ref: 83a2bfd7dcf41af188df464377f9a80504758685
dir: /third_party/libyuv/source/scale.cc/
/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/scale.h" #include <assert.h> #include <string.h> #include "libyuv/cpu_id.h" #include "libyuv/planar_functions.h" // For CopyPlane #include "libyuv/row.h" #include "libyuv/scale_row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif static __inline int Abs(int v) { return v >= 0 ? v : -v; } #define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s) // Scale plane, 1/2 // This is an optimized version for scaling down a plane to 1/2 of // its original size. static void ScalePlaneDown2(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width) = filtering == kFilterNone ? ScaleRowDown2_C : (filtering == kFilterLinear ? ScaleRowDown2Linear_C : ScaleRowDown2Box_C); int row_stride = src_stride << 1; if (!filtering) { src_ptr += src_stride; // Point to odd rows. src_stride = 0; } #if defined(HAS_SCALEROWDOWN2_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_NEON : (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_NEON : ScaleRowDown2Box_Any_NEON); if (IS_ALIGNED(dst_width, 16)) { ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_NEON : (filtering == kFilterLinear ? ScaleRowDown2Linear_NEON : ScaleRowDown2Box_NEON); } } #endif #if defined(HAS_SCALEROWDOWN2_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_SSSE3 : (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_SSSE3 : ScaleRowDown2Box_Any_SSSE3); if (IS_ALIGNED(dst_width, 16)) { ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_SSSE3 : (filtering == kFilterLinear ? ScaleRowDown2Linear_SSSE3 : ScaleRowDown2Box_SSSE3); } } #endif #if defined(HAS_SCALEROWDOWN2_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_AVX2 : (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_AVX2 : ScaleRowDown2Box_Any_AVX2); if (IS_ALIGNED(dst_width, 32)) { ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_AVX2 : (filtering == kFilterLinear ? ScaleRowDown2Linear_AVX2 : ScaleRowDown2Box_AVX2); } } #endif #if defined(HAS_SCALEROWDOWN2_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(row_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { ScaleRowDown2 = filtering ? ScaleRowDown2Box_DSPR2 : ScaleRowDown2_DSPR2; } #endif if (filtering == kFilterLinear) { src_stride = 0; } // TODO(fbarchard): Loop through source height to allow odd height. for (y = 0; y < dst_height; ++y) { ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width); src_ptr += row_stride; dst_ptr += dst_stride; } } static void ScalePlaneDown2_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown2)(const uint16* src_ptr, ptrdiff_t src_stride, uint16* dst_ptr, int dst_width) = filtering == kFilterNone ? ScaleRowDown2_16_C : (filtering == kFilterLinear ? ScaleRowDown2Linear_16_C : ScaleRowDown2Box_16_C); int row_stride = src_stride << 1; if (!filtering) { src_ptr += src_stride; // Point to odd rows. src_stride = 0; } #if defined(HAS_SCALEROWDOWN2_16_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 16)) { ScaleRowDown2 = filtering ? ScaleRowDown2Box_16_NEON : ScaleRowDown2_16_NEON; } #endif #if defined(HAS_SCALEROWDOWN2_16_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 16)) { ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_16_SSE2 : (filtering == kFilterLinear ? ScaleRowDown2Linear_16_SSE2 : ScaleRowDown2Box_16_SSE2); } #endif #if defined(HAS_SCALEROWDOWN2_16_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(row_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { ScaleRowDown2 = filtering ? ScaleRowDown2Box_16_DSPR2 : ScaleRowDown2_16_DSPR2; } #endif if (filtering == kFilterLinear) { src_stride = 0; } // TODO(fbarchard): Loop through source height to allow odd height. for (y = 0; y < dst_height; ++y) { ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width); src_ptr += row_stride; dst_ptr += dst_stride; } } // Scale plane, 1/4 // This is an optimized version for scaling down a plane to 1/4 of // its original size. static void ScalePlaneDown4(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown4)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width) = filtering ? ScaleRowDown4Box_C : ScaleRowDown4_C; int row_stride = src_stride << 2; if (!filtering) { src_ptr += src_stride * 2; // Point to row 2. src_stride = 0; } #if defined(HAS_SCALEROWDOWN4_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_Any_NEON : ScaleRowDown4_Any_NEON; if (IS_ALIGNED(dst_width, 8)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_NEON : ScaleRowDown4_NEON; } } #endif #if defined(HAS_SCALEROWDOWN4_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_Any_SSSE3 : ScaleRowDown4_Any_SSSE3; if (IS_ALIGNED(dst_width, 8)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_SSSE3 : ScaleRowDown4_SSSE3; } } #endif #if defined(HAS_SCALEROWDOWN4_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_Any_AVX2 : ScaleRowDown4_Any_AVX2; if (IS_ALIGNED(dst_width, 16)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_AVX2 : ScaleRowDown4_AVX2; } } #endif #if defined(HAS_SCALEROWDOWN4_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(row_stride, 4) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_DSPR2 : ScaleRowDown4_DSPR2; } #endif