame; const int max_bits = frame_max_bits(&cpi->rc, oxcf); int64_t total_group_bits = gf_group_bits; int mid_frame_idx; int normal_frames; int normal_frame_bits; int last_frame_reduction = 0; double av_score = 1.0; double tot_norm_frame_score = 1.0; double this_frame_score = 1.0; // Define the GF structure and specify int gop_frames = gf_group->gf_group_size; key_frame = cpi->common.frame_type == KEY_FRAME; // For key frames the frame target rate is already set and it // is also the golden frame. // === [frame_index == 0] === if (!key_frame) { gf_group->bit_allocation[frame_index] = rc->source_alt_ref_active ? 0 : gf_arf_bits; } // Deduct the boost bits for arf (or gf if it is not a key frame) // from the group total. if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; ++frame_index; // === [frame_index == 1] === // Store the bits to spend on the ARF if there is one. if (rc->source_alt_ref_pending) { gf_group->bit_allocation[frame_index] = gf_arf_bits; ++frame_index; } // Define middle frame mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1; normal_frames = (rc->baseline_gf_interval - rc->source_alt_ref_pending); if (normal_frames > 1) normal_frame_bits = (int)(total_group_bits / normal_frames); else normal_frame_bits = (int)total_group_bits; gf_group->gfu_boost[1] = rc->gfu_boost; if (cpi->multi_layer_arf) { int idx; int arf_depth_bits[MAX_ARF_LAYERS] = { 0 }; int arf_depth_count[MAX_ARF_LAYERS] = { 0 }; int arf_depth_boost[MAX_ARF_LAYERS] = { 0 }; int total_arfs = 1; // Account for the base layer ARF. for (idx = 0; idx < gop_frames; ++idx) { if (gf_group->update_type[idx] == ARF_UPDATE) { arf_depth_boost[gf_group->layer_depth[idx]] += gf_group->gfu_boost[idx]; ++arf_depth_count[gf_group->layer_depth[idx]]; } } for (idx = 2; idx < MAX_ARF_LAYERS; ++idx) { if (arf_depth_boost[idx] == 0) break; arf_depth_bits[idx] = calculate_boost_bits( rc->baseline_gf_interval - total_arfs - arf_depth_count[idx], arf_depth_boost[idx], total_group_bits); total_group_bits -= arf_depth_bits[idx]; total_arfs += arf_depth_count[idx]; } // offset the base layer arf normal_frames -= (total_arfs - 1); if (normal_frames > 1) normal_frame_bits = (int)(total_group_bits / normal_frames); else normal_frame_bits = (int)total_group_bits; target_frame_size = normal_frame_bits; target_frame_size = clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); // The first layer ARF has its bit allocation assigned. for (idx = frame_index; idx < gop_frames; ++idx) { switch (gf_group->update_type[idx]) { case ARF_UPDATE: gf_group->bit_allocation[idx] = (int)(((int64_t)arf_depth_bits[gf_group->layer_depth[idx]] * gf_group->gfu_boost[idx]) / arf_depth_boost[gf_group->layer_depth[idx]]); break; case USE_BUF_FRAME: gf_group->bit_allocation[idx] = 0; break; default: gf_group->bit_allocation[idx] = target_frame_size; break; } } gf_group->bit_allocation[idx] = 0; return; } if (oxcf->vbr_corpus_complexity) { av_score = get_distribution_av_err(cpi, twopass); tot_norm_frame_score = calculate_group_score(cpi, av_score, normal_frames); } // Allocate bits to the other frames in the group. for (i = 0; i < normal_frames; ++i) { if (EOF == input_stats(twopass, &frame_stats)) break; if (oxcf->vbr_corpus_complexity) { this_frame_score = calculate_norm_frame_score(cpi, twopass, oxcf, &frame_stats, av_score); normal_frame_bits = (int)((double)total_group_bits * (this_frame_score / tot_norm_frame_score)); } target_frame_size = normal_frame_bits; if ((i == (normal_frames - 1)) && (i >= 1)) { last_frame_reduction = normal_frame_bits / 16; target_frame_size -= last_frame_reduction; } target_frame_size = clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); gf_group->bit_allocation[frame_index] = target_frame_size; ++frame_index; } // Add in some extra bits for the middle frame in the group. gf_group->bit_allocation[mid_frame_idx] += last_frame_reduction; // Note: // We need to configure the frame at the end of the sequence + 1 that will be // the start frame for the next group. Otherwise prior to the call to // vp9_rc_get_second_pass_params() the data will be undefined. } // Adjusts the ARNF filter for a GF group. static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise, double section_inter, double section_motion) { TWO_PASS *const twopass = &cpi->twopass; double section_zeromv = section_inter - section_motion; twopass->arnr_strength_adjustment = 0; if (section_noise < 150) { twopass->arnr_strength_adjustment -= 1; if (section_noise < 75) twopass->arnr_strength_adjustment -= 1; } else if (section_noise > 250) twopass->arnr_strength_adjustment += 