ref: 86f4a3d8afa61c2965ef421f16e0befa4bf6600a
dir: /vp9/common/mips/msa/vp9_macros_msa.h/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP9_COMMON_MIPS_MSA_VP9_MACROS_MSA_H_ #define VP9_COMMON_MIPS_MSA_VP9_MACROS_MSA_H_ #include <msa.h> #include "./vpx_config.h" #include "vpx/vpx_integer.h" #define LD_B(RTYPE, psrc) *((const RTYPE *)(psrc)) #define LD_UB(...) LD_B(v16u8, __VA_ARGS__) #define LD_SB(...) LD_B(v16i8, __VA_ARGS__) #define LD_H(RTYPE, psrc) *((const RTYPE *)(psrc)) #define LD_UH(...) LD_H(v8u16, __VA_ARGS__) #define LD_SH(...) LD_H(v8i16, __VA_ARGS__) #define LD_W(RTYPE, psrc) *((const RTYPE *)(psrc)) #define LD_SW(...) LD_W(v4i32, __VA_ARGS__) #define ST_B(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) #define ST_UB(...) ST_B(v16u8, __VA_ARGS__) #define ST_SB(...) ST_B(v16i8, __VA_ARGS__) #define ST_H(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) #define ST_SH(...) ST_H(v8i16, __VA_ARGS__) #define ST_W(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) #define ST_SW(...) ST_W(v4i32, __VA_ARGS__) #if (__mips_isa_rev >= 6) #define LH(psrc) ({ \ const uint8_t *psrc_m = (const uint8_t *)(psrc); \ uint16_t val_m; \ \ __asm__ __volatile__ ( \ "lh %[val_m], %[psrc_m] \n\t" \ \ : [val_m] "=r" (val_m) \ : [psrc_m] "m" (*psrc_m) \ ); \ \ val_m; \ }) #define LW(psrc) ({ \ const uint8_t *psrc_m = (const uint8_t *)(psrc); \ uint32_t val_m; \ \ __asm__ __volatile__ ( \ "lw %[val_m], %[psrc_m] \n\t" \ \ : [val_m] "=r" (val_m) \ : [psrc_m] "m" (*psrc_m) \ ); \ \ val_m; \ }) #if (__mips == 64) #define LD(psrc) ({ \ const uint8_t *psrc_m = (const uint8_t *)(psrc); \ uint64_t val_m = 0; \ \ __asm__ __volatile__ ( \ "ld %[val_m], %[psrc_m] \n\t" \ \ : [val_m] "=r" (val_m) \ : [psrc_m] "m" (*psrc_m) \ ); \ \ val_m; \ }) #else // !(__mips == 64) #define LD(psrc) ({ \ const uint8_t *psrc_m = (const uint8_t *)(psrc); \ uint32_t val0_m, val1_m; \ uint64_t val_m = 0; \ \ val0_m = LW(psrc_m); \ val1_m = LW(psrc_m + 4); \ \ val_m = (uint64_t)(val1_m); \ val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \ val_m = (uint64_t)(val_m | (uint64_t)val0_m); \ \ val_m; \ }) #endif // (__mips == 64) #define SH(val, pdst) { \ uint8_t *pdst_m = (uint8_t *)(pdst); \ const uint16_t val_m = (val); \ \ __asm__ __volatile__ ( \ "sh %[val_m], %[pdst_m] \n\t" \ \ : [pdst_m] "=m" (*pdst_m) \ : [val_m] "r" (val_m) \ ); \ } #define SW(val, pdst) { \ uint8_t *pdst_m = (uint8_t *)(pdst); \ const uint32_t val_m = (val); \ \ __asm__ __volatile__ ( \ "sw %[val_m], %[pdst_m] \n\t" \ \ : [pdst_m] "=m" (*pdst_m) \ : [val_m] "r" (val_m) \ ); \ } #define SD(val, pdst) { \ uint8_t *pdst_m = (uint8_t *)(pdst); \ const uint64_t val_m = (val); \ \ __asm__ __volatile__ ( \ "sd %[val_m], %[pdst_m] \n\t" \ \ : [pdst_m] "=m" (*pdst_m) \ : [val_m] "r" (val_m) \ ); \ } #else // !(__mips_isa_rev >= 6) #define LH(psrc) ({ \ const uint8_t *psrc_m = (const uint8_t *)(psrc); \ uint16_t val_m; \ \ __asm__ __volatile__ ( \ "ulh %[val_m], %[psrc_m] \n\t" \ \ : [val_m] "=r" (val_m) \ : [psrc_m] "m" (*psrc_m) \ ); \ \ val_m; \ }) #define LW(psrc) ({ \ const uint8_t *psrc_m = (const uint8_t *)(psrc); \ uint32_t val_m; \ \ __asm__ __volatile__ ( \ "ulw %[val_m], %[psrc_m] \n\t" \ \ : [val_m] "=r" (val_m) \ : [psrc_m] "m" (*psrc_m) \ ); \ \ val_m; \ }) #if (__mips == 64) #define LD(psrc) ({ \ const uint8_t *psrc_m = (const uint8_t *)(psrc); \ uint64_t val_m = 0; \ \ __asm__ __volatile__ ( \ "uld %[val_m], %[psrc_m] \n\t" \ \ : [val_m] "=r" (val_m) \ : [psrc_m] "m" (*psrc_m) \ ); \ \ val_m; \ }) #else // !(__mips == 64) #define LD(psrc) ({ \ const uint8_t *psrc_m1 = (const uint8_t *)(psrc); \ uint32_t val0_m, val1_m; \ uint64_t val_m = 0; \ \ val0_m = LW(psrc_m1); \ val1_m = LW(psrc_m1 + 4); \ \ val_m = (uint64_t)(val1_m); \ val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \ val_m = (uint64_t)(val_m | (uint64_t)val0_m); \ \ val_m; \ }) #endif // (__mips == 64) #define SH(val, pdst) { \ uint8_t *pdst_m = (uint8_t *)(pdst); \ const uint16_t val_m = (val); \ \ __asm__ __volatile__ ( \ "ush %[val_m], %[pdst_m] \n\t" \ \ : [pdst_m] "=m" (*pdst_m) \ : [val_m] "r" (val_m) \ ); \ } #define SW(val, pdst) { \ uint8_t *pdst_m = (uint8_t *)(pdst); \ const uint32_t val_m = (val); \ \ __asm__ __volatile__ ( \ "usw %[val_m], %[pdst_m] \n\t" \ \ : [pdst_m] "=m" (*pdst_m) \ : [val_m] "r" (val_m) \ ); \ } #define SD(val, pdst) { \ uint8_t *pdst_m1 = (uint8_t *)(pdst); \ uint32_t val0_m, val1_m; \ \ val0_m = (uint32_t)((val) & 0x00000000FFFFFFFF); \ val1_m = (uint32_t)(((val) >> 32) & 0x00000000FFFFFFFF); \ \ SW(val0_m, pdst_m1); \ SW(val1_m, pdst_m1 + 4); \ } #endif // (__mips_isa_rev >= 6) /* Description : Load 4 words with stride Arguments : Inputs - psrc (source pointer to load from) - stride Outputs - out0, out1, out2, out3 Details : Loads word in 'out0' from (psrc) Loads word in 'out1' from (psrc + stride) Loads word in 'out2' from (psrc + 2 * stride) Loads word in 'out3' from (psrc + 3 * stride) */ #define LW4(psrc, stride, out0, out1, out2, out3) { \ out0 = LW((psrc)); \ out1 = LW((psrc) + stride); \ out2 = LW((psrc) + 2 * stride); \ out3 = LW((psrc) + 3 * stride); \ } /* Description : Load double words with stride Arguments : Inputs - psrc (source pointer to load from) - stride Outputs - out0, out1 Details : Loads double word in 'out0' from (psrc) Loads double word in 'out1' from (psrc + stride) */ #define LD2(psrc, stride, out0, out1) { \ out0 = LD((psrc)); \ out1 = LD((psrc) + stride); \ } #define LD4(psrc, stride, out0, out1, out2, out3) { \ LD2((psrc), stride, out0, out1); \ LD2((psrc) + 2 * stride, stride, out2, out3); \ } /* Description : Store 4 words with stride Arguments : Inputs - in0, in1, in2, in3, pdst, stride Details : Stores word from 'in0' to (pdst) Stores word from 'in1' to (pdst + stride) Stores word from 'in2' to (pdst + 2 * stride) Stores word from 'in3' to (pdst + 3 * stride) */ #define SW4(in0, in1, in2, in3, pdst, stride) { \ SW(in0, (pdst)) \ SW(in1, (pdst) + stride); \ SW(in2, (pdst) + 2 * stride); \ SW(in3, (pdst) + 3 * stride); \ } /* Description : Store 4 double words with stride Arguments : Inputs - in0, in1, in2, in3, pdst, stride Details : Stores double word from 'in0' to (pdst) Stores double word from 'in1' to (pdst + stride) Stores double word from 'in2' to (pdst + 2 * stride) Stores double word from 'in3' to (pdst + 3 * stride) */ #define SD4(in0, in1, in2, in3, pdst, stride) { \ SD(in0, (pdst)) \ SD(in1, (pdst) + stride); \ SD(in2, (pdst) + 2 * stride); \ SD(in3, (pdst) + 3 * stride); \ } /* Description : Load vectors with 16 byte elements with stride Arguments : Inputs - psrc (source pointer to load from) - stride Outputs - out0, out1 Return Type - as per RTYPE Details : Loads 16 byte elements in 'out0' from (psrc) Loads 16 byte elements in 'out1' from (psrc + stride) */ #define LD_B2(RTYPE, psrc, stride, out0, out1) { \ out0 = LD_B(RTYPE, (psrc)); \ out1 = LD_B(RTYPE, (psrc) + stride); \ } #define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__) #define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__) #define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) { \ LD_B2(RTYPE, (psrc), stride, out0, out1); \ LD_B2(RTYPE, (psrc) + 2 * stride , stride, out2, out3); \ } #define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__) #define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__) #define LD_B5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) { \ LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ out4 = LD_B(RTYPE, (psrc) + 4 * stride); \ } #define LD_UB5(...) LD_B5(v16u8, __VA_ARGS__) #define