ref: 888a848453acfc0a9b92f8c624f6d6c1b26945cc
dir: /vp9/encoder/vp9_dct.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <math.h> #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_systemdependent.h" static INLINE int fdct_round_shift(int input) { int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); assert(INT16_MIN <= rv && rv <= INT16_MAX); return rv; } static void fdct4(const int16_t *input, int16_t *output) { int16_t step[4]; int temp1, temp2; step[0] = input[0] + input[3]; step[1] = input[1] + input[2]; step[2] = input[1] - input[2]; step[3] = input[0] - input[3]; temp1 = (step[0] + step[1]) * cospi_16_64; temp2 = (step[0] - step[1]) * cospi_16_64; output[0] = fdct_round_shift(temp1); output[2] = fdct_round_shift(temp2); temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; output[1] = fdct_round_shift(temp1); output[3] = fdct_round_shift(temp2); } void vp9_fdct4x4_1_c(const int16_t *input, int16_t *output, int stride) { int r, c; int16_t sum = 0; for (r = 0; r < 4; ++r) for (c = 0; c < 4; ++c) sum += input[r * stride + c]; output[0] = sum << 1; output[1] = 0; } void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) { // The 2D transform is done with two passes which are actually pretty // similar. In the first one, we transform the columns and transpose // the results. In the second one, we transform the rows. To achieve that, // as the first pass results are transposed, we transpose the columns (that // is the transposed rows) and transpose the results (so that it goes back // in normal/row positions). int pass; // We need an intermediate buffer between passes. int16_t intermediate[4 * 4]; const int16_t *in = input; int16_t *out = intermediate; // Do the two transform/transpose passes for (pass = 0; pass < 2; ++pass) { /*canbe16*/ int input[4]; /*canbe16*/ int step[4]; /*needs32*/ int temp1, temp2; int i; for (i = 0; i < 4; ++i) { // Load inputs. if (0 == pass) { input[0] = in[0 * stride] * 16; input[1] = in[1 * stride] * 16; input[2] = in[2 * stride] * 16; input[3] = in[3 * stride] * 16; if (i == 0 && input[0]) { input[0] += 1; } } else { input[0] = in[0 * 4]; input[1] = in[1 * 4]; input[2] = in[2 * 4]; input[3] = in[3 * 4]; } // Transform. step[0] = input[0] + input[3]; step[1] = input[1] + input[2]; step[2] = input[1] - input[2]; step[3] = input[0] - input[3]; temp1 = (step[0] + step[1]) * cospi_16_64; temp2 = (step[0] - step[1]) * cospi_16_64; out[0] = fdct_round_shift(temp1); out[2] = fdct_round_shift(temp2); temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; out[1] = fdct_round_shift(temp1); out[3] = fdct_round_shift(temp2); // Do next column (which is a transposed row in second/horizontal pass) in++; out += 4; } // Setup in/out for next pass. in = intermediate; out = output; } { int i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2; } } } static void fadst4(const int16_t *input, int16_t *output) { int x0, x1, x2, x3; int s0, s1, s2, s3, s4, s5, s6, s7; x0 = input[0]; x1 = input[1]; x2 = input[2]; x3 = input[3]; if (!(x0 | x1 | x2 | x3)) { output[0] = output[1] = output[2] = output[3] = 0; return; } s0 = sinpi_1_9 * x0; s1 = sinpi_4_9 * x0; s2 = sinpi_2_9 * x1; s3 = sinpi_1_9 * x1; s4 = sinpi_3_9 * x2; s5 = sinpi_4_9 * x3; s6 = sinpi_2_9 * x3; s7 = x0 + x1 - x3; x0 = s0 + s2 + s5; x1 = sinpi_3_9 * s7; x2 = s1 - s3 + s6; x3 = s4; s0 = x0 + x3; s1 = x1; s2 = x2 - x3; s3 = x2 - x0 + x3; // 1-D transform scaling factor is sqrt(2). output[0] = fdct_round_shift(s0); output[1] = fdct_round_shift(s1); output[2] = fdct_round_shift(s2); output[3] = fdct_round_shift(s3); } static const transform_2d FHT_4[] = { { fdct4, fdct4 }, // DCT_DCT = 0 { fadst4, fdct4 }, // ADST_DCT = 1 { fdct4, fadst4 }, // DCT_ADST = 2 { fadst4, fadst4 } // ADST_ADST = 3 }; void vp9_fht4x4_c(const int16_t *input, int16_t *output, int stride, int tx_type) { if (tx_type == DCT_DCT) { vp9_fdct4x4_c(input, output, stride); } else { int16_t out[4 * 4]; int16_t *outptr = &out[0]; int i, j; int16_t temp_in[4], temp_out[4]; const transform_2d ht = FHT_4[tx_type]; // Columns for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16; if (i == 0 && temp_in[0]) temp_in[0] += 1; ht.cols(temp_in, temp_out); for (j = 0; j < 4; ++j) outptr[j * 4 + i] = temp_out[j]; } // Rows for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4]; ht.rows(temp_in, temp_out); for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2; } } } static void fdct8(const int16_t *input, int16_t *output) { /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; /*needs32*/ int t0, t1, t2, t3; /*canbe16*/ int x0, x1, x2, x3; // stage 1 s0 = input[0] + input[7]; s1 = input[1] + input[6]; s2 = input[2] + input[5]; s3 = input[3] + input[4]; s4 = input[3] - input[4]; s5 = input[2] - input[5]; s6 = input[1] - input[6]; s7 = input[0] - input[7]; // fdct4(step, step); x0 = s0 + s3; x1 = s1 + s2; x2 = s1 - s2; x3 = s0 - s3; t0 = (x0 + x1) * cospi_16_64; t1 = (x0 - x1) * cospi_16_64; t2 = x2 * cospi_24_64 + x3 * cospi_8_64; t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; output[0] = fdct_round_shift(t0); output[2] = fdct_round_shift(t2); output[4] = fdct_round_shift(t1); output[6] = fdct_round_shift(t3); // Stage 2 t0 = (s6 - s5) * cospi_16_64; t1 = (s6 + s5) * cospi_16_64; t2 = fdct_round_shift(t0); t3 = fdct_round_shift(t1); // Stage 3 x0 = s4 + t2; x1 = s4 - t2; x2 = s7 - t3; x3 = s7 + t3; // Stage 4 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; t1 = x1 * cospi_12_64 + x2 * cospi_20_64; t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; output[1] = fdct_round_shift(t0); output[3] = fdct_round_shift(t2); output[5] = fdct_round_shift(t1); output[7] = fdct_round_shift(t3); } void vp9_fdct8x8_1_c(const int16_t *input, int16_t *output, int stride) { int r, c; int16_t sum = 0; for (r = 0; r < 8; ++r) for (c = 0; c < 8; ++c) sum += input[r * stride + c]; output[0] = sum; output[1] = 0; } void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) { int i, j; int16_t intermediate[64]; // Transform columns { int16_t *output = intermediate; /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; /*needs32*/ int t0, t1, t2, t3; /*canbe16*/ int x0, x1, x2, x3; int i; for (i = 0; i < 8; i++) { // stage 1 s0 = (input[0 * stride] + input[7 * stride]) * 4; s1 = (input[1 * stride] + input[6 * stride]) * 4; s2 = (input[2 * stride] + input[5 * stride]) * 4; s3 = (input[3 * stride] + input[4 * stride]) * 4; s4 = (input[3 * stride] - input[4 * stride]) * 4; s5 = (input[2 * stride] - input[5 * stride]) * 4; s6 = (input[1 * stride] - input[6 * stride]) * 4; s7 = (input[0 * stride] - input[7 * stride]) * 4; // fdct4(step, step); x0 = s0 + s3; x1 = s1 + s2; x2 = s1 - s2; x3 = s0 - s3; t0 = (x0 + x1) * cospi_16_64; t1 = (x0 - x1) * cospi_16_64; t2 = x2 * cospi_24_64 + x3 * cospi_8_64; t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; output[0 * 8] = fdct_round_shift(t0); output[2 * 8] = fdct_round_shift(t2); output[4 * 8] = fdct_round_shift(t1); output[6 * 8] = fdct_round_shift(t3); // Stage 2 t0 = (s6 - s5) * cospi_16_64; t1 = (s6 + s5) * cospi_16_64; t2 = fdct_round_shift(t0); t3 = fdct_round_shift(t1); // Stage 3 x0 = s4 + t2; x1 = s4 - t2; x2 = s7 - t3; x3 = s7 + t3; // Stage 4 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; t1 = x1 * cospi_12_64 + x2 * cospi_20_64; t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; output[1 * 8] = fdct_round_shift(t0); output[3 * 8] = fdct_round_shift(t2); output[5 * 8] = fdct_round_shift(t1); output[7 * 8] = fdct_round_shift(t3); input++; output++; } } // Rows for (i = 0; i < 8; ++i) { fdct8(&intermediate[i * 8], &final_output[i * 8]); for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; } } void vp9_fdct16x16_1_c(const int16_t *input, int16_t *output, int stride) { int r, c; int16_t sum = 0; for (r = 0; r < 16; ++r) for (c = 0; c < 16; ++c) sum += input[r * stride + c]; output[0] = sum >> 1; output[1] = 0; } void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) { // The 2D transform is done with two passes which are actually pretty // similar. In the first one, we transform the columns and transpose // the results. In the second one, we transform the rows. To achieve that, // as the first pass results are transposed, we transpose the columns (that // is the transposed rows) and transpose the results (so that it goes back // in normal/row positions). int pass; // We need an intermediate buffer between passes. int16_t intermediate[256]; const int16_t *in = input; int16_t *out = intermediate; // Do the two transform/transpose passes for (pass = 0; pass < 2; ++pass) { /*canbe16*/ int step1[8]; /*canbe16*/ int step2[8]; /*canbe16*/ int step3[8]; /*canbe16*/ int input[8]; /*needs32*/ int temp1, temp2; int i; for (i = 0; i < 16; i++) { if (0 == pass) { // Calculate input for the first 8 results. input[0] = (in[0 * stride] + in[15 * stride]) * 4; input[1] = (in[1 * stride] + in[14 * stride]) * 4; input[2] = (in[2 * stride] + in[13 * stride]) * 4; input[3] = (in[3 * stride] + in[12 * stride]) * 4; input[4] = (in[4 * stride] + in[11 * stride]) * 4; input[5] = (in[5 * stride] + in[10 * stride]) * 4; input[6] = (in[6 * stride] + in[ 9 * stride]) * 4; input[7] = (in[7 * stride] + in[ 8 * stride]) * 4; // Calculate input for the next 8 results. step1[0] = (in[7 * stride] - in[ 8 * stride]) * 4; step1[1] = (in[6 * stride] - in[ 9 * stride]) * 4; step1[2] = (in[5 * stride] - in[10 * stride]) * 4; step1[3] = (in[4 * stride] - in[11 * stride]) * 4; step1[4] = (in[3 * stride] - in[12 * stride]) * 4; step1[5] = (in[2 * stride] - in[13 * stride]) * 4; step1[6] = (in[1 * stride] - in[14 * stride]) * 4; step1[7] = (in[0 * stride] - in[15 * stride]) * 4; } else { // Calculate input for the first 8 results. input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2); input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2); input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2); input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2); input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2); input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2); input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2); input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2); // Calculate input for the next 8 results. step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2); step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2); step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2); step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2); step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2); step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2); step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2); step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2); } // Work on the first eight values; fdct8(input, even_results); { /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; /*needs32*/ int t0, t1, t2, t3; /*canbe16*/ int x0, x1, x2, x3; // stage 1 s0 = input[0] + input[7]; s1 = input[1] + input[6]; s2 = input[2] + input[5]; s3 = input[3] + input[4]; s4 = input[3] - input[4]; s5 = input[2] - input[5]; s6 = input[1] - input[6]; s7 = input[0] - input[7]; // fdct4(step, step); x0 = s0 + s3; x1 = s1 + s2; x2 = s1 - s2; x3 = s0 - s3; t0 = (x0 + x1) * cospi_16_64; t1 = (x0 - x1) * cospi_16_64; t2 = x3 * cospi_8_64 + x2 * cospi_24_64; t3 = x3 * cospi_24_64 - x2 * cospi_8_64; out[0] = fdct_round_shift(t0); out[4] = fdct_round_shift(t2); out[8] = fdct_round_shift(t1); out[12] = fdct_round_shift(t3); // Stage 2 t0 = (s6 - s5) * cospi_16_64; t1 = (s6 + s5) * cospi_16_64; t2 = fdct_round_shift(t0); t3 = fdct_round_shift(t1); // Stage 3 x0 = s4 + t2; x1 = s4 - t2; x2 = s7 - t3; x3 = s7 + t3; // Stage 4 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; t1 = x1 * cospi_12_64 + x2 * cospi_20_64; t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; out[2] = fdct_round_shift(t0); out[6] = fdct_round_shift(t2); out[10] = fdct_round_shift(t1); out[14] = fdct_round_shift(t3); } // Work on the next eight values; step1 -> odd_results { // step 2 temp1 = (step1[5] - step1[2]) * cospi_16_64; temp2 = (step1[4] - step1[3]) * cospi_16_64; step2[2] = fdct_round_shift(temp1); step2[3] = fdct_round_shift(temp2); temp1 = (step1[4] + step1[3]) * cospi_16_64; temp2 = (step1[5] + step1[2]) * cospi_16_64; step2[4] = fdct_round_shift(temp1); step2[5] = fdct_round_shift(temp2); // step 3 step3[0] = step1[0] + step2[3]; step3[1] = step1[1] + step2[2]; step3[2] = step1[1] - step2[2]; step3[3] = step1[0] - step2[3]; step3[4] = step1[7] - step2[4]; step3[5] = step1[6] - step2[5]; step3[6] = step1[6] + step2[5]; step3[7] = step1[7] + step2[4]; // step 4 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; step2[1] = fdct_round_shift(temp1); step2[2] = fdct_round_shift(temp2); temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; step2[5] = fdct_round_shift(temp1); step2[6] = fdct_round_shift(temp2); // step 5 step1[0] = step3[0] + step2[1]; step1[1] = step3[0] - step2[1]; step1[2] = step3[3] + step2[2]; step1[3] = step3[3] - step2[2]; step1[4] = step3[4] - step2[5]; step1[5] = step3[4] + step2[5]; step1[6] = step3[7] - step2[6]; step1[7] = step3[7] + step2[6]; // step 6 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; out[1] = fdct_round_shift(temp1); out[9] = fdct_round_shift(temp2); temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; out[5] = fdct_round_shift(temp1); out[13] = fdct_round_shift(temp2); temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; out[3] = fdct_round_shift(temp1); out[11] = fdct_round_shift(temp2); temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; out[7] = fdct_round_shift(temp1); out[15] = fdct_round_shift(temp2); } // Do