1; if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1; } // Analyse and define a gf/arf group. #define ARF_ABS_ZOOM_THRESH 4.0 #define MAX_GF_BOOST 5400 static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; VP9EncoderConfig *const oxcf = &cpi->oxcf; TWO_PASS *const twopass = &cpi->twopass; FIRSTPASS_STATS next_frame; const FIRSTPASS_STATS *const start_pos = twopass->stats_in; int i; double gf_group_err = 0.0; double gf_group_raw_error = 0.0; double gf_group_noise = 0.0; double gf_group_skip_pct = 0.0; double gf_group_inactive_zone_rows = 0.0; double gf_group_inter = 0.0; double gf_group_motion = 0.0; double gf_first_frame_err = 0.0; double mod_frame_err = 0.0; double mv_ratio_accumulator = 0.0; double zero_motion_accumulator = 1.0; double loop_decay_rate = 1.00; double last_loop_decay_rate = 1.00; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; double mv_ratio_accumulator_thresh; double abs_mv_in_out_thresh; double sr_accumulator = 0.0; const double av_err = get_distribution_av_err(cpi, twopass); unsigned int allow_alt_ref = is_altref_enabled(cpi); int flash_detected; int active_max_gf_interval; int active_min_gf_interval; int64_t gf_group_bits; int gf_arf_bits; const int is_key_frame = frame_is_intra_only(cm); const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; double gop_intra_factor = 1.0; // Reset the GF group data structures unless this is a key // frame in which case it will already have been done. if (is_key_frame == 0) { vp9_zero(twopass->gf_group); } vpx_clear_system_state(); vp9_zero(next_frame); // Load stats for the current frame. mod_frame_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); // Note the error of the frame at the start of the group. This will be // the GF frame error if we code a normal gf. gf_first_frame_err = mod_frame_err; // If this is a key frame or the overlay from a previous arf then // the error score / cost of this frame has already been accounted for. if (arf_active_or_kf) { gf_group_err -= gf_first_frame_err; gf_group_raw_error -= this_frame->coded_error; gf_group_noise -= this_frame->frame_noise_energy; gf_group_skip_pct -= this_frame->intra_skip_pct; gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; gf_group_inter -= this_frame->pcnt_inter; gf_group_motion -= this_frame->pcnt_motion; } // Motion breakout threshold for loop below depends on image size. mv_ratio_accumulator_thresh = (cpi->initial_height + cpi->initial_width) / 4.0; abs_mv_in_out_thresh = ARF_ABS_ZOOM_THRESH; // Set a maximum and minimum interval for the GF group. // If the image appears almost completely static we can extend beyond this. { int int_max_q = (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality, cpi->common.bit_depth)); int q_term = (cm->current_video_frame == 0) ? int_max_q / 32 : (int)(vp9_convert_qindex_to_q(rc->last_boosted_qindex, cpi->common.bit_depth) / 6); active_min_gf_interval = rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200); active_min_gf_interval = VPXMIN(active_min_gf_interval, rc->max_gf_interval + arf_active_or_kf); // The value chosen depends on the active Q range. At low Q we have // bits to spare and are better with a smaller interval and smaller boost. // At high Q when there are few bits to spare we are better with a longer // interval to spread the cost of the GF. active_max_gf_interval = 11 + arf_active_or_kf + VPXMIN(5, q_term); // Force max GF interval to be odd. active_max_gf_interval = active_max_gf_interval | 0x01; // We have: active_min_gf_interval <= // rc->max_gf_interval + arf_active_or_kf. if (active_max_gf_interval < active_min_gf_interval) { active_max_gf_interval = active_min_gf_interval; } else { active_max_gf_interval = VPXMIN(active_max_gf_interval, rc->max_gf_interval + arf_active_or_kf); } // Would the active max drop us out just before the near the next kf? if ((active_max_gf_interval <= rc->frames_to_key) && (active_max_gf_interval >= (rc->frames_to_key - rc->min_gf_interval))) active_max_gf_interval = rc->frames_to_key / 2; } if (cpi->multi_layer_arf) { int layers = 0; int max_layers = VPXMIN(MAX_ARF_LAYERS, cpi->oxcf.enable_auto_arf); // Adapt the intra_error factor to active_max_gf_interval limit. for (i = active_max_gf_interval; i > 0; i >>= 1) ++layers; layers = VPXMIN(max_layers, layers); gop_intra_factor += (layers * 0.25); } i = 0; while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { ++i; // Accumulate error score of frames in this gf group. mod_frame_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); gf_group_err += mod_frame_err; gf_group_raw_error += this_frame->coded_error; gf_group_noise += this_frame->frame_noise_energy; gf_group_skip_pct += this_frame->intra_skip_pct; gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; gf_group_inter += this_frame->pcnt_inter; gf_group_motion += this_frame->pcnt_motion; if (EOF == input_stats(twopass, &next_frame)) break; // Test for the case where there is a brief flash but the prediction // quality back to an earlier frame is then restored. flash_detected = detect_flash(twopass, 0); // Update the motion related elements to the boost calculation. accumulate_frame_motion_stats( &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // Monitor for static sections. if ((rc->frames_since_key + i - 1) > 1) { zero_motion_accumulator = VPXMIN( zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); } // Accumulate the effect of prediction quality decay. if (!flash_detected) { last_loop_decay_rate = loop_decay_rate; loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); // Break clause to detect very still sections after motion. For example, // a static image after a fade or other transition. if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, last_loop_decay_rate)) { allow_alt_ref = 0; break; } // Update the accumulator for second ref error difference. // This is intended to give an indication of how much the coded error is // increasing over time. if (i == 1) { sr_accumulator += next_frame.coded_error; } else { sr_accumulator += (next_frame.sr_coded_error - next_frame.coded_error); } } // Break out conditions. // Break at maximum of active_max_gf_interval unless almost totally static. // // Note that the addition of a test of rc->source_alt_ref_active is // deliberate. The effect of this is that after a normal altref group even // if the material is static there will be one normal length GF group // before allowing longer GF groups. The reason for this is that in cases // such as slide shows where slides are separated by a complex transition // such as a fade, the arf group spanning the transition may not be coded // at a very high quality and hence this frame (with its overlay) is a // poor golden frame to use for an extended group. if (((i >= active_max_gf_interval) && ((zero_motion_accumulator < 0.995) || (rc->source_alt_ref_active))) || ( // Don't break out with a very short interval. (i >= active_min_gf_interval) && // If possible dont break very close to a kf ((rc->frames_to_key - i) >= rc->min_gf_interval) && (i & 0x01) && (!flash_detected) && ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || (abs_mv_in_out_accumulator > abs_mv_in_out_thresh) || (sr_accumulator > gop_intra_factor * next_frame.intra_error)))) { break; } *this_frame = next_frame; } // Was the group length constrained by the requirement for a new KF? rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; // Should we use the alternate reference frame. if ((zero_motion_accumulator < 0.995) && allow_alt_ref && (twopass->kf_zeromotion_pct < STATIC_KF_GROUP_THRESH) && (i < cpi->oxcf.lag_in_frames) && (i >= rc->min_gf_interval)) { const int forward_frames = (rc->frames_to_key - i >= i - 1) ? i - 1 : VPXMAX(0, rc->frames_to_key - i); // Calculate the boost for alt ref. rc->gfu_boost = calc_arf_boost(cpi, forward_frames, (i - 1)); rc->source_alt_ref_pending = 1; } else { reset_fpf_position(twopass, start_pos); rc->gfu_boost = VPXMIN(MAX_GF_BOOST, calc_arf_boost(cpi, (i - 1), 0)); rc->source_alt_ref_pending = 0; } #ifdef AGGRESSIVE_VBR // Limit maximum boost based on interval length. rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 140); #else rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 200); #endif rc->baseline_gf_interval = i - rc->source_alt_ref_pending; // Reset the file position. reset_fpf_position(twopass, start_pos); // Calculate the bits to be allocated to the gf/arf group as a whole gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); // Calculate an estimate of the maxq needed for the group. // We are more aggressive about correcting for sections // where there could be significant overshoot than for easier // sections where we do not wish to risk creating an overshoot // of the allocated bit budget. if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) { const int vbr_group_bits_per_frame = (int)(gf_group_bits / rc->baseline_gf_interval); const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; const double group_av_noise = gf_group_noise / rc->baseline_gf_interval; const double group_av_skip_pct = gf_group_skip_pct / rc->baseline_gf_interval; const double group_av_inactive_zone = ((gf_group_inactive_zone_rows * 