if (filtering == kFilterLinear) { src_stride = 0; } for (y = 0; y < dst_height; ++y) { ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width); src_ptr += row_stride; dst_ptr += dst_stride; } } static void ScalePlaneDown4_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown4)(const uint16* src_ptr, ptrdiff_t src_stride, uint16* dst_ptr, int dst_width) = filtering ? ScaleRowDown4Box_16_C : ScaleRowDown4_16_C; int row_stride = src_stride << 2; if (!filtering) { src_ptr += src_stride * 2; // Point to row 2. src_stride = 0; } #if defined(HAS_SCALEROWDOWN4_16_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_NEON : ScaleRowDown4_16_NEON; } #endif #if defined(HAS_SCALEROWDOWN4_16_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_SSE2 : ScaleRowDown4_16_SSE2; } #endif #if defined(HAS_SCALEROWDOWN4_16_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(row_stride, 4) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_DSPR2 : ScaleRowDown4_16_DSPR2; } #endif if (filtering == kFilterLinear) { src_stride = 0; } for (y = 0; y < dst_height; ++y) { ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width); src_ptr += row_stride; dst_ptr += dst_stride; } } // Scale plane down, 3/4 static void ScalePlaneDown34(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown34_0)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width); void (*ScaleRowDown34_1)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width); const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; assert(dst_width % 3 == 0); if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_C; ScaleRowDown34_1 = ScaleRowDown34_C; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_C; ScaleRowDown34_1 = ScaleRowDown34_1_Box_C; } #if defined(HAS_SCALEROWDOWN34_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_Any_NEON; ScaleRowDown34_1 = ScaleRowDown34_Any_NEON; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_NEON; ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_NEON; } if (dst_width % 24 == 0) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_NEON; ScaleRowDown34_1 = ScaleRowDown34_NEON; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_NEON; ScaleRowDown34_1 = ScaleRowDown34_1_Box_NEON; } } } #endif #if defined(HAS_SCALEROWDOWN34_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_Any_SSSE3; ScaleRowDown34_1 = ScaleRowDown34_Any_SSSE3; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_SSSE3; ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_SSSE3; } if (dst_width % 24 == 0) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_SSSE3; ScaleRowDown34_1 = ScaleRowDown34_SSSE3; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_SSSE3; ScaleRowDown34_1 = ScaleRowDown34_1_Box_SSSE3; } } } #endif #if defined(HAS_SCALEROWDOWN34_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 24 == 0) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_DSPR2; ScaleRowDown34_1 = ScaleRowDown34_DSPR2; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_DSPR2; ScaleRowDown34_1 = ScaleRowDown34_1_Box_DSPR2; } } #endif for (y = 0; y < dst_height - 2; y += 3) { ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride; dst_ptr += dst_stride; ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride; dst_ptr += dst_stride; ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 2; dst_ptr += dst_stride; } // Remainder 1 or 2 rows with last row vertically unfiltered if ((dst_height % 3) == 2) { ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride; dst_ptr += dst_stride; ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width); } else if ((dst_height % 3) == 1) { ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width); } } static void ScalePlaneDown34_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown34_0)(const uint16* src_ptr, ptrdiff_t src_stride, uint16* dst_ptr, int dst_width); void (*ScaleRowDown34_1)(const uint16* src_ptr, ptrdiff_t src_stride, uint16* dst_ptr, int dst_width); const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; assert(dst_width % 3 == 0); if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_16_C; ScaleRowDown34_1 = ScaleRowDown34_16_C; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_C; ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_C; } #if defined(HAS_SCALEROWDOWN34_16_NEON) if (TestCpuFlag(kCpuHasNEON) && (dst_width % 24 == 0)) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_16_NEON; ScaleRowDown34_1 = ScaleRowDown34_16_NEON; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_NEON; ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_NEON; } } #endif #if defined(HAS_SCALEROWDOWN34_16_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_16_SSSE3; ScaleRowDown34_1 = ScaleRowDown34_16_SSSE3; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_SSSE3; ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_SSSE3; } } #endif #if defined(HAS_SCALEROWDOWN34_16_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 24 == 0) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { if (!filtering) { ScaleRowDown34_0 = ScaleRowDown34_16_DSPR2; ScaleRowDown34_1 = ScaleRowDown34_16_DSPR2; } else { ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_DSPR2; ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_DSPR2; } } #endif for (y = 0; y < dst_height - 2; y += 3) { ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride; dst_ptr += dst_stride; ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride; dst_ptr += dst_stride; ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 2; dst_ptr += dst_stride; } // Remainder 1 or 2 rows with last row vertically unfiltered if ((dst_height % 3) == 2) { ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride; dst_ptr += dst_stride; ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width); } else if ((dst_height % 3) == 1) { ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width); } } // Scale plane, 3/8 // This is an optimized version for scaling down a plane to 3/8 // of its original size. // // Uses box filter arranges like this // aaabbbcc -> abc // aaabbbcc def // aaabbbcc ghi // dddeeeff // dddeeeff // dddeeeff // ggghhhii // ggghhhii // Boxes are 3x3, 2x3, 3x2 and 2x2 static void ScalePlaneDown38(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown38_3)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width); void (*ScaleRowDown38_2)(const uint8* src_ptr, ptrdiff_t src_stride, uint8* dst_ptr, int dst_width); const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; assert(dst_width % 3 == 0); if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_C; ScaleRowDown38_2 = ScaleRowDown38_C; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_C; ScaleRowDown38_2 = ScaleRowDown38_2_Box_C; } #if defined(HAS_SCALEROWDOWN38_NEON) if (TestCpuFlag(kCpuHasNEON)) { if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_Any_NEON; ScaleRowDown38_2 = ScaleRowDown38_Any_NEON; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_NEON; ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_NEON; } if (dst_width % 12 == 0) { if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_NEON; ScaleRowDown38_2 = ScaleRowDown38_NEON; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_NEON; ScaleRowDown38_2 = ScaleRowDown38_2_Box_NEON; } } } #endif #if defined(HAS_SCALEROWDOWN38_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_Any_SSSE3; ScaleRowDown38_2 = ScaleRowDown38_Any_SSSE3; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_SSSE3; ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_SSSE3; } if (dst_width % 12 == 0 && !filtering) { ScaleRowDown38_3 = ScaleRowDown38_SSSE3; ScaleRowDown38_2 = ScaleRowDown38_SSSE3; } if (dst_width % 6 == 0 && filtering) { ScaleRowDown38_3 = ScaleRowDown38_3_Box_SSSE3; ScaleRowDown38_2 = ScaleRowDown38_2_Box_SSSE3; } } #endif #if defined(HAS_SCALEROWDOWN38_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 12 == 0) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_DSPR2; ScaleRowDown38_2 = ScaleRowDown38_DSPR2; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_DSPR2; ScaleRowDown38_2 = ScaleRowDown38_2_Box_DSPR2; } } #endif for (y = 0; y < dst_height - 2; y += 3) { ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 3; dst_ptr += dst_stride; ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 3; dst_ptr += dst_stride; ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 2; dst_ptr += dst_stride; } // Remainder 1 or 2 rows with last row vertically unfiltered if ((dst_height % 3) == 2) { ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 3; dst_ptr += dst_stride; ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); } else if ((dst_height % 3) == 1) { ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); } } static void ScalePlaneDown38_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr, enum FilterMode filtering) { int y; void (*ScaleRowDown38_3)(const uint16* src_ptr, ptrdiff_t src_stride, uint16* dst_ptr, int dst_width); void (*ScaleRowDown38_2)(const uint16* src_ptr, ptrdiff_t src_stride, uint16* dst_ptr, int dst_width); const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; assert(dst_width % 3 == 0); if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_16_C; ScaleRowDown38_2 = ScaleRowDown38_16_C; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_C; ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_C; } #if defined(HAS_SCALEROWDOWN38_16_NEON) if (TestCpuFlag(kCpuHasNEON) && (dst_width % 12 == 0)) { if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_16_NEON; ScaleRowDown38_2 = ScaleRowDown38_16_NEON; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_NEON; ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_NEON; } } #endif #if defined(HAS_SCALEROWDOWN38_16_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) { if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_16_SSSE3; ScaleRowDown38_2 = ScaleRowDown38_16_SSSE3; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_SSSE3; ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_SSSE3; } } #endif #if defined(HAS_SCALEROWDOWN38_16_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 12 == 0) && IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { if (!filtering) { ScaleRowDown38_3 = ScaleRowDown38_16_DSPR2; ScaleRowDown38_2 = ScaleRowDown38_16_DSPR2; } else { ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_DSPR2; ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_DSPR2; } } #endif for (y = 0; y < dst_height - 2; y += 3) { ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 3; dst_ptr += dst_stride; ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 3; dst_ptr += dst_stride; ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 2; dst_ptr += dst_stride; } // Remainder 1 or 2 rows with last row vertically unfiltered if ((dst_height % 3) == 2) { ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); src_ptr += src_stride * 3; dst_ptr += dst_stride; ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); } else if ((dst_height % 3) == 1) { ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); } } #define MIN1(x) ((x) < 1 ? 