next column (which is a transposed row in second/horizontal pass) in++; out += 16; } // Setup in/out for next pass. in = intermediate; out = output; } } static void fadst8(const int16_t *input, int16_t *output) { int s0, s1, s2, s3, s4, s5, s6, s7; int x0 = input[7]; int x1 = input[0]; int x2 = input[5]; int x3 = input[2]; int x4 = input[3]; int x5 = input[4]; int x6 = input[1]; int x7 = input[6]; // stage 1 s0 = cospi_2_64 * x0 + cospi_30_64 * x1; s1 = cospi_30_64 * x0 - cospi_2_64 * x1; s2 = cospi_10_64 * x2 + cospi_22_64 * x3; s3 = cospi_22_64 * x2 - cospi_10_64 * x3; s4 = cospi_18_64 * x4 + cospi_14_64 * x5; s5 = cospi_14_64 * x4 - cospi_18_64 * x5; s6 = cospi_26_64 * x6 + cospi_6_64 * x7; s7 = cospi_6_64 * x6 - cospi_26_64 * x7; x0 = fdct_round_shift(s0 + s4); x1 = fdct_round_shift(s1 + s5); x2 = fdct_round_shift(s2 + s6); x3 = fdct_round_shift(s3 + s7); x4 = fdct_round_shift(s0 - s4); x5 = fdct_round_shift(s1 - s5); x6 = fdct_round_shift(s2 - s6); x7 = fdct_round_shift(s3 - s7); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = cospi_8_64 * x4 + cospi_24_64 * x5; s5 = cospi_24_64 * x4 - cospi_8_64 * x5; s6 = - cospi_24_64 * x6 + cospi_8_64 * x7; s7 = cospi_8_64 * x6 + cospi_24_64 * x7; x0 = s0 + s2; x1 = s1 + s3; x2 = s0 - s2; x3 = s1 - s3; x4 = fdct_round_shift(s4 + s6); x5 = fdct_round_shift(s5 + s7); x6 = fdct_round_shift(s4 - s6); x7 = fdct_round_shift(s5 - s7); // stage 3 s2 = cospi_16_64 * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (x6 - x7); x2 = fdct_round_shift(s2); x3 = fdct_round_shift(s3); x6 = fdct_round_shift(s6); x7 = fdct_round_shift(s7); output[0] = x0; output[1] = - x4; output[2] = x6; output[3] = - x2; output[4] = x3; output[5] = - x7; output[6] = x5; output[7] = - x1; } static const transform_2d FHT_8[] = { { fdct8, fdct8 }, // DCT_DCT = 0 { fadst8, fdct8 }, // ADST_DCT = 1 { fdct8, fadst8 }, // DCT_ADST = 2 { fadst8, fadst8 } // ADST_ADST = 3 }; void vp9_fht8x8_c(const int16_t *input, int16_t *output, int stride, int tx_type) { if (tx_type == DCT_DCT) { vp9_fdct8x8_c(input, output, stride); } else { int16_t out[64]; int16_t *outptr = &out[0]; int i, j; int16_t temp_in[8], temp_out[8]; const transform_2d ht = FHT_8[tx_type]; // Columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4; ht.cols(temp_in, temp_out); for (j = 0; j < 8; ++j) outptr[j * 8 + i] = temp_out[j]; } // Rows for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8]; ht.rows(temp_in, temp_out); for (j = 0; j < 8; ++j) output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; } } } /* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per pixel. */ void vp9_fwht4x4_c(const int16_t *input, int16_t *output, int stride) { int i; int a1, b1, c1, d1, e1; const int16_t *ip = input; int16_t *op = output; for (i = 0; i < 4; i++) { a1 = ip[0 * stride]; b1 = ip[1 * stride]; c1 = ip[2 * stride]; d1 = ip[3 * stride]; a1 += b1; d1 = d1 - c1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= c1; d1 += b1; op[0] = a1; op[4] = c1; op[8] = d1; op[12] = b1; ip++; op++; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0]; b1 = ip[1]; c1 = ip[2]; d1 = ip[3]; a1 += b1; d1 -= c1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= c1; d1 += b1; op[0] = a1 * UNIT_QUANT_FACTOR; op[1] = c1 * UNIT_QUANT_FACTOR; op[2] = d1 * UNIT_QUANT_FACTOR; op[3] = b1 * UNIT_QUANT_FACTOR; ip += 4; op += 4; } } // Rewrote to use same algorithm as others. static void fdct16(const int16_t in[16], int16_t out[16]) { /*canbe16*/ int step1[8]; /*canbe16*/ int step2[8]; /*canbe16*/ int step3[8]; /*canbe16*/ int input[8]; /*needs32*/ int temp1, temp2; // step 1 input[0] = in[0] + in[15]; input[1] = in[1] + in[14]; input[2] = in[2] + in[13]; input[3] = in[3] + in[12]; input[4] = in[4] + in[11]; input[5] = in[5] + in[10]; input[6] = in[6] + in[ 9]; input[7] = in[7] + in[ 8]; step1[0] = in[7] - in[ 8]; step1[1] = in[6] - in[ 9]; step1[2] = in[5] - in[10]; step1[3] = in[4] - in[11]; step1[4] = in[3] - in[12]; step1[5] = in[2] - in[13]; step1[6] = in[1] - in[14]; step1[7] = in[0] - in[15]; // fdct8(step, step); { /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; /*needs32*/ int t0, t1, t2, t3; /*canbe16*/ int x0, x1, x2, x3; // stage 1 s0 = input[0] + input[7]; s1 = input[1] + input[6]; s2 = input[2] + input[5]; s3 = input[3] + input[4]; s4 = input[3] - input[4]; s5 = input[2] - input[5]; s6 = input[1] - input[6]; s7 = input[0] - input[7]; // fdct4(step, step); x0 = s0 + s3; x1 = s1 + s2; x2 = s1 - s2; x3 = s0 - s3; t0 = (x0 + x1) * cospi_16_64; t1 = (x0 - x1) * cospi_16_64; t2 = x3 * cospi_8_64 + x2 * cospi_24_64; t3 = x3 * cospi_24_64 - x2 * cospi_8_64; out[0] = fdct_round_shift(t0); out[4] = fdct_round_shift(t2); out[8] = fdct_round_shift(t1); out[12] = fdct_round_shift(t3); // Stage 2 t0 = (s6 - s5) * cospi_16_64; t1 = (s6 + s5) * cospi_16_64; t2 = fdct_round_shift(t0); t3 = fdct_round_shift(t1); // Stage 3 x0 = s4 + t2; x1 = s4 - t2; x2 = s7 - t3; x3 = s7 + t3; // Stage 4 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; t1 = x1 * cospi_12_64 + x2 * cospi_20_64; t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; out[2] = fdct_round_shift(t0); out[6] = fdct_round_shift(t2); out[10] = fdct_round_shift(t1); out[14] = fdct_round_shift(t3); } // step 2 temp1 = (step1[5] - step1[2]) * cospi_16_64; temp2 = (step1[4] - step1[3]) * cospi_16_64; step2[2] = fdct_round_shift(temp1); step2[3] = fdct_round_shift(temp2); temp1 = (step1[4] + step1[3]) * cospi_16_64; temp2 = (step1[5] + step1[2]) * cospi_16_64; step2[4] = fdct_round_shift(temp1); step2[5] = fdct_round_shift(temp2); // step 3 step3[0] = step1[0] + step2[3]; step3[1] = step1[1] + step2[2]; step3[2] = step1[1] - step2[2]; step3[3] = step1[0] - step2[3]; step3[4] = step1[7] - step2[4]; step3[5] = step1[6] - step2[5]; step3[6] = step1[6] + step2[5]; step3[7] = step1[7] + step2[4]; // step 4 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; step2[1] = fdct_round_shift(temp1); step2[2] = fdct_round_shift(temp2); temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; step2[5] = fdct_round_shift(temp1); step2[6] = fdct_round_shift(temp2); // step 5 step1[0] = step3[0] + step2[1]; step1[1] = step3[0] - step2[1]; step1[2] = step3[3] + step2[2]; step1[3] = step3[3] - step2[2]; step1[4] = step3[4] - step2[5]; step1[5] = step3[4] + step2[5]; step1[6] = step3[7] - step2[6]; step1[7] = step3[7] + step2[6]; // step 6 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; out[1] = fdct_round_shift(temp1); out[9] = fdct_round_shift(temp2); temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; out[5] = fdct_round_shift(temp1); out[13] = fdct_round_shift(temp2); temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; out[3] = fdct_round_shift(temp1); out[11] = fdct_round_shift(temp2); temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; out[7] = fdct_round_shift(temp1); out[15] = fdct_round_shift(temp2); } static void fadst16(const int16_t *input, int16_t *output) { int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15; int x0 = input[15]; int x1 = input[0]; int x2 = input[13]; int x3 = input[2]; int x4 = input[11]; int x5 = input[4]; int x6 = input[9]; int x7 = input[6]; int x8 = input[7]; int x9 = input[8]; int x10 = input[5]; int x11 = input[10]; int x12 = input[3]; int x13 = input[12]; int x14 = input[1]; int x15 = input[14]; // stage 1 s0 = x0 * cospi_1_64 + x1 * cospi_31_64; s1 = x0 * cospi_31_64 - x1 * cospi_1_64; s2 = x2 * cospi_5_64 + x3 * cospi_27_64; s3 = x2 * cospi_27_64 - x3 * cospi_5_64; s4 = x4 * cospi_9_64 + x5 * cospi_23_64; s5 = x4 * cospi_23_64 - x5 * cospi_9_64; s6 = x6 * cospi_13_64 + x7 * cospi_19_64; s7 = x6 * cospi_19_64 - x7 * cospi_13_64; s8 = x8 * cospi_17_64 + x9 * cospi_15_64; s9 = x8 * cospi_15_64 - x9 * cospi_17_64; s10 = x10 * cospi_21_64 + x11 * cospi_11_64; s11 = x10 * cospi_11_64 - x11 * cospi_21_64; s12 = x12 * cospi_25_64 + x13 * cospi_7_64; s13 = x12 * cospi_7_64 - x13 * cospi_25_64; s14 = x14 * cospi_29_64 + x15 * cospi_3_64; s15 = x14 * cospi_3_64 - x15 * cospi_29_64; x0 = fdct_round_shift(s0 + s8); x1 = fdct_round_shift(s1 + s9); x2 = fdct_round_shift(s2 + s10); x3 = fdct_round_shift(s3 + s11); x4 = fdct_round_shift(s4 + s12); x5 = fdct_round_shift(s5 + s13); x6 = fdct_round_shift(s6 + s14); x7 = fdct_round_shift(s7 + s15); x8 = fdct_round_shift(s0 - s8); x9 = fdct_round_shift(s1 - s9); x10 = fdct_round_shift(s2 - s10); x11 = fdct_round_shift(s3 - s11); x12 = fdct_round_shift(s4 - s12); x13 = fdct_round_shift(s5 - s13); x14 = fdct_round_shift(s6 - s14); x15 = fdct_round_shift(s7 - s15); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4; s5 = x5; s6 = x6; s7 = x7; s8 = x8 * cospi_4_64 + x9 * cospi_28_64; s9 = x8 * cospi_28_64 - x9 * cospi_4_64; s10 = x10 * cospi_20_64 + x11 * cospi_12_64; s11 = x10 * cospi_12_64 - x11 * cospi_20_64; s12 = - x12 * cospi_28_64 + x13 * cospi_4_64; s13 = x12 * cospi_4_64 + x13 * cospi_28_64; s14 = - x14 * cospi_12_64 + x15 * cospi_20_64; s15 = x14 * cospi_20_64 + x15 * cospi_12_64; x0 = s0 + s4; x1 = s1 + s5; x2 = s2 + s6; x3 = s3 + s7; x4 = s0 - s4; x5 = s1 - s5; x6 = s2 - s6; x7 = s3 - s7; x8 = fdct_round_shift(s8 + s12); x9 = fdct_round_shift(s9 + s13); x10 = fdct_round_shift(s10 + s14); x11 = fdct_round_shift(s11 + s15); x12 = fdct_round_shift(s8 - s12); x13 = fdct_round_shift(s9 - s13); x14 = fdct_round_shift(s10 - s14); x15 = fdct_round_shift(s11 - s15); // stage 3 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4 * cospi_8_64 + x5 * cospi_24_64; s5 = x4 * cospi_24_64 - x5 * cospi_8_64; s6 = - x6 * cospi_24_64 + x7 * cospi_8_64; s7 = x6 * cospi_8_64 + x7 * cospi_24_64; s8 = x8; s9 = x9; s10 = x10; s11 = x11; s12 = x12 * cospi_8_64 + x13 * cospi_24_64; s13 = x12 * cospi_24_64 - x13 * cospi_8_64; s14 = - x14 * cospi_24_64 + x15 * cospi_8_64; s15 = x14 * cospi_8_64 + x15 * cospi_24_64; x0 = s0 + s2; x1 = s1 + s3; x2 = s0 - s2; x3 = s1 - s3; x4 = fdct_round_shift(s4 + s6); x5 = fdct_round_shift(s5 + s7); x6 = fdct_round_shift(s4 - s6); x7 = fdct_round_shift(s5 - s7); x8 = s8 + s10; x9 = s9 + s11; x10 = s8 - s10; x11 = s9 - s11; x12 = fdct_round_shift(s12 + s14); x13 = fdct_round_shift(s13 + s15); x14 = fdct_round_shift(s12 - s14); x15 = fdct_round_shift(s13 - s15); // stage 4 s2 = (- cospi_16_64) * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (- x6 + x7); s10 = cospi_16_64 * (x10 + x11); s11 = cospi_16_64 * (- x10 + x11); s14 = (- cospi_16_64) * (x14 + x15); s15 = cospi_16_64 * (x14 - x15); x2 = fdct_round_shift(s2); x3 = fdct_round_shift(s3); x6 = fdct_round_shift(s6); x7 = fdct_round_shift(s7); x10 = fdct_round_shift(s10); x11 = fdct_round_shift(s11); x14 = fdct_round_shift(s14); x15 = fdct_round_shift(s15); output[0] = x0; output[1] = - x8; output[2] = x12; output[3] = - x4; output[4] = x6; output[5] = x14; output[6] = x10; output[7] = x2; output[8] = x3; output[9] = x11; output[10] = x15; output[11] = x7; output[12] = x5; output[13] = - x13; output[14] = x9; output[15] = - x1; } static const transform_2d FHT_16[] = { { fdct16, fdct16 }, // DCT_DCT = 0 { fadst16, fdct16 }, // ADST_DCT = 1 { fdct16, fadst16 }, // DCT_ADST = 2 { fadst16, fadst16 } // ADST_ADST = 3 }; void vp9_fht16x16_c(const int16_t *input, int16_t *output, int stride, int tx_type) { if (tx_type == DCT_DCT) { vp9_fdct16x16_c(input, output, stride); } else { int16_t out[256]; int16_t *outptr = &out[0]; int i, j; int16_t temp_in[16], temp_out[16]; const transform_2d ht = FHT_16[tx_type]; // Columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = input[j * stride + i] * 4; ht.cols(temp_in, temp_out); for (j = 0; j < 16; ++j) outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; } // Rows for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j + i * 16]; ht.rows(temp_in, temp_out); for (j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j]; } } } static INLINE int dct_32_round(int input) { int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); assert(-131072 <= rv && rv <= 131071); return rv; } static INLINE int half_round_shift(int input) { int rv = (input + 1 + (input < 0)) >> 2; return rv; } static void fdct32(const int *input, int *output, int round) { int step[32]; // Stage 1 step[0] = input[0] + input[(32 - 1)]; step[1] = input[1] + input[(32 - 2)]; step[2] = input[2] + input[(32 - 3)]; step[3] = input[3] + input[(32 - 4)]; step[4] = input[4] + input[(32 - 5)]; step[5] = input[5] + input[(32 - 6)]; step[6] = input[6] + input[(32 - 7)]; step[7] = input[7] + input[(32 - 8)]; step[8] = input[8] + input[(32 - 9)]; step[9] = input[9] + input[(32 - 10)]; step[10] = input[10] + input[(32 - 11)]; step[11] = input[11] + input[(32 - 12)]; step[12] = input[12] + input[(32 - 13)]; step[13] = input[13] + input[(32 - 14)]; step[14] = input[14] + input[(32 - 15)]; step[15] = input[15] + input[(32 - 16)]; step[16] = -input[16] + input[(32 - 17)]; step[17] = -input[17] + input[(32 - 18)]; step[18] = -input[18] + input[(32 - 19)]; step[19] = -input[19] + input[(32 - 20)]; step[20] = -input[20] + input[(32 - 21)]; step[21] = -input[21] + input[(32 - 22)]; step[22] = -input[22] + input[(32 - 23)]; step[23] = -input[23] + input[(32 - 24)]; step[24] = -input[24] + input[(32 - 25)]; step[25] = -input[25] + input[(32 - 26)]; step[26] = -input[26] + input[(32 - 27)]; step[27] = -input[27] + input[(32 - 28)]; step[28] = -input[28] + input[(32 - 29)]; step[29] = -input[29] + input[(32 - 30)]; step[30] = -input[30] + input[(32 - 31)]; step[31] = -input[31] + input[(32 - 32)]; // Stage 2 output[0] = step[0] + step[16 - 1]; output[1] = step[1] + step[16 - 2]; output[2] = step[2] + step[16 - 3]; output[3] = step[3] + step[16 - 4]; output[4] = step[4] + step[16 - 5]; output[5] = step[5] + step[16 - 6]; output[6] = step[6] + step[16 - 7]; output[7] = step[7] + step[16 - 8]; output[8] = -step[8] + step[16 - 9]; output[9] = -step[9] + step[16 - 10]; output[10] = -step[10] + step[16 - 11]; output[11] = -step[11] + step[16 - 12]; output[12] = -step[12] + step[16 - 13]; output[13] = -step[13] + step[16 - 14]; output[14] = -step[14] + step[16 - 15]; output[15] = -step[15] + step[16 - 16]; output[16] = step[16]; output[17] = step[17]; output[18] = step[18]; output[19] = step[19]; output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); output[28] = step[28]; output[29] = step[29]; output[30] = step[30]; output[31] = step[31]; // dump the magnitude by 4, hence the intermediate values are within // the range of 16 bits. if (round) { output[0] = half_round_shift(output[0]); output[1] = half_round_shift(output[1]); output[2] = half_round_shift(output[2]); output[3] = half_round_shift(output[3]); output[4] = half_round_shift(output[4]); output[5] = half_round_shift(output[5]); output[6] = half_round_shift(output[6]); output[7] = half_round_shift(output[7]); output[8] = half_round_shift(output[8]); output[9] = half_round_shift(output[9]); output[10] = half_round_shift(output[10]); output[11] = half_round_shift(output[11]); output[12] = half_round_shift(output[12]); output[13] = half_round_shift(output[13]); output[14] = half_round_shift(output[14]); output[15] = half_round_shift(output[15]); output[16] = half_round_shift(output[16]); output[17] = half_round_shift(output[17]); output[18] = half_round_shift(output[18]); output[19] = half_round_shift(output[19]); output[20] = half_round_shift(output[20]); output[21] = half_round_shift(output[21]); output[22] = half_round_shift(output[22]); output[23] = half_round_shift(output[23]); output[24] = half_round_shift(output[24]); output[25] = half_round_shift(output[25]); output[26] = half_round_shift(output[26]); output[27] = half_round_shift(output[27]); output[28] = half_round_shift(output[28]); output[29] = half_round_shift(output[29]); output[30] = half_round_shift(output[30]); output[31] = half_round_shift(output[31]); } // Stage 3 step[0] = output[0] + output[(8 - 1)]; step[1] = output[1] + output[(8 - 2)]; step[2] = output[2] + output[(8 - 3)]; step[3] = output[3] + output[(8 - 4)]; step[4] = -output[4] + output[(8 - 5)]; step[5] = -output[5] + output[(8 - 6)]; step[6] = -output[6] + output[(8 - 7)]; step[7] = -output[7] + output[(8 - 8)]; step[8] = output[8]; step[9] = output[9]; step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); step[14] = output[14]; step[15] = output[15]; step[16] = output[16] + output[23]; step[17] = output[17] + output[22]; step[18] = output[18] + output[21]; step[19] = output[19] + output[20]; step[20] = -output[20] + output[19]; step[21] = -output[21] + output[18]; step[22] = -output[22] + output[17]; step[23] = -output[23] + output[16]; step[24] = -output[24] + output[31]; step[25] = -output[25] + output[30]; step[26] = -output[26] + output[29]; step[27] = -output[27] + output[28]; step[28] = output[28] + output[27]; step[29] = output[29] + output[26]; step[30] = output[30] + output[25]; step[31] = output[31] + output[24]; // Stage 4 output[0] = step[0] + step[3]; output[1] = step[1] + step[2]; output[2] = -step[2] + step[1]; output[3] = -step[3] + step[0]; output[4] = step[4]; output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); output[7] = step[7]; output[8] = step[8] + step[11]; output[9] = step[9] + step[10]; output[10] = -step[10] + step[9]; output[11] = -step[11] + step[8]; output[12] = -step[12] + step[15]; output[13] = -step[13] + step[14]; output[14] = step[14] + step[13]; output[15] = step[15] + step[12]; output[16] = step[16]; output[17] = step[17]; output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); output[22] = step[22]; output[23] = step[23]; output[24] = step[24]; output[25] = step[25]; output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); output[30] = step[30]; output[31] = step[31]; // Stage 5 