2) / (rc->baseline_gf_interval * (double)cm->mb_rows)); int tmp_q = get_twopass_worst_quality( cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), group_av_noise, vbr_group_bits_per_frame); twopass->active_worst_quality = (tmp_q + (twopass->active_worst_quality * 3)) >> 2; #if CONFIG_ALWAYS_ADJUST_BPM // Reset rolling actual and target bits counters for ARF groups. twopass->rolling_arf_group_target_bits = 0; twopass->rolling_arf_group_actual_bits = 0; #endif } // Context Adjustment of ARNR filter strength if (rc->baseline_gf_interval > 1) { adjust_group_arnr_filter(cpi, (gf_group_noise / rc->baseline_gf_interval), (gf_group_inter / rc->baseline_gf_interval), (gf_group_motion / rc->baseline_gf_interval)); } else { twopass->arnr_strength_adjustment = 0; } // Calculate the extra bits to be used for boosted frame(s) gf_arf_bits = calculate_boost_bits((rc->baseline_gf_interval - 1), rc->gfu_boost, gf_group_bits); // Adjust KF group bits and error remaining. twopass->kf_group_error_left -= gf_group_err; // Decide GOP structure. define_gf_group_structure(cpi); // Allocate bits to each of the frames in the GF group. allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits); // Reset the file position. reset_fpf_position(twopass, start_pos); // Calculate a section intra ratio used in setting max loop filter. if (cpi->common.frame_type != KEY_FRAME) { twopass->section_intra_rating = calculate_section_intra_ratio( start_pos, twopass->stats_in_end, rc->baseline_gf_interval); } if (oxcf->resize_mode == RESIZE_DYNAMIC) { // Default to starting GF groups at normal frame size. cpi->rc.next_frame_size_selector = UNSCALED; } #if !CONFIG_ALWAYS_ADJUST_BPM // Reset rolling actual and target bits counters for ARF groups. twopass->rolling_arf_group_target_bits = 0; twopass->rolling_arf_group_actual_bits = 0; #endif } // Intra / Inter threshold very low #define VERY_LOW_II 1.5 // Clean slide transitions we expect a sharp single frame spike in error. #define ERROR_SPIKE 5.0 // Slide show transition detection. // Tests for case where there is very low error either side of the current frame // but much higher just for this frame. This can help detect key frames in // slide shows even where the slides are pictures of different sizes. // Also requires that intra and inter errors are very similar to help eliminate // harmful false positives. // It will not help if the transition is a fade or other multi-frame effect. static int slide_transition(const FIRSTPASS_STATS *this_frame, const FIRSTPASS_STATS *last_frame, const FIRSTPASS_STATS *next_frame) { return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) && (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) && (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE)); } // Minimum % intra coding observed in first pass (1.0 = 100%) #define MIN_INTRA_LEVEL 0.25 // Threshold for use of the lagging second reference frame. Scene cuts do not // usually have a high second ref useage. #define SECOND_REF_USEAGE_THRESH 0.125 // Hard threshold where the first pass chooses intra for almost all blocks. // In such a case even if the frame is not a scene cut coding a key frame // may be a good option. #define VERY_LOW_INTER_THRESH 0.05 // Maximum threshold for the relative ratio of intra error score vs best // inter error score. #define KF_II_ERR_THRESHOLD 2.5 #define KF_II_MAX 128.0 #define II_FACTOR 12.5 // Test for very low intra complexity which could cause false key frames #define V_LOW_INTRA 0.5 static int test_candidate_kf(TWO_PASS *twopass, const FIRSTPASS_STATS *last_frame, const FIRSTPASS_STATS *this_frame, const FIRSTPASS_STATS *next_frame) { int is_viable_kf = 0; double pcnt_intra = 1.0 - this_frame->pcnt_inter; // Does the frame satisfy the primary criteria of a key frame? // See above for an explanation of the test criteria. // If so, then examine how well it predicts subsequent frames. if (!detect_flash(twopass, -1) && !detect_flash(twopass, 0) && (this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || (slide_transition(this_frame, last_frame, next_frame)) || (((this_frame->coded_error > (next_frame->coded_error * 1.1)) && (this_frame->coded_error > (last_frame->coded_error * 1.1))) && (pcnt_intra > MIN_INTRA_LEVEL) && ((pcnt_intra + this_frame->pcnt_neutral) > 0.5) && ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < KF_II_ERR_THRESHOLD)))) { int i; const FIRSTPASS_STATS *start_pos = twopass->stats_in; FIRSTPASS_STATS local_next_frame = *next_frame; double boost_score = 0.0; double old_boost_score = 0.0; double decay_accumulator = 1.0; // Examine how