1 : (x)) static __inline uint32 SumPixels(int iboxwidth, const uint16* src_ptr) { uint32 sum = 0u; int x; assert(iboxwidth > 0); for (x = 0; x < iboxwidth; ++x) { sum += src_ptr[x]; } return sum; } static __inline uint32 SumPixels_16(int iboxwidth, const uint32* src_ptr) { uint32 sum = 0u; int x; assert(iboxwidth > 0); for (x = 0; x < iboxwidth; ++x) { sum += src_ptr[x]; } return sum; } static void ScaleAddCols2_C(int dst_width, int boxheight, int x, int dx, const uint16* src_ptr, uint8* dst_ptr) { int i; int scaletbl[2]; int minboxwidth = dx >> 16; int boxwidth; scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight); scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight); for (i = 0; i < dst_width; ++i) { int ix = x >> 16; x += dx; boxwidth = MIN1((x >> 16) - ix); *dst_ptr++ = SumPixels(boxwidth, src_ptr + ix) * scaletbl[boxwidth - minboxwidth] >> 16; } } static void ScaleAddCols2_16_C(int dst_width, int boxheight, int x, int dx, const uint32* src_ptr, uint16* dst_ptr) { int i; int scaletbl[2]; int minboxwidth = dx >> 16; int boxwidth; scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight); scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight); for (i = 0; i < dst_width; ++i) { int ix = x >> 16; x += dx; boxwidth = MIN1((x >> 16) - ix); *dst_ptr++ = SumPixels_16(boxwidth, src_ptr + ix) * scaletbl[boxwidth - minboxwidth] >> 16; } } static void ScaleAddCols0_C(int dst_width, int boxheight, int x, int, const uint16* src_ptr, uint8* dst_ptr) { int scaleval = 65536 / boxheight; int i; src_ptr += (x >> 16); for (i = 0; i < dst_width; ++i) { *dst_ptr++ = src_ptr[i] * scaleval >> 16; } } static void ScaleAddCols1_C(int dst_width, int boxheight, int x, int dx, const uint16* src_ptr, uint8* dst_ptr) { int boxwidth = MIN1(dx >> 16); int scaleval = 65536 / (boxwidth * boxheight); int i; x >>= 16; for (i = 0; i < dst_width; ++i) { *dst_ptr++ = SumPixels(boxwidth, src_ptr + x) * scaleval >> 16; x += boxwidth; } } static void ScaleAddCols1_16_C(int dst_width, int boxheight, int x, int dx, const uint32* src_ptr, uint16* dst_ptr) { int boxwidth = MIN1(dx >> 16); int scaleval = 65536 / (boxwidth * boxheight); int i; for (i = 0; i < dst_width; ++i) { *dst_ptr++ = SumPixels_16(boxwidth, src_ptr + x) * scaleval >> 16; x += boxwidth; } } // Scale plane down to any dimensions, with interpolation. // (boxfilter). // // Same method as SimpleScale, which is fixed point, outputting // one pixel of destination using fixed point (16.16) to step // through source, sampling a box of pixel with simple // averaging. static void ScalePlaneBox(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr) { int j, k; // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; const int max_y = (src_height << 16); ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y, &dx, &dy); src_width = Abs(src_width); { // Allocate a row buffer of uint16. align_buffer_64(row16, src_width * 2); void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx, const uint16* src_ptr, uint8* dst_ptr) = (dx & 0xffff) ? ScaleAddCols2_C: ((dx != 0x10000) ? ScaleAddCols1_C : ScaleAddCols0_C); void (*ScaleAddRow)(const uint8* src_ptr, uint16* dst_ptr, int src_width) = ScaleAddRow_C; #if defined(HAS_SCALEADDROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ScaleAddRow = ScaleAddRow_Any_SSE2; if (IS_ALIGNED(src_width, 16)) { ScaleAddRow = ScaleAddRow_SSE2; } } #endif #if defined(HAS_SCALEADDROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { ScaleAddRow = ScaleAddRow_Any_AVX2; if (IS_ALIGNED(src_width, 32)) { ScaleAddRow = ScaleAddRow_AVX2; } } #endif #if defined(HAS_SCALEADDROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleAddRow = ScaleAddRow_Any_NEON; if (IS_ALIGNED(src_width, 16)) { ScaleAddRow = ScaleAddRow_NEON; } } #endif for (j = 0; j < dst_height; ++j) { int boxheight; int iy = y >> 16; const uint8* src = src_ptr + iy * src_stride; y += dy; if (y > max_y) { y = max_y; } boxheight = MIN1((y >> 16) - iy); memset(row16, 0, src_width * 2); for (k = 0; k < boxheight; ++k) { ScaleAddRow(src, (uint16 *)(row16), src_width); src += src_stride; } ScaleAddCols(dst_width, boxheight, x, dx, (uint16*)(row16), dst_ptr); dst_ptr += dst_stride; } free_aligned_buffer_64(row16); } } static void ScalePlaneBox_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr) { int j, k; // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; const int max_y = (src_height << 16); ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y, &dx, &dy); src_width = Abs(src_width); { // Allocate a row buffer of