ref: 95ac8fa74edfaeb74ba400c3a4044c834fd48535
dir: /vp9/encoder/vp9_aq_cyclicrefresh.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <limits.h> #include <math.h> #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_segmentation.h" struct CYCLIC_REFRESH { // Percentage of super-blocks per frame that are targeted as candidates // for cyclic refresh. int max_sbs_perframe; // Maximum q-delta as percentage of base q. int max_qdelta_perc; // Block size below which we don't apply cyclic refresh. BLOCK_SIZE min_block_size; // Superblock starting index for cycling through the frame. int sb_index; // Controls how long a block will need to wait to be refreshed again. int time_for_refresh; // Actual number of (8x8) blocks that were applied delta-q (segment 1). int num_seg_blocks; // Actual encoding bits for segment 1. int actual_seg_bits; // RD mult. parameters for segment 1. int rdmult; // Cyclic refresh map. signed char *map; // Projected rate and distortion for the current superblock. int64_t projected_rate_sb; int64_t projected_dist_sb; // Thresholds applied to projected rate/distortion of the superblock. int64_t thresh_rate_sb; int64_t thresh_dist_sb; }; CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) { CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr)); if (cr == NULL) return NULL; cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map)); if (cr->map == NULL) { vpx_free(cr); return NULL; } return cr; } void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) { vpx_free(cr->map); vpx_free(cr); } // Check if we should turn off cyclic refresh based on bitrate condition. static int apply_cyclic_refresh_bitrate(const VP9_COMMON *cm, const RATE_CONTROL *rc) { // Turn off cyclic refresh if bits available per frame is not sufficiently // larger than bit cost of segmentation. Segment map bit cost should scale // with number of seg blocks, so compare available bits to number of blocks. // Average bits available per frame = avg_frame_bandwidth // Number of (8x8) blocks in frame = mi_rows * mi_cols; const float factor = 0.5; const int number_blocks = cm->mi_rows * cm->mi_cols; // The condition below corresponds to turning off at target bitrates: // ~24kbps for CIF, 72kbps for VGA (at 30fps). // Also turn off at very small frame sizes, to avoid too large fraction of // superblocks to be refreshed per frame. Threshold below is less than QCIF. if (rc->avg_frame_bandwidth < factor * number_blocks || number_blocks / 64 < 5) return 0; else return 1; } // Check if this coding block, of size bsize, should be considered for refresh // (lower-qp coding). Decision can be based on various factors, such as // size of the coding block (i.e., below min_block size rejected), coding // mode, and rate/distortion. static int candidate_refresh_aq(const CYCLIC_REFRESH *cr, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int use_rd) { if (use_rd) { // If projected rate is below the thresh_rate (well below target, // so undershoot expected), accept it for lower-qp coding. if (cr->projected_rate_sb < cr->thresh_rate_sb) return 1; // Otherwise, reject the block for lower-qp coding if any of the following: // 1) prediction block size is below min_block_size // 2) mode is non-zero mv and projected distortion is above thresh_dist // 3) mode is an intra-mode (we may want to allow some of this under // another thresh_dist) else if (bsize < cr->min_block_size || (mbmi->mv[0].as_int != 0 && cr->projected_dist_sb > cr->thresh_dist_sb) || !is_inter_block(mbmi)) return 0; else return 1; } else { // Rate/distortion not used for update. if (bsize < cr->min_block_size || mbmi->mv[0].as_int != 0 || !is_inter_block(mbmi)) return 0; else return 1; } } // Prior to coding a given prediction block, of size bsize at (mi_row, mi_col), // check if we should reset the segment_id, and update the cyclic_refresh map // and segmentation map. void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi, MB_MODE_INFO *const mbmi, int mi_row, int mi_col, BLOCK_SIZE bsize, int use_rd) { const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); const int block_index = mi_row * cm->mi_cols + mi_col; const int refresh_this_block = cpi->mb.in_static_area || candidate_refresh_aq(cr, mbmi, bsize, use_rd); // Default is to not update the refresh map. int new_map_value = cr->map[block_index]; int x = 0; int y = 0; // Check if we should reset the segment_id for this block. if (mbmi->segment_id > 0 && !refresh_this_block) mbmi->segment_id = 0; // Update the cyclic refresh map, to be used for setting segmentation map // for the next frame. If the block will be refreshed this frame, mark it // as clean. The magnitude of the -ve influences how long before we consider // it for refresh again. if (mbmi->segment_id == 1) { new_map_value = -cr->time_for_refresh; } else if (refresh_this_block) { // Else if it is accepted as candidate for refresh, and has not already // been refreshed (marked as 1) then mark it as a candidate for cleanup // for future time (marked as 0), otherwise don't update it. if (cr->map[block_index] == 1) new_map_value = 0; } else { // Leave it marked as block that is not candidate for refresh. new_map_value = 1; } // Update entries in the cyclic refresh map with new_map_value, and // copy mbmi->segment_id into global segmentation map. for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) { cr->map[block_index + y * cm->mi_cols + x] = new_map_value; cpi->segmentation_map[block_index + y * cm->mi_cols + x] = mbmi->segment_id; } // Keep track of actual number (in units of 8x8) of blocks in segment 1 used // for encoding this frame. if (mbmi->segment_id) cr->num_seg_blocks += xmis * ymis; } // Setup cyclic background refresh: set delta q and segmentation map. void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; struct segmentation *const seg = &cm->seg; unsigned char *const seg_map = cpi->segmentation_map; const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc); // Don't apply refresh on key frame or enhancement layer frames. if (!apply_cyclic_refresh || (cm->frame_type == KEY_FRAME) || (cpi->svc.temporal_layer_id > 0)) { // Set segmentation map to 0 and disable. vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols); vp9_disable_segmentation(&cm->seg); if (cm->frame_type == KEY_FRAME) cr->sb_index = 0; return; } else { int qindex_delta = 0; int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame; int xmis, ymis, x, y, qindex2; // Rate target ratio to set q delta. const float rate_ratio_qdelta = 2.0; const double q = vp9_convert_qindex_to_q(cm->base_qindex); vp9_clear_system_state(); // Some of these parameters may be set via codec-control function later. cr->max_sbs_perframe = 10; cr->max_qdelta_perc = 50; cr->min_block_size = BLOCK_8X8; cr->time_for_refresh = 1; // Set rate threshold to some fraction of target (and scaled by 256). cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 2; // Distortion threshold, quadratic in Q, scale factor to be adjusted. cr->thresh_dist_sb = 8 * (int)(q * q); if (cpi->sf.use_nonrd_pick_mode) { // May want to be more conservative with thresholds in non-rd mode for now // as rate/distortion are derived from model based on prediction residual. cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 3; cr->thresh_dist_sb = 4 * (int)(q * q); } cr->num_seg_blocks = 0; // Set up segmentation. // Clear down the segment map. vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols); vp9_enable_segmentation(&cm->seg); vp9_clearall_segfeatures(seg); // Select delta coding method. seg->abs_delta = SEGMENT_DELTADATA; // Note: setting temporal_update has no effect, as the seg-map coding method // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(), // based on the coding cost of each method. For error_resilient mode on the // last_frame_seg_map is set to 0, so if temporal coding is used, it is // relative to 0 previous map. // seg->temporal_update = 0; // Segment 0 "Q" feature is disabled so it defaults to the baseline Q. vp9_disable_segfeature(seg, 0, SEG_LVL_ALT_Q); // Use segment 1 for in-frame Q adjustment. vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); // Set the q delta for segment 1. qindex_delta = vp9_compute_qdelta_by_rate(rc, cm->frame_type, cm->base_qindex, rate_ratio_qdelta); // TODO(marpan): Incorporate the actual-vs-target rate over/undershoot from // previous encoded frame. if (-qindex_delta > cr->max_qdelta_perc * cm->base_qindex / 100) qindex_delta = -cr->max_qdelta_perc * cm->base_qindex / 100; // Compute rd-mult for segment 1. qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ); cr->rdmult = vp9_compute_rd_mult(cpi, qindex2); vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qindex_delta); sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; sbs_in_frame = sb_cols * sb_rows; // Number of target superblocks to get the q delta (segment 1). block_count = cr->max_sbs_perframe * sbs_in_frame / 100; // Set the segmentation map: cycle through the superblocks, starting at // cr->mb_index, and stopping when either block_count blocks have been found // to be refreshed, or we have passed through whole frame. assert(cr->sb_index < sbs_in_frame); i = cr->sb_index; do { int sum_map = 0; // Get the mi_row/mi_col corresponding to superblock index i. int sb_row_index = (i / sb_cols); int sb_col_index = i - sb_row_index * sb_cols; int mi_row = sb_row_index * MI_BLOCK_SIZE; int mi_col = sb_col_index * MI_BLOCK_SIZE; assert(mi_row >= 0 && mi_row < cm->mi_rows); assert(mi_col >= 0 && mi_col < cm->mi_cols); bl_index = mi_row * cm->mi_cols + mi_col; // Loop through all 8x8 blocks in superblock and update map. xmis = MIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]); ymis = MIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]); for (y = 0; y < ymis; y++) { for (x = 0; x < xmis; x++) { const int bl_index2 = bl_index + y * cm->mi_cols + x; // If the block is as a candidate for clean up then mark it // for possible boost/refresh (segment 1). The segment id may get // reset to 0 later if block gets coded anything other than ZEROMV. if (cr->map[bl_index2] == 0) { seg_map[bl_index2] = 1; sum_map++; } else if (cr->map[bl_index2] < 0) { cr->map[bl_index2]++; } } } // Enforce constant segment over superblock. // If segment is partial over superblock, reset to either all 1 or 0. if (sum_map > 0 && sum_map < xmis * ymis) { const int new_value = (sum_map >= xmis * ymis / 2); for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) seg_map[bl_index + y * cm->mi_cols + x] = new_value; } i++; if (i == sbs_in_frame) { i = 0; } if (sum_map >= xmis * ymis /2) block_count--; } while (block_count && i != cr->sb_index); cr->sb_index = i; } } void vp9_cyclic_refresh_set_rate_and_dist_sb(CYCLIC_REFRESH *cr, int64_t rate_sb, int64_t dist_sb) { cr->projected_rate_sb = rate_sb; cr->projected_dist_sb = dist_sb; } int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) { return cr->rdmult; }