LD_SB5(...) LD_B5(v16i8, __VA_ARGS__) #define LD_B7(RTYPE, psrc, stride, \ out0, out1, out2, out3, out4, out5, out6) { \ LD_B5(RTYPE, (psrc), stride, out0, out1, out2, out3, out4); \ LD_B2(RTYPE, (psrc) + 5 * stride, stride, out5, out6); \ } #define LD_SB7(...) LD_B7(v16i8, __VA_ARGS__) #define LD_B8(RTYPE, psrc, stride, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ LD_B4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \ } #define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__) #define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__) /* Description : Load vectors with 8 halfword elements with stride Arguments : Inputs - psrc (source pointer to load from) - stride Outputs - out0, out1 Details : Loads 8 halfword elements in 'out0' from (psrc) Loads 8 halfword elements in 'out1' from (psrc + stride) */ #define LD_H2(RTYPE, psrc, stride, out0, out1) { \ out0 = LD_H(RTYPE, (psrc)); \ out1 = LD_H(RTYPE, (psrc) + (stride)); \ } #define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__) #define LD_H4(RTYPE, psrc, stride, out0, out1, out2, out3) { \ LD_H2(RTYPE, (psrc), stride, out0, out1); \ LD_H2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \ } #define LD_SH4(...) LD_H4(v8i16, __VA_ARGS__) #define LD_H8(RTYPE, psrc, stride, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ LD_H4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ LD_H4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \ } #define LD_SH8(...) LD_H8(v8i16, __VA_ARGS__) #define LD_H16(RTYPE, psrc, stride, \ out0, out1, out2, out3, out4, out5, out6, out7, \ out8, out9, out10, out11, out12, out13, out14, out15) { \ LD_H8(RTYPE, (psrc), stride, \ out0, out1, out2, out3, out4, out5, out6, out7); \ LD_H8(RTYPE, (psrc) + 8 * stride, stride, \ out8, out9, out10, out11, out12, out13, out14, out15); \ } #define LD_SH16(...) LD_H16(v8i16, __VA_ARGS__) /* Description : Load as 4x4 block of signed halfword elements from 1D source data into 4 vectors (Each vector with 4 signed halfwords) Arguments : Inputs - psrc Outputs - out0, out1, out2, out3 */ #define LD4x4_SH(psrc, out0, out1, out2, out3) { \ out0 = LD_SH(psrc); \ out2 = LD_SH(psrc + 8); \ out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ out3 = (v8i16)__msa_ilvl_d((v2i64)out2, (v2i64)out2); \ } /* Description : Load 2 vectors of signed word elements with stride Arguments : Inputs - psrc (source pointer to load from) - stride Outputs - out0, out1 Return Type - signed word */ #define LD_SW2(psrc, stride, out0, out1) { \ out0 = LD_SW((psrc)); \ out1 = LD_SW((psrc) + stride); \ } /* Description : Store vectors of 16 byte elements with stride Arguments : Inputs - in0, in1, stride Outputs - pdst (destination pointer to store to) Details : Stores 16 byte elements from 'in0' to (pdst) Stores 16 byte elements from 'in1' to (pdst + stride) */ #define ST_B2(RTYPE, in0, in1, pdst, stride) { \ ST_B(RTYPE, in0, (pdst)); \ ST_B(RTYPE, in1, (pdst) + stride); \ } #define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__) #define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) { \ ST_B2(RTYPE, in0, in1, (pdst), stride); \ ST_B2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \ } #define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__) #define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ pdst, stride) { \ ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \ ST_B4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \ } #define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__) /* Description : Store vectors of 8 halfword elements with stride Arguments : Inputs - in0, in1, stride Outputs - pdst (destination pointer to store to) Details : Stores 8 halfword elements from 'in0' to (pdst) Stores 8 halfword elements from 'in1' to (pdst + stride) */ #define ST_H2(RTYPE, in0, in1, pdst, stride) { \ ST_H(RTYPE, in0, (pdst)); \ ST_H(RTYPE, in1, (pdst) + stride); \ } #define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__) #define ST_H4(RTYPE, in0, in1, in2, in3, pdst, stride) { \ ST_H2(RTYPE, in0, in1, (pdst), stride); \ ST_H2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \ } #define ST_SH4(...) ST_H4(v8i16, __VA_ARGS__) #define ST_H8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) { \ ST_H4(RTYPE, in0, in1, in2, in3, (pdst), stride); \ ST_H4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \ } #define ST_SH8(...) ST_H8(v8i16, __VA_ARGS__) /* Description : Store as 2x4 byte block to destination memory from input vector Arguments : Inputs - in, stidx, pdst, stride Return Type - unsigned byte Details : Index stidx halfword element from 'in' vector is copied and stored on first line Index stidx+1 halfword element from 'in' vector is copied and stored on second line Index stidx+2 halfword element from 'in' vector is copied and stored on third line Index stidx+3 halfword element from 'in' vector is copied and stored on fourth line */ #define ST2x4_UB(in, stidx, pdst, stride) { \ uint16_t out0_m, out1_m, out2_m, out3_m; \ uint8_t *pblk_2x4_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_h((v8i16)in, (stidx)); \ out1_m = __msa_copy_u_h((v8i16)in, (stidx + 1)); \ out2_m = __msa_copy_u_h((v8i16)in, (stidx + 2)); \ out3_m = __msa_copy_u_h((v8i16)in, (stidx + 3)); \ \ SH(out0_m, pblk_2x4_m); \ SH(out1_m, pblk_2x4_m + stride); \ SH(out2_m, pblk_2x4_m + 2 * stride); \ SH(out3_m, pblk_2x4_m + 3 * stride); \ } /* Description : Store as 4x4 byte block to destination memory from input vector Arguments : Inputs - in0, in1, pdst, stride Return Type - unsigned byte Details : Idx0 word element from input vector 'in0' is copied and stored on first line Idx1 word element from input vector 'in0' is copied and stored on second line Idx2 word element from input vector 'in1' is copied and stored on third line Idx3 word element from input vector 'in1' is copied and stored on fourth line */ #define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) { \ uint32_t out0_m, out1_m, out2_m, out3_m; \ uint8_t *pblk_4x4_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_w((v4i32)in0, idx0); \ out1_m = __msa_copy_u_w((v4i32)in0, idx1); \ out2_m = __msa_copy_u_w((v4i32)in1, idx2); \ out3_m = __msa_copy_u_w((v4i32)in1, idx3); \ \ SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \ } #define ST4x8_UB(in0, in1, pdst, stride) { \ uint8_t *pblk_4x8 = (uint8_t *)(pdst); \ \ ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \ ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \ } /* Description : Store as 8x1 byte block to destination memory from input vector Arguments : Inputs - in, pdst Details : Index 0 double word element from input vector 'in' is copied and stored to destination memory at (pdst) */ #define ST8x1_UB(in, pdst) { \ uint64_t out0_m; \ \ out0_m = __msa_copy_u_d((v2i64)in, 0); \ SD(out0_m, pdst); \ } /* Description : Store as 8x2 byte block to destination memory from input vector Arguments : Inputs - in, pdst, stride Details : Index 0 double word element from input vector 'in' is copied and stored to destination memory at (pdst) Index 1 double word element from input vector 'in' is copied and stored to destination memory at (pdst + stride) */ #define ST8x2_UB(in, pdst, stride) { \ uint64_t out0_m, out1_m; \ uint8_t *pblk_8x2_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_d((v2i64)in, 0); \ out1_m = __msa_copy_u_d((v2i64)in, 1); \ \ SD(out0_m, pblk_8x2_m); \ SD(out1_m, pblk_8x2_m + stride); \ } /* Description : Store as 8x4 byte block to destination memory from input vectors Arguments : Inputs - in0, in1, pdst, stride Details : Index 0 double word element from input vector 'in0' is