well the key frame predicts subsequent frames. for (i = 0; i < 16; ++i) { double next_iiratio = (II_FACTOR * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; // Cumulative effect of decay in prediction quality. if (local_next_frame.pcnt_inter > 0.85) decay_accumulator *= local_next_frame.pcnt_inter; else decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; // Keep a running total. boost_score += (decay_accumulator * next_iiratio); // Test various breakout clauses. if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < 0.20) && (next_iiratio < 3.0)) || ((boost_score - old_boost_score) < 3.0) || (local_next_frame.intra_error < V_LOW_INTRA)) { break; } old_boost_score = boost_score; // Get the next frame details if (EOF == input_stats(twopass, &local_next_frame)) break; } // If there is tolerable prediction for at least the next 3 frames then // break out else discard this potential key frame and move on if (boost_score > 30.0 && (i > 3)) { is_viable_kf = 1; } else { // Reset the file position reset_fpf_position(twopass, start_pos); is_viable_kf = 0; } } return is_viable_kf; } #define FRAMES_TO_CHECK_DECAY 8 #define MIN_KF_TOT_BOOST 300 #define KF_BOOST_SCAN_MAX_FRAMES 32 #define KF_ABS_ZOOM_THRESH 6.0 #ifdef AGGRESSIVE_VBR #define KF_MAX_FRAME_BOOST 80.0 #define MAX_KF_TOT_BOOST 4800 #else #define KF_MAX_FRAME_BOOST 96.0 #define MAX_KF_TOT_BOOST 5400 #endif static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { int i, j; RATE_CONTROL *const rc = &cpi->rc; TWO_PASS *const twopass = &cpi->twopass; GF_GROUP *const gf_group = &twopass->gf_group; const VP9EncoderConfig *const oxcf = &cpi->oxcf; const FIRSTPASS_STATS first_frame = *this_frame; const FIRSTPASS_STATS *const start_position = twopass->stats_in; FIRSTPASS_STATS next_frame; FIRSTPASS_STATS last_frame; int kf_bits = 0; double decay_accumulator = 1.0; double zero_motion_accumulator = 1.0; double boost_score = 0.0; double kf_mod_err = 0.0; double kf_raw_err = 0.0; double kf_group_err = 0.0; double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; double sr_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; const double av_err = get_distribution_av_err(cpi, twopass); vp9_zero(next_frame); cpi->common.frame_type = KEY_FRAME; rc->frames_since_key = 0; // Reset the GF group data structures. vp9_zero(*gf_group); // Is this a forced key frame by interval. rc->this_key_frame_forced = rc->next_key_frame_forced; // Clear the alt ref active flag and last group multi arf flags as they // can never be set for a key frame. rc->source_alt_ref_active = 0; // KF is always a GF so clear frames till next gf counter. rc->frames_till_gf_update_due = 0; rc->frames_to_key = 1; twopass->kf_group_bits = 0; // Total bits available to kf group twopass->kf_group_error_left = 0.0; // Group modified error score. kf_raw_err = this_frame->intra_error; kf_mod_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); // Initialize the decay rates for the recent frames to check for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; // Find the next keyframe. i = 0; while (twopass->stats_in < twopass->stats_in_end && rc->frames_to_key < cpi->oxcf.key_freq) { // Accumulate kf group error. kf_group_err += calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); // Load the next frame's stats. last_frame = *this_frame; input_stats(twopass, this_frame); // Provided that we are not at the end of the file... if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) { double loop_decay_rate; // Check for a scene cut. if (test_candidate_kf(twopass, &last_frame, this_frame, twopass->stats_in)) break; // How fast is the prediction quality decaying? loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in); // We want to know something about the recent past... rather than // as used elsewhere where we are concerned with decay in prediction // quality since the last GF or KF. recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; decay_accumulator = 1.0; for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) decay_accumulator *= recent_loop_decay[j]; // Special check for transition or high motion followed by a // static scene. if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, loop_decay_rate, decay_accumulator)) break; // Step on to the next frame. ++rc->frames_to_key; // If we don't have a real key frame within the next two // key_freq intervals then break out of the loop. if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break; } else { ++rc->frames_to_key; } ++i; } // If there is a max kf interval set by the user we must obey it. // We already breakout