uint32. align_buffer_64(row32, src_width * 4); void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx, const uint32* src_ptr, uint16* dst_ptr) = (dx & 0xffff) ? ScaleAddCols2_16_C: ScaleAddCols1_16_C; void (*ScaleAddRow)(const uint16* src_ptr, uint32* dst_ptr, int src_width) = ScaleAddRow_16_C; #if defined(HAS_SCALEADDROW_16_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_width, 16)) { ScaleAddRow = ScaleAddRow_16_SSE2; } #endif for (j = 0; j < dst_height; ++j) { int boxheight; int iy = y >> 16; const uint16* src = src_ptr + iy * src_stride; y += dy; if (y > max_y) { y = max_y; } boxheight = MIN1((y >> 16) - iy); memset(row32, 0, src_width * 4); for (k = 0; k < boxheight; ++k) { ScaleAddRow(src, (uint32 *)(row32), src_width); src += src_stride; } ScaleAddCols(dst_width, boxheight, x, dx, (uint32*)(row32), dst_ptr); dst_ptr += dst_stride; } free_aligned_buffer_64(row32); } } // Scale plane down with bilinear interpolation. void ScalePlaneBilinearDown(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr, enum FilterMode filtering) { // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. // Allocate a row buffer. align_buffer_64(row, src_width); const int max_y = (src_height - 1) << 16; int j; void (*ScaleFilterCols)(uint8* dst_ptr, const uint8* src_ptr, int dst_width, int x, int dx) = (src_width >= 32768) ? ScaleFilterCols64_C : ScaleFilterCols_C; void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, &dx, &dy); src_width = Abs(src_width); #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(src_width, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(src_width, 32)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(src_width, 16)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2)) { InterpolateRow = InterpolateRow_Any_DSPR2; if (IS_ALIGNED(src_width, 4)) { InterpolateRow = InterpolateRow_DSPR2; } } #endif #if defined(HAS_SCALEFILTERCOLS_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleFilterCols = ScaleFilterCols_SSSE3; } #endif #if defined(HAS_SCALEFILTERCOLS_NEON) if (TestCpuFlag(kCpuHasNEON) && src_width < 32768) { ScaleFilterCols = ScaleFilterCols_Any_NEON; if (IS_ALIGNED(dst_width, 8)) { ScaleFilterCols = ScaleFilterCols_NEON; } } #endif if (y > max_y) { y = max_y; } for (j = 0; j < dst_height; ++j) { int yi = y >> 16; const uint8* src = src_ptr + yi * src_stride; if (filtering == kFilterLinear) { ScaleFilterCols(dst_ptr, src, dst_width, x, dx); } else { int yf = (y >> 8) & 255; InterpolateRow(row, src, src_stride, src_width, yf); ScaleFilterCols(dst_ptr, row, dst_width, x, dx); } dst_ptr += dst_stride; y += dy; if (y > max_y) { y = max_y; } } free_aligned_buffer_64(row); } void ScalePlaneBilinearDown_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr, enum FilterMode filtering) { // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. // Allocate a row buffer. align_buffer_64(row, src_width * 2); const int max_y = (src_height - 1) << 16; int j; void (*ScaleFilterCols)(uint16* dst_ptr, const uint16* src_ptr, int dst_width, int x, int dx) = (src_width >= 32768) ? ScaleFilterCols64_16_C : ScaleFilterCols_16_C; void (*InterpolateRow)(uint16* dst_ptr, const uint16* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_16_C; ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, &dx, &dy); src_width = Abs(src_width); #if defined(HAS_INTERPOLATEROW_16_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { InterpolateRow = InterpolateRow_Any_16_SSE2; if (IS_ALIGNED(src_width, 16)) { InterpolateRow = InterpolateRow_16_SSE2; } } #endif #if defined(HAS_INTERPOLATEROW_16_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_16_SSSE3; if (IS_ALIGNED(src_width, 16)) { InterpolateRow = InterpolateRow_16_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_16_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_16_AVX2; if (IS_ALIGNED(src_width, 32)) { InterpolateRow = InterpolateRow_16_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_16_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_16_NEON; if (IS_ALIGNED(src_width, 16)) { InterpolateRow = InterpolateRow_16_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_16_DSPR2) if (TestCpuFlag(kCpuHasDSPR2)) { InterpolateRow = InterpolateRow_Any_16_DSPR2; if (IS_ALIGNED(src_width, 4)) { InterpolateRow = InterpolateRow_16_DSPR2; } } #endif #if defined(HAS_SCALEFILTERCOLS_16_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleFilterCols = ScaleFilterCols_16_SSSE3; } #endif if (y > max_y) { y = max_y; } for (j = 0; j < dst_height; ++j) { int yi = y >> 16; const uint16* src = src_ptr + yi * src_stride; if (filtering == kFilterLinear) { ScaleFilterCols(dst_ptr, src, dst_width, x, dx); } else { int yf = (y >> 8) & 255; InterpolateRow((uint16*)row, src, src_stride, src_width, yf); ScaleFilterCols(dst_ptr, (uint16*)row, dst_width, x, dx); } dst_ptr += dst_stride; y += dy; if (y > max_y) { y = max_y; } } free_aligned_buffer_64(row); } // Scale up down with bilinear interpolation. void ScalePlaneBilinearUp(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr, enum FilterMode filtering) { int j; // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; const int max_y = (src_height - 1) << 16; void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; void (*ScaleFilterCols)(uint8* dst_ptr, const uint8* src_ptr, int dst_width, int x, int dx) = filtering ? ScaleFilterCols_C : ScaleCols_C; ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, &dx, &dy); src_width = Abs(src_width); #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(dst_width, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(dst_width, 32)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(dst_width, 16)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2)) { InterpolateRow = InterpolateRow_Any_DSPR2; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_DSPR2; } } #endif if (filtering && src_width >= 32768) { ScaleFilterCols = ScaleFilterCols64_C; } #if defined(HAS_SCALEFILTERCOLS_SSSE3) if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleFilterCols = ScaleFilterCols_SSSE3; } #endif #if defined(HAS_SCALEFILTERCOLS_NEON) if (filtering && TestCpuFlag(kCpuHasNEON) && src_width < 32768) { ScaleFilterCols = ScaleFilterCols_Any_NEON; if (IS_ALIGNED(dst_width, 8)) { ScaleFilterCols = ScaleFilterCols_NEON; } } #endif if (!filtering && src_width * 2 == dst_width && x < 0x8000) { ScaleFilterCols = ScaleColsUp2_C; #if defined(HAS_SCALECOLS_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { ScaleFilterCols = ScaleColsUp2_SSE2; } #endif } if (y > max_y) { y = max_y; } { int yi = y >> 16; const uint8* src = src_ptr + yi * src_stride; // Allocate 2 row buffers. const int kRowSize = (dst_width + 31) & ~31; align_buffer_64(row, kRowSize * 2); uint8* rowptr = row; int rowstride = kRowSize; int lasty = yi; ScaleFilterCols(rowptr, src, dst_width, x, dx); if (src_height > 1) { src += src_stride; } ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx); src += src_stride; for (j = 0; j < dst_height; ++j) { yi = y >> 16; if (yi != lasty) { if (y > max_y) { y = max_y; yi = y >> 16; src = src_ptr + yi * src_stride; } if (yi != lasty) { ScaleFilterCols(rowptr, src, dst_width, x, dx); rowptr += rowstride; rowstride = -rowstride; lasty = yi; src += src_stride; } } if (filtering == kFilterLinear) { InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0); } else { int yf = (y >> 8) & 255; InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf); } dst_ptr += dst_stride; y += dy; } free_aligned_buffer_64(row); } } void ScalePlaneBilinearUp_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr, enum FilterMode filtering) { int j; // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; const int max_y = (src_height - 1) << 16; void (*InterpolateRow)(uint16* dst_ptr, const uint16* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_16_C; void (*ScaleFilterCols)(uint16* dst_ptr, const uint16* src_ptr, int dst_width, int x, int dx) = filtering ? ScaleFilterCols_16_C : ScaleCols_16_C; ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, &dx, &dy); src_width = Abs(src_width); #if defined(HAS_INTERPOLATEROW_16_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { InterpolateRow = InterpolateRow_Any_16_SSE2; if (IS_ALIGNED(dst_width, 16)) { InterpolateRow = InterpolateRow_16_SSE2; } } #endif #if defined(HAS_INTERPOLATEROW_16_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_16_SSSE3; if (IS_ALIGNED(dst_width, 16)) { InterpolateRow = InterpolateRow_16_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_16_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_16_AVX2; if (IS_ALIGNED(dst_width, 32)) { InterpolateRow = InterpolateRow_16_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_16_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_16_NEON; if (IS_ALIGNED(dst_width, 16)) { InterpolateRow = InterpolateRow_16_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_16_DSPR2) if (TestCpuFlag(kCpuHasDSPR2)) { InterpolateRow = InterpolateRow_Any_16_DSPR2; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_16_DSPR2; } } #endif if (filtering && src_width >= 32768) { ScaleFilterCols = ScaleFilterCols64_16_C; } #if defined(HAS_SCALEFILTERCOLS_16_SSSE3) if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleFilterCols = ScaleFilterCols_16_SSSE3; } #endif if (!filtering && src_width * 2 == dst_width && x < 0x8000) { ScaleFilterCols = ScaleColsUp2_16_C; #if defined(HAS_SCALECOLS_16_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { ScaleFilterCols = ScaleColsUp2_16_SSE2; } #endif } if (y > max_y) { y = max_y; } { int yi = y >> 16; const uint16* src = src_ptr + yi * src_stride; // Allocate 2 row buffers. const int kRowSize = (dst_width + 31) & ~31; align_buffer_64(row, kRowSize * 4); uint16* rowptr = (uint16*)row; int rowstride = kRowSize; int lasty = yi; ScaleFilterCols(rowptr, src, dst_width, x, dx); if (src_height > 1) { src += src_stride; } ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx); src += src_stride; for (j = 0; j < dst_height; ++j) { yi = y >> 16; if (yi != lasty) { if (y > max_y) { y = max_y; yi = y >> 16; src = src_ptr + yi * src_stride; } if (yi != lasty) { ScaleFilterCols(rowptr, src, dst_width, x, dx); rowptr += rowstride; rowstride = -rowstride; lasty = yi; src += src_stride; } } if (filtering == kFilterLinear) { InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0); } else { int yf = (y >> 8) & 255; InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf); } dst_ptr += dst_stride; y += dy; } free_aligned_buffer_64(row); } } // Scale Plane to/from any dimensions, without interpolation. // Fixed point math is used for performance: The upper 16 bits // of x and dx is the integer part of the source position and // the lower 16 bits are the fixed decimal part. static void ScalePlaneSimple(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_ptr, uint8* dst_ptr) { int i; void (*ScaleCols)(uint8* dst_ptr, const uint8* src_ptr, int dst_width, int x, int dx) = ScaleCols_C; // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y, &dx, &dy); src_width = Abs(src_width); if (src_width * 2 == dst_width && x < 0x8000) { ScaleCols = ScaleColsUp2_C; #if defined(HAS_SCALECOLS_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { ScaleCols = ScaleColsUp2_SSE2; } #endif } for (i = 0; i < dst_height; ++i) { ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx); dst_ptr += dst_stride; y += dy; } } static void ScalePlaneSimple_16(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint16* src_ptr, uint16* dst_ptr) { int i; void (*ScaleCols)(uint16* dst_ptr, const uint16* src_ptr, int dst_width, int x, int dx) = ScaleCols_16_C; // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y, &dx, &dy); src_width = Abs(src_width); if (src_width * 2 == dst_width && x < 0x8000) { ScaleCols = ScaleColsUp2_16_C; #if defined(HAS_SCALECOLS_16_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { ScaleCols = ScaleColsUp2_16_SSE2; } #endif } for (i = 0; i < dst_height; ++i) { ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx); dst_ptr += dst_stride; y += dy; } } // Scale a plane. // This function dispatches to a specialized scaler based on scale factor. LIBYUV_API void ScalePlane(const uint8* src, int src_stride, int src_width, int src_height, uint8* dst, int dst_stride, int dst_width, int dst_height, enum FilterMode filtering) { // Simplify filtering when possible. filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, filtering); // Negative height means invert the image. if (src_height < 0) { src_height = -src_height; src = src + (src_height - 1) * src_stride; src_stride = -src_stride; } // Use specialized scales to improve performance for common resolutions. // For example, all the 1/2 scalings will use ScalePlaneDown2() if (dst_width == src_width && dst_height == src_height) { // Straight copy. CopyPlane(src, src_stride, dst, dst_stride, dst_width, dst_height); return; } if (dst_width == src_width && filtering != kFilterBox) { int dy = FixedDiv(src_height, dst_height); // Arbitrary scale vertically, but unscaled horizontally. ScalePlaneVertical(src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, 0, 0, dy, 1, filtering); return; } if (dst_width <= Abs(src_width) && dst_height <= src_height) { // Scale down. if (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) { // optimized, 3/4 ScalePlaneDown34(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } if (2 * dst_width == src_width && 2 * dst_height == src_height) { // optimized, 1/2 ScalePlaneDown2(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } // 3/8 rounded up for odd sized chroma height. if (8 * dst_width == 3 * src_width && dst_height == ((src_height * 3 + 7) / 8)) { // optimized, 3/8 ScalePlaneDown38(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } if (4 * dst_width == src_width && 4 * dst_height == src_height && (filtering == kFilterBox || filtering == kFilterNone)) { // optimized, 1/4 ScalePlaneDown4(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } } if (filtering == kFilterBox && dst_height * 2 < src_height) { ScalePlaneBox(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst); return; } if (filtering && dst_height > src_height) { ScalePlaneBilinearUp(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } if (filtering) { ScalePlaneBilinearDown(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } ScalePlaneSimple(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst); } LIBYUV_API void ScalePlane_16(const uint16* src, int src_stride, int src_width, int src_height, uint16* dst, int dst_stride, int dst_width, int dst_height, enum FilterMode filtering) { // Simplify filtering when possible. filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, filtering); // Negative height means invert the image. if (src_height < 0) { src_height = -src_height; src = src + (src_height - 1) * src_stride; src_stride = -src_stride; } // Use specialized scales to improve performance for common resolutions. // For example, all the 1/2 scalings will use ScalePlaneDown2() if (dst_width == src_width && dst_height == src_height) { // Straight copy. CopyPlane_16(src, src_stride, dst, dst_stride, dst_width, dst_height); return; } if (dst_width == src_width) { int dy = FixedDiv(src_height, dst_height); // Arbitrary scale vertically, but unscaled vertically. ScalePlaneVertical_16(src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, 0, 0, dy, 1, filtering); return; } if (dst_width <= Abs(src_width) && dst_height <= src_height) { // Scale down. if (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) { // optimized, 3/4 ScalePlaneDown34_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } if (2 * dst_width == src_width && 2 * dst_height == src_height) { // optimized, 1/2 ScalePlaneDown2_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } // 3/8 rounded up for odd sized chroma height. if (8 * dst_width == 3 * src_width && dst_height == ((src_height * 3 + 7) / 8)) { // optimized, 3/8 ScalePlaneDown38_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } if (4 * dst_width == src_width && 4 * dst_height == src_height && filtering != kFilterBilinear) { // optimized, 1/4 ScalePlaneDown4_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } } if (filtering == kFilterBox && dst_height * 2 < src_height) { ScalePlaneBox_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst); return; } if (filtering && dst_height > src_height) { ScalePlaneBilinearUp_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } if (filtering) { ScalePlaneBilinearDown_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst, filtering); return; } ScalePlaneSimple_16(src_width, src_height, dst_width, dst_height, src_stride, dst_stride, src, dst); } // Scale an I420 image. // This function in turn calls a scaling function for each plane. LIBYUV_API int I420Scale(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, int src_width, int src_height, uint8* dst_y, int dst_stride_y, uint8* dst_u, int dst_stride_u, uint8* dst_v, int dst_stride_v, int dst_width, int dst_height, enum FilterMode filtering) { int src_halfwidth = SUBSAMPLE(src_width, 1, 1); int src_halfheight = SUBSAMPLE(src_height, 1, 1); int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1); int dst_halfheight = SUBSAMPLE(dst_height, 1, 1); if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 || src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v || dst_width <= 0 || dst_height <= 0) { return -1; } ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y, dst_width, dst_height, filtering); ScalePlane(src_u, src_stride_u, src_halfwidth, src_halfheight, dst_u, dst_stride_u, dst_halfwidth, dst_halfheight, filtering); ScalePlane(src_v, src_stride_v, src_halfwidth, src_halfheight, dst_v, dst_stride_v, dst_halfwidth, dst_halfheight, filtering); return 0; } LIBYUV_API int I420Scale_16(const uint16* src_y, int src_stride_y, const uint16* src_u, int src_stride_u, const uint16* src_v, int src_stride_v, int src_width, int src_height, uint16* dst_y, int dst_stride_y, uint16* dst_u, int dst_stride_u, uint16* dst_v, int dst_stride_v, int dst_width, int dst_height, enum FilterMode filtering) { int src_halfwidth = SUBSAMPLE(src_width, 1, 1); int src_halfheight = SUBSAMPLE(src_height, 1, 1); int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1); int dst_halfheight = SUBSAMPLE(dst_height, 1, 1); if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 || src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v || dst_width <= 0 || dst_height <= 0) { return -1; } ScalePlane_16(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y, dst_width, dst_height, filtering); ScalePlane_16(src_u, src_stride_u, src_halfwidth, src_halfheight, dst_u, dst_stride_u, dst_halfwidth, dst_halfheight, filtering); ScalePlane_16(src_v, src_stride_v, src_halfwidth, src_halfheight, dst_v, dst_stride_v, dst_halfwidth, dst_halfheight, filtering); return 0; } // Deprecated api LIBYUV_API int Scale(const uint8* src_y, const uint8* src_u, const uint8* src_v, int src_stride_y, int src_stride_u, int src_stride_v, int src_width, int src_height, uint8* dst_y, uint8* dst_u, uint8* dst_v, int dst_stride_y, int dst_stride_u, int dst_stride_v, int dst_width, int dst_height, LIBYUV_BOOL interpolate) { return I420Scale(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v, src_width, src_height, dst_y, dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v, dst_width, dst_height, interpolate ? kFilterBox : kFilterNone); } // Deprecated api LIBYUV_API int ScaleOffset(const uint8* src, int src_width, int src_height, uint8* dst, int dst_width, int dst_height, int dst_yoffset, LIBYUV_BOOL interpolate) { // Chroma requires offset to multiple of 2. int dst_yoffset_even = dst_yoffset & ~1; int src_halfwidth = SUBSAMPLE(src_width, 1, 1); int src_halfheight = SUBSAMPLE(src_height, 1, 1); int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1); int dst_halfheight = SUBSAMPLE(dst_height, 1, 1); int aheight = dst_height - dst_yoffset_even * 2; // actual output height const uint8* src_y = src; const uint8* src_u = src + src_width * src_height; const uint8* src_v = src + src_width * src_height + src_halfwidth * src_halfheight; uint8* dst_y = dst + dst_yoffset_even * dst_width; uint8* dst_u = dst + dst_width * dst_height + (dst_yoffset_even >> 1) * dst_halfwidth; uint8* dst_v = dst + dst_width * dst_height + dst_halfwidth * dst_halfheight + (dst_yoffset_even >> 1) * dst_halfwidth; if (!src || src_width <= 0 || src_height <= 0 || !dst || dst_width <= 0 || dst_height <= 0 || dst_yoffset_even < 0 || dst_yoffset_even >= dst_height) { return -1; } return I420Scale(src_y, src_width, src_u, src_halfwidth, src_v, src_halfwidth, src_width, src_height, dst_y, dst_width, dst_u, dst_halfwidth, dst_v, dst_halfwidth, dst_width, aheight, interpolate ? kFilterBox : kFilterNone); } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif