ref: 9c82fc457e878d707c4ead686f2b6bb6be213b7f
dir: /vp10/common/onyxc_int.h/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP10_COMMON_ONYXC_INT_H_ #define VP10_COMMON_ONYXC_INT_H_ #include "./vpx_config.h" #include "vpx/internal/vpx_codec_internal.h" #include "vpx_util/vpx_thread.h" #include "./vp10_rtcd.h" #include "vp10/common/alloccommon.h" #include "vp10/common/loopfilter.h" #include "vp10/common/entropymv.h" #include "vp10/common/entropy.h" #include "vp10/common/entropymode.h" #include "vp10/common/frame_buffers.h" #include "vp10/common/quant_common.h" #include "vp10/common/tile_common.h" #if CONFIG_VP9_POSTPROC #include "vp10/common/postproc.h" #endif #ifdef __cplusplus extern "C" { #endif #define REFS_PER_FRAME (ALTREF_FRAME - LAST_FRAME + 1) #define REF_FRAMES_LOG2 3 #define REF_FRAMES (1 << REF_FRAMES_LOG2) // 4 scratch frames for the new frames to support a maximum of 4 cores decoding // in parallel, 3 for scaled references on the encoder. // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number // of framebuffers. // TODO(jkoleszar): These 3 extra references could probably come from the // normal reference pool. #define FRAME_BUFFERS (REF_FRAMES + 7) #define FRAME_CONTEXTS_LOG2 2 #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) #define NUM_PING_PONG_BUFFERS 2 typedef enum { SINGLE_REFERENCE = 0, COMPOUND_REFERENCE = 1, REFERENCE_MODE_SELECT = 2, REFERENCE_MODES = 3, } REFERENCE_MODE; typedef enum { RESET_FRAME_CONTEXT_NONE = 0, RESET_FRAME_CONTEXT_CURRENT = 1, RESET_FRAME_CONTEXT_ALL = 2, } RESET_FRAME_CONTEXT_MODE; typedef enum { /** * Don't update frame context */ REFRESH_FRAME_CONTEXT_OFF, /** * Update frame context to values resulting from forward probability * updates signaled in the frame header */ REFRESH_FRAME_CONTEXT_FORWARD, /** * Update frame context to values resulting from backward probability * updates based on entropy/counts in the decoded frame */ REFRESH_FRAME_CONTEXT_BACKWARD, } REFRESH_FRAME_CONTEXT_MODE; typedef struct { int_mv mv[2]; MV_REFERENCE_FRAME ref_frame[2]; } MV_REF; typedef struct { int ref_count; MV_REF *mvs; int mi_rows; int mi_cols; vpx_codec_frame_buffer_t raw_frame_buffer; YV12_BUFFER_CONFIG buf; // The Following variables will only be used in frame parallel decode. // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means // that no FrameWorker owns, or is decoding, this buffer. VPxWorker *frame_worker_owner; // row and col indicate which position frame has been decoded to in real // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX // when the frame is fully decoded. int row; int col; } RefCntBuffer; typedef struct BufferPool { // Protect BufferPool from being accessed by several FrameWorkers at // the same time during frame parallel decode. // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. #if CONFIG_MULTITHREAD pthread_mutex_t pool_mutex; #endif // Private data associated with the frame buffer callbacks. void *cb_priv; vpx_get_frame_buffer_cb_fn_t get_fb_cb; vpx_release_frame_buffer_cb_fn_t release_fb_cb; RefCntBuffer frame_bufs[FRAME_BUFFERS]; // Frame buffers allocated internally by the codec. InternalFrameBufferList int_frame_buffers; } BufferPool; typedef struct VP10Common { struct vpx_internal_error_info error; vpx_color_space_t color_space; int width; int height; int display_width; int display_height; int last_width; int last_height; // TODO(jkoleszar): this implies chroma ss right now, but could vary per // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to // support additional planes. int subsampling_x; int subsampling_y; #if CONFIG_VP9_HIGHBITDEPTH int use_highbitdepth; // Marks if we need to use 16bit frame buffers. #endif YV12_BUFFER_CONFIG *frame_to_show; RefCntBuffer *prev_frame; // TODO(hkuang): Combine this with cur_buf in macroblockd. RefCntBuffer *cur_frame; int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ // Prepare ref_frame_map for the next frame. // Only used in frame parallel decode. int next_ref_frame_map[REF_FRAMES]; // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and // roll new_fb_idx into it. // Each frame can reference REFS_PER_FRAME buffers RefBuffer frame_refs[REFS_PER_FRAME]; int new_fb_idx; #if CONFIG_VP9_POSTPROC YV12_BUFFER_CONFIG post_proc_buffer; YV12_BUFFER_CONFIG post_proc_buffer_int; #endif FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ FRAME_TYPE frame_type; int show_frame; int last_show_frame; int show_existing_frame; // Flag signaling that the frame is encoded using only INTRA modes. uint8_t intra_only; uint8_t last_intra_only; int allow_high_precision_mv; // Flag signaling which frame contexts should be reset to default values. RESET_FRAME_CONTEXT_MODE reset_frame_context; // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in // MODE_INFO (8-pixel) units. int MBs; int mb_rows, mi_rows; int mb_cols, mi_cols; int mi_stride; /* profile settings */ TX_MODE tx_mode; int base_qindex; int y_dc_delta_q; int uv_dc_delta_q; int uv_ac_delta_q; int16_t y_dequant[MAX_SEGMENTS][2]; int16_t uv_dequant[MAX_SEGMENTS][2]; /* We allocate a MODE_INFO struct for each macroblock, together with an extra row on top and column on the left to simplify prediction. */ int mi_alloc_size; MODE_INFO *mip; /* Base of allocated array */ MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ // TODO(agrange): Move prev_mi into encoder structure. // prev_mip and prev_mi will only be allocated in VP9 encoder. MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ // Separate mi functions between encoder and decoder. int (*alloc_mi)(struct VP10Common *cm, int mi_size); void (*free_mi)(struct VP10Common *cm); void (*setup_mi)(struct VP10Common *cm); // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible // area will be NULL. MODE_INFO **mi_grid_base; MODE_INFO **mi_grid_visible; MODE_INFO **prev_mi_grid_base; MODE_INFO **prev_mi_grid_visible; // Whether to use previous frame's motion vectors for prediction. int use_prev_frame_mvs; // Persistent mb segment id map used in prediction. int seg_map_idx; int prev_seg_map_idx; uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; uint8_t *last_frame_seg_map; uint8_t *current_frame_seg_map; int seg_map_alloc_size; INTERP_FILTER interp_filter; loop_filter_info_n lf_info; // Flag signaling how frame contexts should be updated at the end of // a frame decode REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */ struct loopfilter lf; struct segmentation seg; int frame_parallel_decode; // frame-based threading. // Context probabilities for reference frame prediction MV_REFERENCE_FRAME comp_fixed_ref; MV_REFERENCE_FRAME comp_var_ref[2]; REFERENCE_MODE reference_mode; FRAME_CONTEXT *fc; /* this frame entropy */ FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS unsigned int frame_context_idx; /* Context to use/update */ FRAME_COUNTS counts; unsigned int current_video_frame; BITSTREAM_PROFILE profile; // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3. vpx_bit_depth_t bit_depth; vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer #if CONFIG_VP9_POSTPROC struct postproc_state postproc_state; #endif int error_resilient_mode; int log2_tile_cols, log2_tile_rows; int byte_alignment; int skip_loop_filter; // Private data associated with the frame buffer callbacks. void *cb_priv; vpx_get_frame_buffer_cb_fn_t get_fb_cb; vpx_release_frame_buffer_cb_fn_t release_fb_cb; // Handles memory for the codec. InternalFrameBufferList int_frame_buffers; // External BufferPool passed from outside. BufferPool *buffer_pool; PARTITION_CONTEXT *above_seg_context; ENTROPY_CONTEXT *above_context; int above_context_alloc_cols; } VP10_COMMON; // TODO(hkuang): Don't need to lock the whole pool after implementing atomic // frame reference count. static void lock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_lock(&pool->pool_mutex); #else (void)pool; #endif } static void unlock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_unlock(&pool->pool_mutex); #else (void)pool; #endif } static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP10_COMMON *cm, int index) { if (index < 