copied and stored to destination memory at (pblk_8x4_m) Index 1 double word element from input vector 'in0' is copied and stored to destination memory at (pblk_8x4_m + stride) Index 0 double word element from input vector 'in1' is copied and stored to destination memory at (pblk_8x4_m + 2 * stride) Index 1 double word element from input vector 'in1' is copied and stored to destination memory at (pblk_8x4_m + 3 * stride) */ #define ST8x4_UB(in0, in1, pdst, stride) { \ uint64_t out0_m, out1_m, out2_m, out3_m; \ uint8_t *pblk_8x4_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_d((v2i64)in0, 0); \ out1_m = __msa_copy_u_d((v2i64)in0, 1); \ out2_m = __msa_copy_u_d((v2i64)in1, 0); \ out3_m = __msa_copy_u_d((v2i64)in1, 1); \ \ SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride); \ } /* Description : average with rounding (in0 + in1 + 1) / 2. Arguments : Inputs - in0, in1, in2, in3, Outputs - out0, out1 Return Type - signed byte Details : Each byte element from 'in0' vector is added with each byte element from 'in1' vector. The addition of the elements plus 1 (for rounding) is done unsigned with full precision, i.e. the result has one extra bit. Unsigned division by 2 (or logical shift right by one bit) is performed before writing the result to vector 'out0' Similar for the pair of 'in2' and 'in3' */ #define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1); \ out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3); \ } #define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__) #define AVER_UB4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \ AVER_UB2(RTYPE, in4, in5, in6, in7, out2, out3) \ } #define AVER_UB4_UB(...) AVER_UB4(v16u8, __VA_ARGS__) /* Description : Immediate number of columns to slide with zero Arguments : Inputs - in0, in1, slide_val Outputs - out0, out1 Return Type - as per RTYPE Details : Byte elements from 'zero_m' vector are slide into 'in0' by number of elements specified by 'slide_val' */ #define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val) { \ v16i8 zero_m = { 0 }; \ out0 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in0, slide_val); \ out1 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in1, slide_val); \ } #define SLDI_B2_0_SW(...) SLDI_B2_0(v4i32, __VA_ARGS__) #define SLDI_B4_0(RTYPE, in0, in1, in2, in3, \ out0, out1, out2, out3, slide_val) { \ SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val); \ SLDI_B2_0(RTYPE, in2, in3, out2, out3, slide_val); \ } #define SLDI_B4_0_UB(...) SLDI_B4_0(v16u8, __VA_ARGS__) /* Description : Immediate number of columns to slide Arguments : Inputs - in0_0, in0_1, in1_0, in1_1, slide_val Outputs - out0, out1 Return Type - as per RTYPE Details : Byte elements from 'in0_0' vector are slide into 'in1_0' by number of elements specified by 'slide_val' */ #define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) { \ out0 = (RTYPE)__msa_sldi_b((v16i8)in0_0, (v16i8)in1_0, slide_val); \ out1 = (RTYPE)__msa_sldi_b((v16i8)in0_1, (v16i8)in1_1, slide_val); \ } #define SLDI_B2_SH(...) SLDI_B2(v8i16, __VA_ARGS__) #define SLDI_B3(RTYPE, in0_0, in0_1, in0_2, in1_0, in1_1, in1_2, \ out0, out1, out2, slide_val) { \ SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ out2 = (RTYPE)__msa_sldi_b((v16i8)in0_2, (v16i8)in1_2, slide_val); \ } #define SLDI_B3_SB(...) SLDI_B3(v16i8, __VA_ARGS__) #define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__) /* Description : Shuffle byte vector elements as per mask vector Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 Outputs - out0, out1 Return Type - as per RTYPE Details : Selective byte elements from in0 & in1 are copied to out0 as per control vector mask0 Selective byte elements from in2 & in3 are copied to out1 as per control vector mask1 */ #define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) { \ out0 = (RTYPE)__msa_vshf_b((v16i8)mask0, (v16i8)in1, (v16i8)in0); \ out1 = (RTYPE)__msa_vshf_b((v16i8)mask1, (v16i8)in3, (v16i8)in2); \ } #define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__) #define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__) #define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__) #define VSHF_B4(RTYPE, in0, in1, mask0, mask1, mask2, mask3, \ out0, out1, out2, out3) { \ VSHF_B2(RTYPE, in0, in1, in0, in1, mask0, mask1, out0, out1); \ VSHF_B2(RTYPE, in0, in1, in0, in1, mask2, mask3, out2, out3); \ } #define VSHF_B4_SB(...) VSHF_B4(v16i8, __VA_ARGS__) #define VSHF_B4_SH(...) VSHF_B4(v8i16, __VA_ARGS__) /* Description : Dot product of byte vector elements Arguments : Inputs - mult0, mult1 cnst0, cnst1 Outputs - out0, out1 Return Type - unsigned halfword Details : Unsigned byte elements from mult0 are multiplied with unsigned byte elements from cnst0 producing a result twice the size of input i.e. unsigned halfword. Then this multiplication results of adjacent odd-even elements are added together and stored to the out vector (2 unsigned halfword results) */ #define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) { \ out0 = (RTYPE)__msa_dotp_u_h((v16u8)mult0, (v16u8)cnst0); \ out1 = (RTYPE)__msa_dotp_u_h((v16u8)mult1, (v16u8)cnst1); \ } #define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__) #define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3, \ cnst0, cnst1, cnst2, cnst3, \ out0, out1, out2, out3) { \ DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__) /* Description : Dot product of byte vector elements Arguments : Inputs - mult0, mult1 cnst0, cnst1 Outputs - out0, out1 Return Type - signed halfword Details : Signed byte elements from mult0 are multiplied with signed byte elements from cnst0 producing a result twice the size of input i.e. signed halfword. Then this multiplication results of adjacent odd-even elements are added together and stored to the out vector (2 signed halfword results) */ #define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) { \ out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \ out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \ } #define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__) #define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, \ cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) { \ DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__) /* Description : Dot product of halfword vector elements Arguments : Inputs - mult0, mult1 cnst0, cnst1 Outputs - out0, out1 Return Type - signed word Details : Signed halfword elements from mult0 are multiplied with signed halfword elements from cnst0 producing a result twice the size of input i.e. signed word. Then this multiplication results of adjacent odd-even elements are added together and stored to the out vector (2 signed word results) */ #define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) { \ out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \ out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \ } #define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__) #define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3, \ cnst0, cnst1, cnst2, cnst3, \ out0, out1, out2, out3) { \ DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__) /* Description : Dot product of word vector elements Arguments : Inputs - mult0, mult1 cnst0, cnst1 Outputs - out0, out1 Return Type - signed word Details : Signed word elements from mult0 are multiplied with signed word elements from cnst0 producing a result twice the size of input i.e. signed double word. Then this multiplication results of adjacent odd-even elements are added together and stored to the out vector (2 signed double word results) */ #define DOTP_SW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) { \ out0 = (RTYPE)__msa_dotp_s_d((v4i32)mult0, (v4i32)cnst0); \ out1 = (RTYPE)__msa_dotp_s_d((v4i32)mult1, (v4i32)cnst1); \ } #define DOTP_SW2_SD(...) DOTP_SW2(v2i64, __VA_ARGS__) /* Description : Dot product & addition of byte vector elements Arguments : Inputs - mult0, mult1 cnst0, cnst1 Outputs - out0, out1 Return Type - signed halfword Details : Signed byte elements from mult0 are multiplied with signed byte elements from cnst0 producing a result twice the size of input i.e. signed halfword. Then this multiplication results of adjacent odd-even elements are added to the out vector (2 signed halfword results) */ #define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) { \ out0 = (RTYPE)__msa_dpadd_s_h((v8i16)out0, (v16i8)mult0, (v16i8)cnst0); \ out1 = (RTYPE)__msa_dpadd_s_h((v8i16)out1, (v16i8)mult1, (v16i8)cnst1); \ } #define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__) #define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, \ cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3) { \ DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__) /* Description : Minimum values between unsigned elements of either vector are copied to the output vector Arguments : Inputs - in0, in1, min_vec Outputs - in0, in1, (in place) Return Type - unsigned halfword Details : Minimum of unsigned halfword element values from 'in0' and 'min_value' are written to output vector 'in0' */ #define MIN_UH2(RTYPE, in0, in1, min_vec) { \ in0 = (RTYPE)__msa_min_u_h((v8u16)in0, min_vec); \ in1 = (RTYPE)__msa_min_u_h((v8u16)in1, min_vec); \ } #define MIN_UH2_UH(...) MIN_UH2(v8u16, __VA_ARGS__) #define MIN_UH4(RTYPE, in0, in1, in2, in3, min_vec) { \ MIN_UH2(RTYPE, in0, in1, min_vec); \ MIN_UH2(RTYPE, in2, in3, min_vec); \ } #define MIN_UH4_UH(...) MIN_UH4(v8u16, __VA_ARGS__) /* Description : Clips all signed halfword elements of input vector between 0 & 255 Arguments : Inputs - in (input vector) Outputs - out_m (output vector with clipped elements) Return Type - signed halfword */ #define CLIP_SH_0_255(in) ({ \ v8i16 max_m = __msa_ldi_h(255); \ v8i16 out_m; \ \ out_m = __msa_maxi_s_h((v8i16)in, 0); \ out_m = __msa_min_s_h((v8i16)max_m, (v8i16)out_m); \ out_m; \ }) #define CLIP_SH2_0_255(in0, in1) { \ in0 = CLIP_SH_0_255(in0); \ in1 = CLIP_SH_0_255(in1); \ } #define CLIP_SH4_0_255(in0, in1, in2, in3) { \ CLIP_SH2_0_255(in0, in1); \ CLIP_SH2_0_255(in2, in3); \ } /* Description : Addition of 4 signed word elements 4 signed word elements of input vector are added together and the resulting integer sum is returned Arguments : Inputs - in (signed word vector) Outputs - sum_m (i32 sum) Return Type - signed word */ #define HADD_SW_S32(in) ({ \ v2i64 res0_m, res1_m; \ int32_t sum_m; \ \ res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in); \ res1_m = __msa_splati_d(res0_m, 1); \ res0_m = res0_m + res1_m; \ sum_m = __msa_copy_s_w((v4i32)res0_m, 0); \ sum_m; \ }) /* Description : Horizontal addition of unsigned byte vector elements Arguments : Inputs - in0, in1 Outputs - out0, out1 Return Type - as per RTYPE Details : Each unsigned odd byte element from 'in0' is added to even unsigned byte element from 'in0' (pairwise) and the halfword result is stored in 'out0' */ #define HADD_UB2(RTYPE, in0, in1, out0, out1) { \ out0 = (RTYPE)__msa_hadd_u_h((v16u8)in0, (v16u8)in0); \ out1 = (RTYPE)__msa_hadd_u_h((v16u8)in1, (v16u8)in1); \ } #define HADD_UB2_UH(...) HADD_UB2(v8u16, __VA_ARGS__) #define HADD_UB4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) { \ HADD_UB2(RTYPE, in0, in1, out0, out1); \ HADD_UB2(RTYPE, in2, in3, out2, out3); \ } #define HADD_UB4_UH(...) HADD_UB4(v8u16, __VA_ARGS__) /* Description : Insert specified word elements from input vectors to 1 destination vector Arguments : Inputs - in0, in1, in2, in3 (4 input vectors) Outputs - out (output vector) Return Type - as per RTYPE */ #define INSERT_W2(RTYPE, in0, in1, out) { \ out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ } #define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__) #define INSERT_W4(RTYPE, in0, in1, in2, in3, out) { \ out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \ out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \ } #define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__) #define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__) /* Description : Insert specified double word elements from input vectors to 1 destination vector Arguments : Inputs - in0, in1 (2 input vectors) Outputs - out (output vector) Return Type - as per RTYPE */ #define INSERT_D2(RTYPE, in0, in1, out) { \ out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \ out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \ } #define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__) #define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__) /* Description : Interleave even byte elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even byte elements of 'in0' and even byte elements of 'in1' are interleaved and copied to 'out0' Even byte elements of 'in2' and even byte elements of 'in3' are interleaved and copied to 'out1' */ #define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \ out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \ } #define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__) #define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__) /* Description : Interleave even halfword elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even halfword elements of 'in0' and even halfword elements of 'in1' are interleaved and copied to 'out0' Even halfword elements of 'in2' and even halfword elements of 'in3' are interleaved and copied to 'out1' */ #define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \ } #define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__) #define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__) #define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__) /* Description : Interleave even word elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even word elements of 'in0' and 'in1' are interleaved and written to 'out0' */ #define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \ } #define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__) /* Description : Interleave even double word elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even double word elements of 'in0' and even double word elements of 'in1' are interleaved and copied to 'out0' Even double word elements of 'in2' and even double word elements of 'in3' are interleaved and copied to 'out1' */ #define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \ out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \ } #define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__) /* Description : Interleave left half of byte elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Left half of byte elements of in0 and left half of byte elements of in1 are interleaved and copied to out0. Left half of byte elements of in2 and left half of byte elements of in3 are interleaved and copied to out1. */ #define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \ } #define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__) #define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__) #define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__) #define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__) #define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__) #define ILVL_B4_UH(...) ILVL_B4(v8u16, __VA_ARGS__) /* Description : Interleave left half of halfword elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Left half of halfword elements of in0 and left half of halfword elements of in1 are interleaved and copied to out0. Left half of halfword elements of in2 and left half of halfword elements of in3 are interleaved and copied to out1. */ #define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvl_h((v8i16)in2, (v8i16)in3); \ } #define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__) /* Description : Interleave left half of word elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Left half of word elements of in0 and left half of word elements of in1 are interleaved and copied to out0. Left half of word elements of in2 and left half of word elements of in3 are interleaved and copied to out1. */ #define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_ilvl_w((v4i32)in2, (v4i32)in3); \ } #define ILVL_W2_UB(...) ILVL_W2(v16u8, __VA_ARGS__) #define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__) /* Description : Interleave right half of byte elements from vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3 Return Type - as per RTYPE Details : Right half of byte elements of in0 and right half of byte elements of in1 are interleaved and copied to out0. Right half of byte elements of in2 and right half of byte elements of in3 are interleaved and copied to out1. Similar for other pairs */ #define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \ } #define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__) #define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__) #define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__) #define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__) #define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__) #define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__) #define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__) #define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__) #define ILVR_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ in8, in9, in10, in11, in12, in13, in14, in15, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3); \ ILVR_B4(RTYPE, in8, in9, in10, in11, in12, in13, in14, in15, \ out4, out5, out6, out7); \ } #define ILVR_B8_UH(...) ILVR_B8(v8u16, __VA_ARGS__) /* Description : Interleave right half of halfword elements from vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3 Return Type - signed halfword Details : Right half of halfword elements of in0 and right half of halfword elements of in1 are interleaved and copied to out0. Right half of halfword elements of in2 and right half of halfword elements of in3 are interleaved and copied to out1. Similar for other pairs */ #define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \ } #define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__) #define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__) #define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_ilvr_w((v4i32)in2, (v4i32)in3); \ } #define ILVR_W2_UB(...) ILVR_W2(v16u8, __VA_ARGS__) #define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__) #define ILVR_W4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_W2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_W4_UB(...) ILVR_W4(v16u8, __VA_ARGS__) /* Description : Interleave right half of double word elements from vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3 Return Type - unsigned double word Details : Right half of double word elements of in0 and right half of double word elements of in1 are interleaved and copied to out0. Right half of double word elements of in2 and right half of double word elements of in3 are interleaved and copied to out1. */ #define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_ilvr_d((v2i64)(in0), (v2i64)(in1)); \ out1 = (RTYPE)__msa_ilvr_d((v2i64)(in2), (v2i64)(in3)); \ } #define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__) #define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__) #define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__) #define ILVR_D3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) { \ ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ out2 = (RTYPE)__msa_ilvr_d((v2i64)(in4), (v2i64)(in5)); \ } #define ILVR_D3_SB(...) ILVR_D3(v16i8, __VA_ARGS__) #define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__) #define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__) /* Description : Interleave both left and right half of input vectors Arguments : Inputs - in0, in1 Outputs - out0, out1 Return Type - as per RTYPE Details : Right half of byte elements from 'in0' and 'in1' are interleaved and stored to 'out0' Left half of byte elements from 'in0' and 'in1' are interleaved and stored to 'out1' */ #define ILVRL_B2(RTYPE, in0, in1, out0, out1) { \ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ } #define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__) #define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__) #define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__) #define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__) #define ILVRL_H2(RTYPE, in0, in1, out0, out1) { \ out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ } #define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__) #define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__) #define ILVRL_W2(RTYPE, in0, in1, out0, out1) { \ out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ } #define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__) #define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__) /* Description : Saturate the halfword element values to the max unsigned value of (sat_val+1 bits) The element data width remains unchanged Arguments : Inputs - in0, in1, in2, in3, sat_val Outputs - in0, in1, in2, in3 (in place) Return Type - unsigned halfword Details : Each unsigned halfword element from 'in0' is saturated to the value generated with (sat_val+1) bit range. The results are stored in place */ #define SAT_UH2(RTYPE, in0, in1, sat_val) { \ in0 = (RTYPE)__msa_sat_u_h((v8u16)in0, sat_val); \ in1 = (RTYPE)__msa_sat_u_h((v8u16)in1, sat_val); \ } #define SAT_UH2_UH(...) SAT_UH2(v8u16, __VA_ARGS__) #define SAT_UH4(RTYPE, in0, in1, in2, in3, sat_val) { \ SAT_UH2(RTYPE, in0, in1, sat_val); \ SAT_UH2(RTYPE, in2, in3, sat_val) \ } #define SAT_UH4_UH(...) SAT_UH4(v8u16, __VA_ARGS__) /* Description : Saturate the halfword element values to the max unsigned value of (sat_val+1 bits) The element data width remains unchanged Arguments : Inputs - in0, in1, in2, in3, sat_val Outputs - in0, in1, in2, in3 (in place) Return Type - unsigned halfword Details : Each unsigned halfword element from 'in0' is saturated to the value generated with (sat_val+1) bit range The results are stored in place */ #define SAT_SH2(RTYPE, in0, in1, sat_val) { \ in0 = (RTYPE)__msa_sat_s_h((v8i16)in0, sat_val); \ in1 = (RTYPE)__msa_sat_s_h((v8i16)in1, sat_val); \ } #define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__) #define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) { \ SAT_SH2(RTYPE, in0, in1, sat_val); \ SAT_SH2(RTYPE, in2, in3, sat_val); \ } #define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__) /* Description : Indexed halfword element values are replicated to all elements in output vector Arguments : Inputs - in, idx0, idx1 Outputs - out0, out1 Return Type - as per RTYPE Details : 'idx0' element value from 'in' vector is replicated to all elements in 'out0' vector Valid index range for halfword operation is 0-7 */ #define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) { \ out0 = (RTYPE)__msa_splati_h((v8i16)in, idx0); \ out1 = (RTYPE)__msa_splati_h((v8i16)in, idx1); \ } #define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__) #define SPLATI_H4(RTYPE, in, idx0, idx1, idx2, idx3, \ out0, out1, out2, out3) { \ SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \ SPLATI_H2(RTYPE, in, idx2, idx3, out2, out3); \ } #define SPLATI_H4_SB(...) SPLATI_H4(v16i8, __VA_ARGS__) #define SPLATI_H4_SH(...) SPLATI_H4(v8i16, __VA_ARGS__) /* Description : Pack even byte elements of vector pairs Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even byte elements of in0 are copied to the left half of out0 & even byte elements of in1 are copied to the right half of out0. Even byte elements of in2 are copied to the left half of out1 & even byte elements of in3 are copied to the right half of out1. */ #define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \ } #define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__) #define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__) #define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__) #define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__) #define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__) #define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__) /* Description : Pack even halfword elements of vector pairs Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even halfword elements of in0 are copied to the left half of out0 & even halfword elements of in1 are copied to the right half of out0. Even halfword elements of in2 are copied to the left half of out1 & even halfword elements of in3 are copied to the right half of out1. */ #define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \ } #define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__) #define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__) #define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__) /* Description : Pack even double word elements of vector pairs Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - unsigned byte Details : Even double elements of in0 are copied to the left half of out0 & even double elements of in1 are copied to the right half of out0. Even double elements of in2 are copied to the left half of out1 & even double elements of in3 are copied to the right half of out1. */ #define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_pckev_d((v2i64)in0, (v2i64)in1); \ out1 = (RTYPE)__msa_pckev_d((v2i64)in2, (v2i64)in3); \ } #define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__) #define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__) #define PCKEV_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ PCKEV_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define PCKEV_D4_UB(...) PCKEV_D4(v16u8, __VA_ARGS__) /* Description : Each byte element is logically xor'ed with immediate 128 Arguments : Inputs - in0, in1 Outputs - in0, in1 (in-place) Return Type - as per RTYPE Details : Each unsigned byte element from input vector 'in0' is logically xor'ed with 128 and the result is in-place stored in 'in0' vector Each unsigned byte element from input vector 'in1' is logically xor'ed with 128 and the result is in-place stored in 'in1' vector Similar for other pairs */ #define XORI_B2_128(RTYPE, in0, in1) { \ in0 = (RTYPE)__msa_xori_b((v16u8)in0, 128); \ in1 = (RTYPE)__msa_xori_b((v16u8)in1, 128); \ } #define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__) #define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__) #define XORI_B3_128(RTYPE, in0, in1, in2) { \ XORI_B2_128(RTYPE, in0, in1); \ in2 = (RTYPE)__msa_xori_b((v16u8)in2, 128); \ } #define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__) #define XORI_B4_128(RTYPE, in0, in1, in2, in3) { \ XORI_B2_128(RTYPE, in0, in1); \ XORI_B2_128(RTYPE, in2, in3); \ } #define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__) #define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__) #define XORI_B7_128(RTYPE, in0, in1, in2, in3, in4, in5, in6) { \ XORI_B4_128(RTYPE, in0, in1, in2, in3); \ XORI_B3_128(RTYPE, in4, in5, in6); \ } #define XORI_B7_128_SB(...) XORI_B7_128(v16i8, __VA_ARGS__) /* Description : Average of signed halfword elements -> (a + b) / 2 Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3 Return Type - as per RTYPE Details : Each signed halfword element from 'in0' is added to each signed halfword element of 'in1' with full precision resulting in one extra bit in the result. The result is then divided by 2 and written to 'out0' */ #define AVE_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ out0 = (RTYPE)__msa_ave_s_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ave_s_h((v8i16)in2, (v8i16)in3); \ out2 = (RTYPE)__msa_ave_s_h((v8i16)in4, (v8i16)in5); \ out3 = (RTYPE)__msa_ave_s_h((v8i16)in6, (v8i16)in7); \ } #define AVE_SH4_SH(...) AVE_SH4(v8i16, __VA_ARGS__) /* Description : Addition of signed halfword elements and signed saturation Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Signed halfword elements from 'in0' are added to signed halfword elements of 'in1'. The result is then signed saturated between -32768 to +32767 (as per halfword data type) Similar for other pairs */ #define ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1) { \ out0 = (RTYPE)__msa_adds_s_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_adds_s_h((v8i16)in2, (v8i16)in3); \ } #define ADDS_SH2_SH(...) ADDS_SH2(v8i16, __VA_ARGS__) #define ADDS_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1); \ ADDS_SH2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ADDS_SH4_SH(...) ADDS_SH4(v8i16, __VA_ARGS__) /* Description : Shift left all elements of vector (generic for all data types) Arguments : Inputs - in0, in1, in2, in3, shift Outputs - in0, in1, in2, in3 (in place) Return Type - as per input vector RTYPE Details : Each element of vector 'in0' is left shifted by 'shift' and the result is in place written to 'in0' Similar for other pairs */ #define SLLI_4V(in0, in1, in2, in3, shift) { \ in0 = in0 << shift; \ in1 = in1 << shift; \ in2 = in2 << shift; \ in3 = in3 << shift; \ } /* Description : Arithmetic shift right all elements of vector (generic for all data types) Arguments : Inputs - in0, in1, in2, in3, shift Outputs - in0, in1, in2, in3 (in place) Return Type - as per input vector RTYPE Details : Each element of vector 'in0' is right shifted by 'shift' and the result is in place written to 'in0' Here, 'shift' is GP variable passed in Similar for other pairs */ #define SRA_4V(in0, in1, in2, in3, shift) { \ in0 = in0 >> shift; \ in1 = in1 >> shift; \ in2 = in2 >> shift; \ in3 = in3 >> shift; \ } /* Description : Shift right arithmetic rounded words Arguments : Inputs - in0, in1, shift Outputs - in place operation Return Type - as per RTYPE Details : Each element of vector 'in0' is shifted right arithmetically by the number of bits in the corresponding element in the vector 'shift'. The last discarded bit is added to shifted value for rounding and the result is written in-place. 