of the loop above at 2x max. // This code centers the extra kf if the actual natural interval // is between 1x and 2x. if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { FIRSTPASS_STATS tmp_frame = first_frame; rc->frames_to_key /= 2; // Reset to the start of the group. reset_fpf_position(twopass, start_position); kf_group_err = 0.0; // Rescan to get the correct error data for the forced kf group. for (i = 0; i < rc->frames_to_key; ++i) { kf_group_err += calculate_norm_frame_score(cpi, twopass, oxcf, &tmp_frame, av_err); input_stats(twopass, &tmp_frame); } rc->next_key_frame_forced = 1; } else if (twopass->stats_in == twopass->stats_in_end || rc->frames_to_key >= cpi->oxcf.key_freq) { rc->next_key_frame_forced = 1; } else { rc->next_key_frame_forced = 0; } // Special case for the last key frame of the file. if (twopass->stats_in >= twopass->stats_in_end) { // Accumulate kf group error. kf_group_err += calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); } // Calculate the number of bits that should be assigned to the kf group. if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) { // Maximum number of bits for a single normal frame (not key frame). const int max_bits = frame_max_bits(rc, &cpi->oxcf); // Maximum number of bits allocated to the key frame group. int64_t max_grp_bits; // Default allocation based on bits left and relative // complexity of the section. twopass->kf_group_bits = (int64_t)( twopass->bits_left * (kf_group_err / twopass->normalized_score_left)); // Clip based on maximum per frame rate defined by the user. max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; if (twopass->kf_group_bits > max_grp_bits) twopass->kf_group_bits = max_grp_bits; } else { twopass->kf_group_bits = 0; } twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits); // Reset the first pass file position. reset_fpf_position(twopass, start_position); // Scan through the kf group collating various stats used to determine // how many bits to spend on it. boost_score = 0.0; for (i = 0; i < (rc->frames_to_key - 1); ++i) { if (EOF == input_stats(twopass, &next_frame)) break; // The zero motion test here insures that if we mark a kf group as static // it is static throughout not just the first KF_BOOST_SCAN_MAX_FRAMES. // It also allows for a larger boost on long static groups. if ((i <= KF_BOOST_SCAN_MAX_FRAMES) || (zero_motion_accumulator >= 0.99)) { double frame_boost; double zm_factor; // Monitor for static sections. // First frame in kf group the second ref indicator is invalid. if (i > 0) { zero_motion_accumulator = VPXMIN( zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); } else { zero_motion_accumulator = next_frame.pcnt_inter - next_frame.pcnt_motion; } // Factor 0.75-1.25 based on how much of frame is static. zm_factor = (0.75 + (zero_motion_accumulator / 2.0)); // The second (lagging) ref error is not valid immediately after // a key frame because either the lag has not built up (in the case of // the first key frame or it points to a refernce before the new key // frame. if (i < 2) sr_accumulator = 0.0; frame_boost = calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0, KF_MAX_FRAME_BOOST * zm_factor); boost_score += frame_boost; // Measure of zoom. Large zoom tends to indicate reduced boost. abs_mv_in_out_accumulator += fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion); if ((frame_boost < 25.00) || (abs_mv_in_out_accumulator > KF_ABS_ZOOM_THRESH) || (sr_accumulator > (kf_raw_err * 1.50))) break; } else { break; } } reset_fpf_position(twopass, start_position); // Store the zero motion percentage twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); // Calculate a section intra ratio used in setting max loop filter. twopass->section_intra_rating = calculate_section_intra_ratio( start_position, twopass->stats_in_end, rc->frames_to_key); // Special case for static / slide show content but dont apply // if the kf group is very short. if ((zero_motion_accumulator > 0.99) && (rc->frames_to_key > 8)) { rc->kf_boost = MAX_KF_TOT_BOOST; } else { // Apply various clamps for min and max boost rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3)); rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST); rc->kf_boost = VPXMIN(rc->kf_boost, MAX_KF_TOT_BOOST); } // Work out how many bits to allocate for the key frame itself. kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, twopass->kf_group_bits); twopass->kf_group_bits -= kf_bits; // Save the bits to spend on the key frame. gf_group->bit_allocation[0] = kf_bits; gf_group->update_type[0] = KF_UPDATE; gf_group->rf_level[0] = KF_STD; // Note