0 || index >= REF_FRAMES) return NULL; if (cm->ref_frame_map[index] < 0) return NULL; assert(cm->ref_frame_map[index] < FRAME_BUFFERS); return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; } static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP10_COMMON *cm) { return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; } static INLINE int get_free_fb(VP10_COMMON *cm) { RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; int i; lock_buffer_pool(cm->buffer_pool); for (i = 0; i < FRAME_BUFFERS; ++i) if (frame_bufs[i].ref_count == 0) break; if (i != FRAME_BUFFERS) { frame_bufs[i].ref_count = 1; } else { // Reset i to be INVALID_IDX to indicate no free buffer found. i = INVALID_IDX; } unlock_buffer_pool(cm->buffer_pool); return i; } static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { const int ref_index = *idx; if (ref_index >= 0 && bufs[ref_index].ref_count > 0) bufs[ref_index].ref_count--; *idx = new_idx; bufs[new_idx].ref_count++; } static INLINE int mi_cols_aligned_to_sb(int n_mis) { return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2); } static INLINE int frame_is_intra_only(const VP10_COMMON *const cm) { return cm->frame_type == KEY_FRAME || cm->intra_only; } static INLINE void set_partition_probs(const VP10_COMMON *const cm, MACROBLOCKD *const xd) { xd->partition_probs = frame_is_intra_only(cm) ? &vp10_kf_partition_probs[0] : (const vpx_prob (*)[PARTITION_TYPES - 1])cm->fc->partition_prob; } static INLINE void vp10_init_macroblockd(VP10_COMMON *cm, MACROBLOCKD *xd, tran_low_t *dqcoeff) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) { xd->plane[i].dqcoeff = dqcoeff; xd->above_context[i] = cm->above_context + i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols); if (xd->plane[i].plane_type == PLANE_TYPE_Y) { memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant)); } else { memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant)); } xd->fc = cm->fc; } xd->above_seg_context = cm->above_seg_context; xd->mi_stride = cm->mi_stride; xd->error_info = &cm->error; set_partition_probs(cm, xd); } static INLINE const vpx_prob* get_partition_probs(const MACROBLOCKD *xd, int ctx) { return xd->partition_probs[ctx]; } static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { const int above_idx = mi_col * 2; const int left_idx = (mi_row * 2) & 15; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; } } static INLINE int calc_mi_size(int len) { // len is in mi units. return len + MI_BLOCK_SIZE; } static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, int mi_row, int bh, int mi_col, int bw, int mi_rows, int mi_cols) { xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; // Are edges available for intra prediction? xd->up_available = (mi_row != 0); xd->left_available = (mi_col > tile->mi_col_start); if (xd->up_available) { xd->above_mi = xd->mi[-xd->mi_stride]; // above_mi may be NULL in VP9 encoder's first pass. xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL; } else { xd->above_mi = NULL; xd->above_mbmi = NULL; } if (xd->left_available) { xd->left_mi = xd->mi[-1]; // left_mi may be NULL in VP9 encoder's first pass. xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL; } else { xd->left_mi = NULL; xd->left_mbmi = NULL; } } static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, BLOCK_SIZE bsize) { PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK); // num_4x4_blocks_wide_lookup[bsize] / 2 const int bs = num_8x8_blocks_wide_lookup[bsize]; // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. memset(above_ctx, partition_context_lookup[subsize].above, bs); memset(left_ctx, partition_context_lookup[subsize].left, bs); } static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK); const int bsl = mi_width_log2_lookup[bsize]; int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1; assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); assert(bsl >= 0); return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } #ifdef __cplusplus } // extern "C" #endif #endif // VP10_COMMON_ONYXC_INT_H_