ref: 9e75c01353ef1e47b5fddc5ad9dde65a9abeeed3
dir: /vpx_dsp/x86/quantize_sse2.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <emmintrin.h> #include <xmmintrin.h> #include "./vpx_dsp_rtcd.h" #include "vpx/vpx_integer.h" static INLINE __m128i load_coefficients(const tran_low_t *coeff_ptr) { #if CONFIG_VP9_HIGHBITDEPTH return _mm_setr_epi16((int16_t)coeff_ptr[0], (int16_t)coeff_ptr[1], (int16_t)coeff_ptr[2], (int16_t)coeff_ptr[3], (int16_t)coeff_ptr[4], (int16_t)coeff_ptr[5], (int16_t)coeff_ptr[6], (int16_t)coeff_ptr[7]); #else return _mm_load_si128((const __m128i *)coeff_ptr); #endif } static INLINE void store_coefficients(__m128i coeff_vals, tran_low_t *coeff_ptr) { #if CONFIG_VP9_HIGHBITDEPTH __m128i one = _mm_set1_epi16(1); __m128i coeff_vals_hi = _mm_mulhi_epi16(coeff_vals, one); __m128i coeff_vals_lo = _mm_mullo_epi16(coeff_vals, one); __m128i coeff_vals_1 = _mm_unpacklo_epi16(coeff_vals_lo, coeff_vals_hi); __m128i coeff_vals_2 = _mm_unpackhi_epi16(coeff_vals_lo, coeff_vals_hi); _mm_store_si128((__m128i *)(coeff_ptr), coeff_vals_1); _mm_store_si128((__m128i *)(coeff_ptr + 4), coeff_vals_2); #else _mm_store_si128((__m128i *)(coeff_ptr), coeff_vals); #endif } void vpx_quantize_b_sse2(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { __m128i zero; (void)scan_ptr; coeff_ptr += n_coeffs; iscan_ptr += n_coeffs; qcoeff_ptr += n_coeffs; dqcoeff_ptr += n_coeffs; n_coeffs = -n_coeffs; zero = _mm_setzero_si128(); if (!skip_block) { __m128i eob; __m128i zbin; __m128i round, quant, dequant, shift; { __m128i coeff0, coeff1; // Setup global values { __m128i pw_1; zbin = _mm_load_si128((const __m128i *)zbin_ptr); round = _mm_load_si128((const __m128i *)round_ptr); quant = _mm_load_si128((const __m128i *)quant_ptr); pw_1 = _mm_set1_epi16(1); zbin = _mm_sub_epi16(zbin, pw_1); dequant = _mm_load_si128((const __m128i *)dequant_ptr); shift = _mm_load_si128((const __m128i *)quant_shift_ptr); } { __m128i coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i qtmp0, qtmp1; __m128i cmp_mask0, cmp_mask1; // Do DC and first 15 AC coeff0 = load_coefficients(coeff_ptr + n_coeffs); coeff1 = load_coefficients(coeff_ptr + n_coeffs + 8); // Poor man's sign extract coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); qcoeff0 = _mm_adds_epi16(qcoeff0, round); round = _mm_unpackhi_epi64(round, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); quant = _mm_unpackhi_epi64(quant, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); qtmp0 = _mm_add_epi16(qtmp0, qcoeff0); qtmp1 = _mm_add_epi16(qtmp1, qcoeff1); qcoeff0 = _mm_mulhi_epi16(qtmp0, shift); shift = _mm_unpackhi_epi64(shift, shift); qcoeff1 = _mm_mulhi_epi16(qtmp1, shift); // Reinsert signs qcoeff0 = _mm_xor_si128(qcoeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(qcoeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr + n_coeffs); store_coefficients(qcoeff1, qcoeff_ptr + n_coeffs + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); dequant = _mm_unpackhi_epi64(dequant, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_coefficients(coeff0, dqcoeff_ptr + n_coeffs); store_coefficients(coeff1, dqcoeff_ptr + n_coeffs + 8); } { // Scan for eob __m128i zero_coeff0, zero_coeff1; __m128i nzero_coeff0, nzero_coeff1; __m128i iscan0, iscan1; __m128i eob1; zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); eob = _mm_and_si128(iscan0, nzero_coeff0); eob1 = _mm_and_si128(iscan1, nzero_coeff1); eob = _mm_max_epi16(eob, eob1); } n_coeffs += 8 * 2; } // AC only loop while (n_coeffs < 0) { __m128i coeff0, coeff1; { __m128i coeff0_sign, coeff1_sign; __m128i qcoeff0, qcoeff1; __m128i qtmp0, qtmp1; __m128i cmp_mask0, cmp_mask1; coeff0 = load_coefficients(coeff_ptr + n_coeffs); coeff1 = load_coefficients(coeff_ptr + n_coeffs + 8); // Poor man's sign extract coeff0_sign = _mm_srai_epi16(coeff0, 15); coeff1_sign = _mm_srai_epi16(coeff1, 15); qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); qcoeff0 = _mm_adds_epi16(qcoeff0, round); qcoeff1 = _mm_adds_epi16(qcoeff1, round); qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); qtmp0 = _mm_add_epi16(qtmp0, qcoeff0); qtmp1 = _mm_add_epi16(qtmp1, qcoeff1); qcoeff0 = _mm_mulhi_epi16(qtmp0, shift); qcoeff1 = _mm_mulhi_epi16(qtmp1, shift); // Reinsert signs qcoeff0 = _mm_xor_si128(qcoeff0, coeff0_sign); qcoeff1 = _mm_xor_si128(qcoeff1, coeff1_sign); qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); // Mask out zbin threshold coeffs qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); store_coefficients(qcoeff0, qcoeff_ptr + n_coeffs); store_coefficients(qcoeff1, qcoeff_ptr + n_coeffs + 8); coeff0 = _mm_mullo_epi16(qcoeff0, dequant); coeff1 = _mm_mullo_epi16(qcoeff1, dequant); store_coefficients(coeff0, dqcoeff_ptr + n_coeffs); store_coefficients(coeff1, dqcoeff_ptr + n_coeffs + 8); } { // Scan for eob __m128i zero_coeff0, zero_coeff1; __m128i nzero_coeff0, nzero_coeff1; __m128i iscan0, iscan1; __m128i eob0, eob1; zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); // Add one to convert from indices to counts iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); eob0 = _mm_and_si128(iscan0, nzero_coeff0); eob1 = _mm_and_si128(iscan1, nzero_coeff1); eob0 = _mm_max_epi16(eob0, eob1); eob = _mm_max_epi16(eob, eob0); } n_coeffs += 8 * 2; } // Accumulate EOB { __m128i eob_shuffled; eob_shuffled = _mm_shuffle_epi32(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); eob = _mm_max_epi16(eob, eob_shuffled); eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); eob = _mm_max_epi16(eob, eob_shuffled); *eob_ptr = _mm_extract_epi16(eob, 1); } } else { do { store_coefficients(zero, dqcoeff_ptr + n_coeffs); store_coefficients(zero, dqcoeff_ptr + n_coeffs + 8); store_coefficients(zero, qcoeff_ptr + n_coeffs); store_coefficients(zero, qcoeff_ptr + n_coeffs + 8); n_coeffs += 8 * 2; } while (n_coeffs < 0); *eob_ptr = 0; } }