step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); step[4] = output[4] + output[5]; step[5] = -output[5] + output[4]; step[6] = -output[6] + output[7]; step[7] = output[7] + output[6]; step[8] = output[8]; step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); step[11] = output[11]; step[12] = output[12]; step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); step[15] = output[15]; step[16] = output[16] + output[19]; step[17] = output[17] + output[18]; step[18] = -output[18] + output[17]; step[19] = -output[19] + output[16]; step[20] = -output[20] + output[23]; step[21] = -output[21] + output[22]; step[22] = output[22] + output[21]; step[23] = output[23] + output[20]; step[24] = output[24] + output[27]; step[25] = output[25] + output[26]; step[26] = -output[26] + output[25]; step[27] = -output[27] + output[24]; step[28] = -output[28] + output[31]; step[29] = -output[29] + output[30]; step[30] = output[30] + output[29]; step[31] = output[31] + output[28]; // Stage 6 output[0] = step[0]; output[1] = step[1]; output[2] = step[2]; output[3] = step[3]; output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); output[8] = step[8] + step[9]; output[9] = -step[9] + step[8]; output[10] = -step[10] + step[11]; output[11] = step[11] + step[10]; output[12] = step[12] + step[13]; output[13] = -step[13] + step[12]; output[14] = -step[14] + step[15]; output[15] = step[15] + step[14]; output[16] = step[16]; output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); output[19] = step[19]; output[20] = step[20]; output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); output[23] = step[23]; output[24] = step[24]; output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); output[27] = step[27]; output[28] = step[28]; output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); output[31] = step[31]; // Stage 7 step[0] = output[0]; step[1] = output[1]; step[2] = output[2]; step[3] = output[3]; step[4] = output[4]; step[5] = output[5]; step[6] = output[6]; step[7] = output[7]; step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); step[16] = output[16] + output[17]; step[17] = -output[17] + output[16]; step[18] = -output[18] + output[19]; step[19] = output[19] + output[18]; step[20] = output[20] + output[21]; step[21] = -output[21] + output[20]; step[22] = -output[22] + output[23]; step[23] = output[23] + output[22]; step[24] = output[24] + output[25]; step[25] = -output[25] + output[24]; step[26] = -output[26] + output[27]; step[27] = output[27] + output[26]; step[28] = output[28] + output[29]; step[29] = -output[29] + output[28]; step[30] = -output[30] + output[31]; step[31] = output[31] + output[30]; // Final stage --- outputs indices are bit-reversed. output[0] = step[0]; output[16] = step[1]; output[8] = step[2]; output[24] = step[3]; output[4] = step[4]; output[20] = step[5]; output[12] = step[6]; output[28] = step[7]; output[2] = step[8]; output[18] = step[9]; output[10] = step[10]; output[26] = step[11]; output[6] = step[12]; output[22] = step[13]; output[14] = step[14]; output[30] = step[15]; output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); } void vp9_fdct32x32_1_c(const int16_t *input, int16_t *output, int stride) { int r, c; int16_t sum = 0; for (r = 0; r < 32; ++r) for (c = 0; c < 32; ++c) sum += input[r * stride + c]; output[0] = sum >> 3; output[1] = 0; } void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) { int i, j; int output[32 * 32]; // Columns for (i = 0; i < 32; ++i) { int temp_in[32], temp_out[32]; for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; fdct32(temp_in, temp_out, 0); for (j = 0; j < 32; ++j) output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; } // Rows for (i = 0; i < 32; ++i) { int temp_in[32], temp_out[32]; for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; fdct32(temp_in, temp_out, 0); for (j = 0; j < 32; ++j) out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; } } // Note that although we use dct_32_round in dct32 computation flow, // this 2d fdct32x32 for rate-distortion optimization loop is operating // within 16 bits precision. void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) { int i, j; int output[32 * 32]; // Columns for (i = 0; i < 32; ++i) { int temp_in[32], temp_out[32]; for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; fdct32(temp_in, temp_out, 0); for (j = 0; j < 32; ++j) // TODO(cd): see quality impact of only doing // output[j * 32 + i] = (temp_out[j] + 1) >> 2; // PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; } // Rows for (i = 0; i < 32; ++i) { int temp_in[32], temp_out[32]; for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; fdct32(temp_in, temp_out, 1); for (j = 0; j < 32; ++j) out[j + i * 32] = temp_out[j]; } }