the total error score of the kf group minus the key frame itself. twopass->kf_group_error_left = (kf_group_err - kf_mod_err); // Adjust the count of total modified error left. // The count of bits left is adjusted elsewhere based on real coded frame // sizes. twopass->normalized_score_left -= kf_group_err; if (oxcf->resize_mode == RESIZE_DYNAMIC) { // Default to normal-sized frame on keyframes. cpi->rc.next_frame_size_selector = UNSCALED; } } static int is_skippable_frame(const VP9_COMP *cpi) { // If the current frame does not have non-zero motion vector detected in the // first pass, and so do its previous and forward frames, then this frame // can be skipped for partition check, and the partition size is assigned // according to the variance const TWO_PASS *const twopass = &cpi->twopass; return (!frame_is_intra_only(&cpi->common) && twopass->stats_in - 2 > twopass->stats_in_start && twopass->stats_in < twopass->stats_in_end && (twopass->stats_in - 1)->pcnt_inter - (twopass->stats_in - 1)->pcnt_motion == 1 && (twopass->stats_in - 2)->pcnt_inter - (twopass->stats_in - 2)->pcnt_motion == 1 && twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); } void vp9_rc_get_second_pass_params(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; TWO_PASS *const twopass = &cpi->twopass; GF_GROUP *const gf_group = &twopass->gf_group; FIRSTPASS_STATS this_frame; if (!twopass->stats_in) return; // If this is an arf frame then we dont want to read the stats file or // advance the input pointer as we already have what we need. if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { int target_rate; vp9_configure_buffer_updates(cpi, gf_group->index); target_rate = gf_group->bit_allocation[gf_group->index]; target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); rc->base_frame_target = target_rate; cm->frame_type = INTER_FRAME; // Do the firstpass stats indicate that this frame is skippable for the // partition search? if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && !cpi->use_svc) { cpi->partition_search_skippable_frame = is_skippable_frame(cpi); } return; } vpx_clear_system_state(); if (cpi->oxcf.rc_mode == VPX_Q) { twopass->active_worst_quality = cpi->oxcf.cq_level; } else if (cm->current_video_frame == 0) { const int frames_left = (int)(twopass->total_stats.count - cm->current_video_frame); // Special case code for first frame. const int section_target_bandwidth = (int)(twopass->bits_left / frames_left); const double section_length = twopass->total_left_stats.count; const double section_error = twopass->total_left_stats.coded_error / section_length; const double section_intra_skip = twopass->total_left_stats.intra_skip_pct / section_length; const double section_inactive_zone = (twopass->total_left_stats.inactive_zone_rows * 2) / ((double)cm->mb_rows * section_length); const double section_noise = twopass->total_left_stats.frame_noise_energy / section_length; int tmp_q; tmp_q = get_twopass_worst_quality( cpi, section_error, section_intra_skip + section_inactive_zone, section_noise, section_target_bandwidth); twopass->active_worst_quality = tmp_q; twopass->baseline_active_worst_quality = tmp_q; rc->ni_av_qi = tmp_q; rc->last_q[INTER_FRAME] = tmp_q; rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth); rc->avg_frame_qindex[INTER_FRAME] = tmp_q; rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; } vp9_zero(this_frame); if (EOF == input_stats(twopass, &this_frame)) return; // Set the frame content type flag. if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) twopass->fr_content_type = FC_GRAPHICS_ANIMATION; else twopass->fr_content_type = FC_NORMAL; // Keyframe and section processing. if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { FIRSTPASS_STATS this_frame_copy; this_frame_copy = this_frame; // Define next KF group and assign bits to it. find_next_key_frame(cpi, &this_frame); this_frame = this_frame_copy; } else { cm->frame_type = INTER_FRAME; } // Define a new GF/ARF group. (Should always enter here for key frames). if (rc->frames_till_gf_update_due == 0) { define_gf_group(cpi, &this_frame); rc->frames_till_gf_update_due = rc->baseline_gf_interval; #if ARF_STATS_OUTPUT { FILE *fpfile; fpfile = fopen("arf.stt", "a"); ++arf_count; fprintf(fpfile, "%10d %10ld %10d %10d %10ld %10ld\n", cm->current_video_frame, rc->frames_till_gf_update_due, rc->kf_boost, arf_count, rc->gfu_boost, cm->frame_type); fclose(fpfile); } #endif } vp9_configure_buffer_updates(cpi, gf_group->index); // Do the firstpass stats indicate that this frame is skippable for the // partition search? if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && !cpi->use_svc) { cpi->partition_search_skippable_frame = is_skippable_frame(cpi); } rc->base_frame_target = gf_group->bit_allocation[gf_group->index]; // The multiplication by 256 reverses a scaling factor of (>> 8) // applied when combining MB error values for the frame. twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0); twopass->mb_smooth_pct = this_frame.intra_smooth_pct; // Update the total stats remaining structure. subtract_stats(&twopass->total_left_stats, &this_frame); } #define MINQ_ADJ_LIMIT 48 #define MINQ_ADJ_LIMIT_CQ 20 #define HIGH_UNDERSHOOT_RATIO 2 void vp9_twopass_postencode_update(VP9_COMP *cpi) { TWO_PASS *const twopass = &cpi->twopass; RATE_CONTROL *const rc = &cpi->rc; VP9_COMMON *const cm = &cpi->common; const int bits_used = rc->base_frame_target; // VBR correction is done through rc->vbr_bits_off_target. Based on the // sign of this value, a limited % adjustment is made to the target rate // of subsequent frames, to try and push it back towards 0. This method // is designed to prevent extreme behaviour at the end of a clip // or group of frames. rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0); // Target vs actual bits for this arf group. twopass->rolling_arf_group_target_bits += rc->this_frame_target; twopass->rolling_arf_group_actual_bits += rc->projected_frame_size; // Calculate the pct rc error. if (rc->total_actual_bits) { rc->rate_error_estimate = (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); } else { rc->rate_error_estimate = 0; } if (cpi->common.frame_type != KEY_FRAME) { twopass->kf_group_bits -= bits_used; twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; } twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0); // Increment the gf group index ready for the next frame. ++twopass->gf_group.index; // If the rate control is drifting consider adjustment to min or maxq. if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) { const int maxq_adj_limit = rc->worst_quality - twopass->active_worst_quality; const int minq_adj_limit = (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); int aq_extend_min = 0; int aq_extend_max = 0; // Extend min or Max Q range to account for imbalance from the base // value when using AQ. if (cpi->oxcf.aq_mode != NO_AQ) { if (cm->seg.aq_av_offset < 0) { // The balance of the AQ map tends towarda lowering the average Q. aq_extend_min = 0; aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset); } else { // The balance of the AQ map tends towards raising the average Q. aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset); aq_extend_max = 0; } } // Undershoot. if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { --twopass->extend_maxq; if (rc->rolling_target_bits >= rc->rolling_actual_bits) ++twopass->extend_minq; // Overshoot. } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { --twopass->extend_minq; if (rc->rolling_target_bits < rc->rolling_actual_bits) ++twopass->extend_maxq; } else { // Adjustment for extreme local overshoot. if (rc->projected_frame_size > (2 * rc->base_frame_target) && rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) ++twopass->extend_maxq; // Unwind undershoot or overshoot adjustment. if (rc->rolling_target_bits < rc->rolling_actual_bits) --twopass->extend_minq; else if (rc->rolling_target_bits > rc->rolling_actual_bits) --twopass->extend_maxq; } twopass->extend_minq = clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit); twopass->extend_maxq = clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit); // If there is a big and undexpected undershoot then feed the extra // bits back in quickly. One situation where this may happen is if a // frame is unexpectedly almost perfectly predicted by the ARF or GF // but not very well predcited by the previous frame. if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; if (rc->projected_frame_size < fast_extra_thresh) { rc->vbr_bits_off_target_fast += fast_extra_thresh - rc->projected_frame_size; rc->vbr_bits_off_target_fast = VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); // Fast adaptation of minQ if necessary to use up the extra bits. if (rc->avg_frame_bandwidth) { twopass->extend_minq_fast = (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); } twopass->extend_minq_fast = VPXMIN( twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); } else if (rc->vbr_bits_off_target_fast) { twopass->extend_minq_fast = VPXMIN( twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); } else { twopass->extend_minq_fast = 0; } } } }