'shift' is a vector. */ #define SRAR_W2(RTYPE, in0, in1, shift) { \ in0 = (RTYPE)__msa_srar_w((v4i32)in0, (v4i32)shift); \ in1 = (RTYPE)__msa_srar_w((v4i32)in1, (v4i32)shift); \ } #define SRAR_W4(RTYPE, in0, in1, in2, in3, shift) { \ SRAR_W2(RTYPE, in0, in1, shift) \ SRAR_W2(RTYPE, in2, in3, shift) \ } #define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__) /* Description : Shift right arithmetic rounded (immediate) Arguments : Inputs - in0, in1, in2, in3, shift Outputs - in0, in1, in2, in3 (in place) Return Type - as per RTYPE Details : Each element of vector 'in0' is shifted right arithmetic by value in 'shift'. The last discarded bit is added to shifted value for rounding and the result is in place written to 'in0' Similar for other pairs */ #define SRARI_H2(RTYPE, in0, in1, shift) { \ in0 = (RTYPE)__msa_srari_h((v8i16)in0, shift); \ in1 = (RTYPE)__msa_srari_h((v8i16)in1, shift); \ } #define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__) #define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__) #define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) { \ SRARI_H2(RTYPE, in0, in1, shift); \ SRARI_H2(RTYPE, in2, in3, shift); \ } #define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__) #define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__) /* Description : Shift right arithmetic rounded (immediate) Arguments : Inputs - in0, in1, shift Outputs - in0, in1 (in place) Return Type - as per RTYPE Details : Each element of vector 'in0' is shifted right arithmetic by value in 'shift'. The last discarded bit is added to shifted value for rounding and the result is in place written to 'in0' Similar for other pairs */ #define SRARI_W2(RTYPE, in0, in1, shift) { \ in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \ in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \ } #define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__) #define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) { \ SRARI_W2(RTYPE, in0, in1, shift); \ SRARI_W2(RTYPE, in2, in3, shift); \ } #define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__) /* Description : Logical shift right all elements of vector (immediate) Arguments : Inputs - in0, in1, in2, in3, shift Outputs - out0, out1, out2, out3 Return Type - as per RTYPE Details : Each element of vector 'in0' is right shifted by 'shift' and the result is written in-place. 'shift' is an immediate value. */ #define SRLI_H4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3, shift) { \ out0 = (RTYPE)__msa_srli_h((v8i16)in0, shift); \ out1 = (RTYPE)__msa_srli_h((v8i16)in1, shift); \ out2 = (RTYPE)__msa_srli_h((v8i16)in2, shift); \ out3 = (RTYPE)__msa_srli_h((v8i16)in3, shift); \ } #define SRLI_H4_SH(...) SRLI_H4(v8i16, __VA_ARGS__) /* Description : Addition of 2 pairs of vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Details : Each element from 2 pairs vectors is added and 2 results are produced */ #define ADD2(in0, in1, in2, in3, out0, out1) { \ out0 = in0 + in1; \ out1 = in2 + in3; \ } #define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ ADD2(in0, in1, in2, in3, out0, out1); \ ADD2(in4, in5, in6, in7, out2, out3); \ } /* Description : Subtraction of 2 pairs of vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Details : Each element from 2 pairs vectors is subtracted and 2 results are produced */ #define SUB2(in0, in1, in2, in3, out0, out1) { \ out0 = in0 - in1; \ out1 = in2 - in3; \ } #define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3) { \ out0 = in0 - in1; \ out1 = in2 - in3; \ out2 = in4 - in5; \ out3 = in6 - in7; \ } /* Description : Sign extend halfword elements from right half of the vector Arguments : Inputs - in (input halfword vector) Outputs - out (sign extended word vectors) Return Type - signed word Details : Sign bit of halfword elements from input vector 'in' is extracted and interleaved with same vector 'in0' to generate 4 word elements keeping sign intact */ #define UNPCK_R_SH_SW(in, out) { \ v8i16 sign_m; \ \ sign_m = __msa_clti_s_h((v8i16)in, 0); \ out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \ } /* Description : Zero extend unsigned byte elements to halfword elements Arguments : Inputs - in (1 input unsigned byte vector) Outputs - out0, out1 (unsigned 2 halfword vectors) Return Type - signed halfword Details : Zero extended right half of vector is returned in 'out0' Zero extended left half of vector is returned in 'out1' */ #define UNPCK_UB_SH(in, out0, out1) { \ v16i8 zero_m = { 0 }; \ \ ILVRL_B2_SH(zero_m, in, out0, out1); \ } /* Description : Sign extend halfword elements from input vector and return result in pair of vectors Arguments : Inputs - in (1 input halfword vector) Outputs - out0, out1 (sign extended 2 word vectors) Return Type - signed word Details : Sign bit of halfword elements from input vector 'in' is extracted and interleaved right with same vector 'in0' to generate 4 signed word elements in 'out0' Then interleaved left with same vector 'in0' to generate 4 signed word elements in 'out1' */ #define UNPCK_SH_SW(in, out0, out1) { \ v8i16 tmp_m; \ \ tmp_m = __msa_clti_s_h((v8i16)in, 0); \ ILVRL_H2_SW(tmp_m, in, out0, out1); \ } /* Description : Butterfly of 4 input vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1, out2, out3 Details : Butterfly operation */ #define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) { \ out0 = in0 + in3; \ out1 = in1 + in2; \ \ out2 = in1 - in2; \ out3 = in0 - in3; \ } /* Description : Butterfly of 8 input vectors Arguments : Inputs - in0 ... in7 Outputs - out0 .. out7 Details : Butterfly operation */ #define BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ out0 = in0 + in7; \ out1 = in1 + in6; \ out2 = in2 + in5; \ out3 = in3 + in4; \ \ out4 = in3 - in4; \ out5 = in2 - in5; \ out6 = in1 - in6; \ out7 = in0 - in7; \ } /* Description : Butterfly of 16 input vectors Arguments : Inputs - in0 ... in15 Outputs - out0 .. out15 Details : Butterfly operation */ #define BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, \ in8, in9, in10, in11, in12, in13, in14, in15, \ out0, out1, out2, out3, out4, out5, out6, out7, \ out8, out9, out10, out11, out12, out13, out14, out15) { \ out0 = in0 + in15; \ out1 = in1 + in14; \ out2 = in2 + in13; \ out3 = in3 + in12; \ out4 = in4 + in11; \ out5 = in5 + in10; \ out6 = in6 + in9; \ out7 = in7 + in8; \ \ out8 = in7 - in8; \ out9 = in6 - in9; \ out10 = in5 - in10; \ out11 = in4 - in11; \ out12 = in3 - in12; \ out13 = in2 - in13; \ out14 = in1 - in14; \ out15 = in0 - in15; \ } /* Description : Transposes input 8x8 byte block Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 (input 8x8 byte block) Outputs - out0, out1, out2, out3, out4, out5, out6, out7 (output 8x8 byte block) Return Type - unsigned byte Details : */ #define TRANSPOSE8x8_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v16i8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ \ ILVR_B4_SB(in2, in0, in3, in1, in6, in4, in7, in5, \ tmp0_m, tmp1_m, tmp2_m, tmp3_m); \ ILVRL_B2_SB(tmp1_m, tmp0_m, tmp4_m, tmp5_m); \ ILVRL_B2_SB(tmp3_m, tmp2_m, tmp6_m, tmp7_m); \ ILVRL_W2(RTYPE, tmp6_m, tmp4_m, out0, out2); \ ILVRL_W2(RTYPE, tmp7_m, tmp5_m, out4, out6); \ SLDI_B2_0(RTYPE, out0, out2, out1, out3, 8); \ SLDI_B2_0(RTYPE, out4, out6, out5, out7, 8); \ } #define TRANSPOSE8x8_UB_UB(...) TRANSPOSE8x8_UB(v16u8, __VA_ARGS__) /* Description : Transposes 16x8 block into 8x16 with byte elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14, in15 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - unsigned byte Details : */ #define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \ in8, in9, in10, in11, in12, in13, in14, in15, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ \ ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \ ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \ ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \ ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \ \ tmp0_m = (v16u8)__msa_ilvev_b((v16i8)out6, (v16i8)out7); \ tmp4_m = (v16u8)__msa_ilvod_b((v16i8)out6, (v16i8)out7); \ tmp1_m = (v16u8)__msa_ilvev_b((v16i8)out4, (v16i8)out5); \ tmp5_m = (v16u8)__msa_ilvod_b((v16i8)out4, (v16i8)out5); \ out5 = (v16u8)__msa_ilvev_b((v16i8)out2, (v16i8)out3); \ tmp6_m = (v16u8)__msa_ilvod_b((v16i8)out2, (v16i8)out3); \ out7 = (v16u8)__msa_ilvev_b((v16i8)out0, (v16i8)out1); \ tmp7_m = (v16u8)__msa_ilvod_b((v16i8)out0, (v16i8)out1); \ \ ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ out0 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out4 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ \ tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ tmp3_m = (v16u8)__msa_ilvod_h((v8i16)out7, (v8i16)out5); \ out2 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out6 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ \ ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ out1 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out5 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ \ tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ out3 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out7 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ } /* Description : Transposes 4x4 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1, out2, out3 Return Type - signed halfword Details : */ #define TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) { \ v8i16 s0_m, s1_m; \ \ ILVR_H2_SH(in1, in0, in3, in2, s0_m, s1_m); \ ILVRL_W2_SH(s1_m, s0_m, out0, out2); \ out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ out3 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out2); \ } /* Description : Transposes 4x8 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - signed halfword Details : */ #define TRANSPOSE4X8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v8i16 tmp0_n, tmp1_n, tmp2_n, tmp3_n; \ v8i16 zero_m = { 0 }; \ \ ILVR_H4_SH(in1, in0, in3, in2, in5, in4, in7, in6, \ tmp0_n, tmp1_n, tmp2_n, tmp3_n); \ ILVRL_W2_SH(tmp1_n, tmp0_n, tmp0_m, tmp2_m); \ ILVRL_W2_SH(tmp3_n, tmp2_n, tmp1_m, tmp3_m); \ \ out0 = (v8i16)__msa_ilvr_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ out1 = (v8i16)__msa_ilvl_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ out2 = (v8i16)__msa_ilvr_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ out3 = (v8i16)__msa_ilvl_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ \ out4 = zero_m; \ out5 = zero_m; \ out6 = zero_m; \ out7 = zero_m; \ } /* Description : Transposes 8x4 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - signed halfword Details : */ #define TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) { \ v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ \ ILVR_H2_SH(in1, in0, in3, in2, tmp0_m, tmp1_m); \ ILVL_H2_SH(in1, in0, in3, in2, tmp2_m, tmp3_m); \ ILVR_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out0, out2); \ ILVL_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out1, out3); \ } /* Description : Transposes 8x8 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - signed halfword Details : */ #define TRANSPOSE8x8_H(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ out0, out1, out2, out3, out4, out5, out6, out7) { \ v8i16 s0_m, s1_m; \ v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v8i16 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ \ ILVR_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp0_m, tmp1_m); \ ILVL_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp2_m, tmp3_m); \ ILVR_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp4_m, tmp5_m); \ ILVL_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp6_m, tmp7_m); \ PCKEV_D4(RTYPE, tmp0_m, tmp4_m, tmp1_m, tmp5_m, tmp2_m, tmp6_m, \ tmp3_m, tmp7_m, out0, out2, out4, out6); \ out1 = (RTYPE)__msa_pckod_d((v2i64)tmp0_m, (v2i64)tmp4_m); \ out3 = (RTYPE)__msa_pckod_d((v2i64)tmp1_m, (v2i64)tmp5_m); \ out5 = (RTYPE)__msa_pckod_d((v2i64)tmp2_m, (v2i64)tmp6_m); \ out7 = (RTYPE)__msa_pckod_d((v2i64)tmp3_m, (v2i64)tmp7_m); \ } #define TRANSPOSE8x8_SH_SH(...) TRANSPOSE8x8_H(v8i16, __VA_ARGS__) /* Description : Transposes 4x4 block with word elements in vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1, out2, out3 Return Type - signed word Details : */ #define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) { \ v4i32 s0_m, s1_m, s2_m, s3_m; \ \ ILVRL_W2_SW(in1, in0, s0_m, s1_m); \ ILVRL_W2_SW(in3, in2, s2_m, s3_m); \ \ out0 = (v4i32)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \ out1 = (v4i32)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \ out2 = (v4i32)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \ out3 = (v4i32)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \ } /* Description : Add block 4x4 Arguments : Inputs - in0, in1, in2, in3, pdst, stride Outputs - Return Type - unsigned bytes Details : Least significant 4 bytes from each input vector are added to the destination bytes, clipped between 0-255 and then stored. */ #define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) { \ uint32_t src0_m, src1_m, src2_m, src3_m; \ uint32_t out0_m, out1_m, out2_m, out3_m; \ v8i16 inp0_m, inp1_m, res0_m, res1_m; \ v16i8 dst0_m = { 0 }; \ v16i8 dst1_m = { 0 }; \ v16i8 zero_m = { 0 }; \ \ ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m) \ LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m); \ INSERT_W2_SB(src0_m, src1_m, dst0_m); \ INSERT_W2_SB(src2_m, src3_m, dst1_m); \ ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m); \ ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m); \ CLIP_SH2_0_255(res0_m, res1_m); \ PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \ \ out0_m = __msa_copy_u_w((v4i32)dst0_m, 0); \ out1_m = __msa_copy_u_w((v4i32)dst0_m, 1); \ out2_m = __msa_copy_u_w((v4i32)dst1_m, 0); \ out3_m = __msa_copy_u_w((v4i32)dst1_m, 1); \ SW4(out0_m, out1_m, out2_m, out3_m, pdst, stride); \ } /* Description : Pack even elements of input vectors & xor with 128 Arguments : Inputs - in0, in1 Outputs - out_m Return Type - unsigned byte Details : Signed byte even elements from 'in0' and 'in1' are packed together in one vector and the resulting vector is xor'ed with 128 to shift the range from signed to unsigned byte */ #define PCKEV_XORI128_UB(in0, in1) ({ \ v16u8 out_m; \ \ out_m = (v16u8)__msa_pckev_b((v16i8)in1, (v16i8)in0); \ out_m = (v16u8)__msa_xori_b((v16u8)out_m, 128); \ out_m; \ }) /* Description : Converts inputs to unsigned bytes, interleave, average & store as 8x4 unsigned byte block Arguments : Inputs - in0, in1, in2, in3, dst0, dst1, dst2, dst3, pdst, stride */ #define CONVERT_UB_AVG_ST8x4_UB(in0, in1, in2, in3, \ dst0, dst1, dst2, dst3, pdst, stride) { \ v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ uint8_t *pdst_m = (uint8_t *)(pdst); \ \ tmp0_m = PCKEV_XORI128_UB(in0, in1); \ tmp1_m = PCKEV_XORI128_UB(in2, in3); \ ILVR_D2_UB(dst1, dst0, dst3, dst2, tmp2_m, tmp3_m); \ AVER_UB2_UB(tmp0_m, tmp2_m, tmp1_m, tmp3_m, tmp0_m, tmp1_m); \ ST8x4_UB(tmp0_m, tmp1_m, pdst_m, stride); \ } /* Description : Pack even byte elements and store byte vector in destination memory Arguments : Inputs - in0, in1, pdst */ #define PCKEV_ST_SB(in0, in1, pdst) { \ v16i8 tmp_m; \ \ tmp_m = __msa_pckev_b((v16i8)in1, (v16i8)in0); \ ST_SB(tmp_m, (pdst)); \ } /* Description : Horizontal 2 tap filter kernel code Arguments : Inputs - in0, in1, mask, coeff, shift */ #define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift) ({ \ v16i8 tmp0_m; \ v8u16 tmp1_m; \ \ tmp0_m = __msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0); \ tmp1_m = __msa_dotp_u_h((v16u8)tmp0_m, (v16u8)coeff); \ tmp1_m = (v8u16)__msa_srari_h((v8i16)tmp1_m, shift); \ tmp1_m = __msa_sat_u_h(tmp1_m, shift); \ \ tmp1_m; \ }) #endif /* VP9_COMMON_MIPS_MSA_VP9_MACROS_MSA_H_ */