ref: 8aaf5ec4c7f3e4a5d6806550d1415c20b337230a
dir: /vpx_dsp/x86/sad_avx2.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> #include "./vpx_dsp_rtcd.h" #include "vpx_ports/mem.h" #define FSAD64_H(h) \ unsigned int vpx_sad64x##h##_avx2(const uint8_t *src_ptr, \ int src_stride, \ const uint8_t *ref_ptr, \ int ref_stride) { \ int i, res; \ __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ __m256i sum_sad = _mm256_setzero_si256(); \ __m256i sum_sad_h; \ __m128i sum_sad128; \ for (i = 0 ; i < h ; i++) { \ ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + 32)); \ sad1_reg = _mm256_sad_epu8(ref1_reg, \ _mm256_loadu_si256((__m256i const *)src_ptr)); \ sad2_reg = _mm256_sad_epu8(ref2_reg, \ _mm256_loadu_si256((__m256i const *)(src_ptr + 32))); \ sum_sad = _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \ ref_ptr+= ref_stride; \ src_ptr+= src_stride; \ } \ sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ res = _mm_cvtsi128_si32(sum_sad128); \ return res; \ } #define FSAD32_H(h) \ unsigned int vpx_sad32x##h##_avx2(const uint8_t *src_ptr, \ int src_stride, \ const uint8_t *ref_ptr, \ int ref_stride) { \ int i, res; \ __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ __m256i sum_sad = _mm256_setzero_si256(); \ __m256i sum_sad_h; \ __m128i sum_sad128; \ int ref2_stride = ref_stride << 1; \ int src2_stride = src_stride << 1; \ int max = h >> 1; \ for (i = 0 ; i < max ; i++) { \ ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + ref_stride)); \ sad1_reg = _mm256_sad_epu8(ref1_reg, \ _mm256_loadu_si256((__m256i const *)src_ptr)); \ sad2_reg = _mm256_sad_epu8(ref2_reg, \ _mm256_loadu_si256((__m256i const *)(src_ptr + src_stride))); \ sum_sad = _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \ ref_ptr+= ref2_stride; \ src_ptr+= src2_stride; \ } \ sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ res = _mm_cvtsi128_si32(sum_sad128); \ return res; \ } #define FSAD64 \ FSAD64_H(64); \ FSAD64_H(32); #define FSAD32 \ FSAD32_H(64); \ FSAD32_H(32); \ FSAD32_H(16); FSAD64; FSAD32; #undef FSAD64 #undef FSAD32 #undef FSAD64_H #undef FSAD32_H #define FSADAVG64_H(h) \ unsigned int vpx_sad64x##h##_avg_avx2(const uint8_t *src_ptr, \ int src_stride, \ const uint8_t *ref_ptr, \ int ref_stride, \ const uint8_t *second_pred) { \ int i, res; \ __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ __m256i sum_sad = _mm256_setzero_si256(); \ __m256i sum_sad_h; \ __m128i sum_sad128; \ for (i = 0 ; i < h ; i++) { \ ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + 32)); \ ref1_reg = _mm256_avg_epu8(ref1_reg, \ _mm256_loadu_si256((__m256i const *)second_pred)); \ ref2_reg = _mm256_avg_epu8(ref2_reg, \ _mm256_loadu_si256((__m256i const *)(second_pred +32))); \ sad1_reg = _mm256_sad_epu8(ref1_reg, \ _mm256_loadu_si256((__m256i const *)src_ptr)); \ sad2_reg = _mm256_sad_epu8(ref2_reg, \ _mm256_loadu_si256((__m256i const *)(src_ptr + 32))); \ sum_sad = _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \ ref_ptr+= ref_stride; \ src_ptr+= src_stride; \ second_pred+= 64; \ } \ sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ res = _mm_cvtsi128_si32(sum_sad128); \ return res; \ } #define FSADAVG32_H(h) \ unsigned int vpx_sad32x##h##_avg_avx2(const uint8_t *src_ptr, \ int src_stride, \ const uint8_t *ref_ptr, \ int ref_stride, \ const uint8_t *second_pred) { \ int i, res; \ __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ __m256i sum_sad = _mm256_setzero_si256(); \ __m256i sum_sad_h; \ __m128i sum_sad128; \ int ref2_stride = ref_stride << 1; \ int src2_stride = src_stride << 1; \ int max = h >> 1; \ for (i = 0 ; i < max ; i++) { \ ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + ref_stride)); \ ref1_reg = _mm256_avg_epu8(ref1_reg, \ _mm256_loadu_si256((__m256i const *)second_pred)); \ ref2_reg = _mm256_avg_epu8(ref2_reg, \ _mm256_loadu_si256((__m256i const *)(second_pred +32))); \ sad1_reg = _mm256_sad_epu8(ref1_reg, \ _mm256_loadu_si256((__m256i const *)src_ptr)); \ sad2_reg = _mm256_sad_epu8(ref2_reg, \ _mm256_loadu_si256((__m256i const *)(src_ptr + src_stride))); \ sum_sad = _mm256_add_epi32(sum_sad, \ _mm256_add_epi32(sad1_reg, sad2_reg)); \ ref_ptr+= ref2_stride; \ src_ptr+= src2_stride; \ second_pred+= 64; \ } \ sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ res = _mm_cvtsi128_si32(sum_sad128); \ return res; \ } #define FSADAVG64 \ FSADAVG64_H(64); \ FSADAVG64_H(32); #define FSADAVG32 \ FSADAVG32_H(64); \ FSADAVG32_H(32); \ FSADAVG32_H(16); FSADAVG64; FSADAVG32; #undef FSADAVG64 #undef FSADAVG32 #undef FSADAVG64_H #undef FSADAVG32_H