ref: 9a780fa7db79b709787a9ca56fc324a118158da7
dir: /tools/tiny_ssim.c/
/* * Copyright (c) 2016 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <errno.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "vpx/vpx_integer.h" void vp8_ssim_parms_8x8_c(unsigned char *s, int sp, unsigned char *r, int rp, uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, uint32_t *sum_sq_r, uint32_t *sum_sxr) { int i, j; for (i = 0; i < 8; i++, s += sp, r += rp) { for (j = 0; j < 8; j++) { *sum_s += s[j]; *sum_r += r[j]; *sum_sq_s += s[j] * s[j]; *sum_sq_r += r[j] * r[j]; *sum_sxr += s[j] * r[j]; } } } static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s, uint32_t sum_sq_r, uint32_t sum_sxr, int count) { int64_t ssim_n, ssim_d; int64_t c1, c2; // scale the constants by number of pixels c1 = (cc1 * count * count) >> 12; c2 = (cc2 * count * count) >> 12; ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2); ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) * ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s + (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2); return ssim_n * 1.0 / ssim_d; } static double ssim_8x8(unsigned char *s, int sp, unsigned char *r, int rp) { uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; vp8_ssim_parms_8x8_c(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, &sum_sxr); return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64); } // We are using a 8x8 moving window with starting location of each 8x8 window // on the 4x4 pixel grid. Such arrangement allows the windows to overlap // block boundaries to penalize blocking artifacts. double vp8_ssim2(unsigned char *img1, unsigned char *img2, int stride_img1, int stride_img2, int width, int height) { int i, j; int samples = 0; double ssim_total = 0; // sample point start with each 4x4 location for (i = 0; i <= height - 8; i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { for (j = 0; j <= width - 8; j += 4) { double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); ssim_total += v; samples++; } } ssim_total /= samples; return ssim_total; } static uint64_t calc_plane_error(uint8_t *orig, int orig_stride, uint8_t *recon, int recon_stride, unsigned int cols, unsigned int rows) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row < rows; row++) { for (col = 0; col < cols; col++) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } return total_sse; } #define MAX_PSNR 100 double vp9_mse2psnr(double samples, double peak, double mse) { double psnr; if (mse > 0.0) psnr = 10.0 * log10(peak * peak * samples / mse); else psnr = MAX_PSNR; // Limit to prevent / 0 if (psnr > MAX_PSNR) psnr = MAX_PSNR; return psnr; } int main(int argc, char *argv[]) { FILE *f[2]; uint8_t *buf[2]; int w, h, n_frames, tl_skip = 0, tl_skips_remaining = 0; double ssim = 0, psnravg = 0, psnrglb = 0; double ssimy, ssimu, ssimv; uint64_t psnry, psnru, psnrv; if (argc < 4) { fprintf(stderr, "Usage: %s file1.yuv file2.yuv WxH [tl_skip={0,1,3}]\n", argv[0]); return 1; } f[0] = strcmp(argv[1], "-") ? fopen(argv[1], "rb") : stdin; f[1] = strcmp(argv[2], "-") ? fopen(argv[2], "rb") : stdin; sscanf(argv[3], "%dx%d", &w, &h); // Number of frames to skip from file1.yuv for every frame used. Normal values // 0, 1 and 3 correspond to TL2, TL1 and TL0 respectively for a 3TL encoding // in mode 10. 7 would be reasonable for comparing TL0 of a 4-layer encoding. if (argc > 4) { sscanf(argv[4], "%d", &tl_skip); } if (!f[0] || !f[1]) { fprintf(stderr, "Could not open input files: %s\n", strerror(errno)); return 1; } if (w <= 0 || h <= 0 || w & 1 || h & 1) { fprintf(stderr, "Invalid size %dx%d\n", w, h); return 1; } buf[0] = malloc(w * h * 3 / 2); buf[1] = malloc(w * h * 3 / 2); n_frames = 0; while (1) { size_t r1, r2; r1 = fread(buf[0], w * h * 3 / 2, 1, f[0]); if (r1) { // Reading parts of file1.yuv that were not used in temporal layer. if (tl_skips_remaining > 0) { --tl_skips_remaining; continue; } // Use frame, but skip |tl_skip| after it. tl_skips_remaining = tl_skip; } r2 = fread(buf[1], w * h * 3 / 2, 1, f[1]); if (r1 && r2 && r1 != r2) { fprintf(stderr, "Failed to read data: %s [%d/%d]\n", strerror(errno), (int)r1, (int)r2); return 1; } else if (r1 == 0 || r2 == 0) { break; } #define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \ ssim = vp8_ssim2(buf0, buf1, w, w, w, h); \ psnr = calc_plane_error(buf0, w, buf1, w, w, h); psnr_and_ssim(ssimy, psnry, buf[0], buf[1], w, h); psnr_and_ssim(ssimu, psnru, buf[0] + w * h, buf[1] + w * h, w / 2, h / 2); psnr_and_ssim(ssimv, psnrv, buf[0] + w * h * 5 / 4, buf[1] + w * h * 5 / 4, w / 2, h / 2); ssim += 0.8 * ssimy + 0.1 * (ssimu + ssimv); psnravg += vp9_mse2psnr(w * h * 6 / 4, 255.0, (double)psnry + psnru + psnrv); psnrglb += psnry + psnru + psnrv; n_frames++; } free(buf[0]); free(buf[1]); ssim /= n_frames; psnravg /= n_frames; psnrglb = vp9_mse2psnr((double)n_frames * w * h * 6 / 4, 255.0, psnrglb); printf("AvgPSNR: %lf\n", psnravg); printf("GlbPSNR: %lf\n", psnrglb); printf("SSIM: %lf\n", 100 * pow(ssim, 8.0)); printf("Nframes: %d\n", n_frames); if (strcmp(argv[1], "-")) fclose(f[0]); if (strcmp(argv[2], "-")) fclose(f[1]); return 0; }