ref: a46bb83e0c0d9592a20e000e843f36c117c96f13
dir: /vp8/common/mips/dspr2/idctllm_dspr2.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp8_rtcd.h" #if HAVE_DSPR2 #define CROP_WIDTH 256 /****************************************************************************** * Notes: * * This implementation makes use of 16 bit fixed point version of two multiply * constants: * 1. sqrt(2) * cos (pi/8) * 2. sqrt(2) * sin (pi/8) * Since the first constant is bigger than 1, to maintain the same 16 bit * fixed point precision as the second one, we use a trick of * x * a = x + x*(a-1) * so * x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1). ****************************************************************************/ extern unsigned char ff_cropTbl[256 + 2 * CROP_WIDTH]; static const int cospi8sqrt2minus1 = 20091; static const int sinpi8sqrt2 = 35468; inline void prefetch_load_short(short *src) { __asm__ __volatile__("pref 0, 0(%[src]) \n\t" : : [src] "r"(src)); } void vp8_short_idct4x4llm_dspr2(short *input, unsigned char *pred_ptr, int pred_stride, unsigned char *dst_ptr, int dst_stride) { int r, c; int a1, b1, c1, d1; short output[16]; short *ip = input; short *op = output; int temp1, temp2; int shortpitch = 4; int c2, d2; int temp3, temp4; unsigned char *cm = ff_cropTbl + CROP_WIDTH; /* prepare data for load */ prefetch_load_short(ip + 8); /* first loop is unrolled */ a1 = ip[0] + ip[8]; b1 = ip[0] - ip[8]; temp1 = (ip[4] * sinpi8sqrt2) >> 16; temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); c1 = temp1 - temp2; temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16); temp2 = (ip[12] * sinpi8sqrt2) >> 16; d1 = temp1 + temp2; temp3 = (ip[5] * sinpi8sqrt2) >> 16; temp4 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16); c2 = temp3 - temp4; temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16); temp4 = (ip[13] * sinpi8sqrt2) >> 16; d2 = temp3 + temp4; op[0] = a1 + d1; op[12] = a1 - d1; op[4] = b1 + c1; op[8] = b1 - c1; a1 = ip[1] + ip[9]; b1 = ip[1] - ip[9]; op[1] = a1 + d2; op[13] = a1 - d2; op[5] = b1 + c2; op[9] = b1 - c2; a1 = ip[2] + ip[10]; b1 = ip[2] - ip[10]; temp1 = (ip[6] * sinpi8sqrt2) >> 16; temp2 = ip[14] + ((ip[14] * cospi8sqrt2minus1) >> 16); c1 = temp1 - temp2; temp1 = ip[6] + ((ip[6] * cospi8sqrt2minus1) >> 16); temp2 = (ip[14] * sinpi8sqrt2) >> 16; d1 = temp1 + temp2; temp3 = (ip[7] * sinpi8sqrt2) >> 16; temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16); c2 = temp3 - temp4; temp3 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16); temp4 = (ip[15] * sinpi8sqrt2) >> 16; d2 = temp3 + temp4; op[2] = a1 + d1; op[14] = a1 - d1; op[6] = b1 + c1; op[10] = b1 - c1; a1 = ip[3] + ip[11]; b1 = ip[3] - ip[11]; op[3] = a1 + d2; op[15] = a1 - d2; op[7] = b1 + c2; op[11] = b1 - c2; ip = output; /* prepare data for load */ prefetch_load_short(ip + shortpitch); /* second loop is unrolled */ a1 = ip[0] + ip[2]; b1 = ip[0] - ip[2]; temp1 = (ip[1] * sinpi8sqrt2) >> 16; temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16); c1 = temp1 - temp2; temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16); temp2 = (ip[3] * sinpi8sqrt2) >> 16; d1 = temp1 + temp2; temp3 = (ip[5] * sinpi8sqrt2) >> 16; temp4 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16); c2 = temp3 - temp4; temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16); temp4 = (ip[7] * sinpi8sqrt2) >> 16; d2 = temp3 + temp4; op[0] = (a1 + d1 + 4) >> 3; op[3] = (a1 - d1 + 4) >> 3; op[1] = (b1 + c1 + 4) >> 3; op[2] = (b1 - c1 + 4) >> 3; a1 = ip[4] + ip[6]; b1 = ip[4] - ip[6]; op[4] = (a1 + d2 + 4) >> 3; op[7] = (a1 - d2 + 4) >> 3; op[5] = (b1 + c2 + 4) >> 3; op[6] = (b1 - c2 + 4) >> 3; a1 = ip[8] + ip[10]; b1 = ip[8] - ip[10]; temp1 = (ip[9] * sinpi8sqrt2) >> 16; temp2 = ip[11] + ((ip[11] * cospi8sqrt2minus1) >> 16); c1 = temp1 - temp2; temp1 = ip[9] + ((ip[9] * cospi8sqrt2minus1) >> 16); temp2 = (ip[11] * sinpi8sqrt2) >> 16; d1 = temp1 + temp2; temp3 = (ip[13] * sinpi8sqrt2) >> 16; temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16); c2 = temp3 - temp4; temp3 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16); temp4 = (ip[15] * sinpi8sqrt2) >> 16; d2 = temp3 + temp4; op[8] = (a1 + d1 + 4) >> 3; op[11] = (a1 - d1 + 4) >> 3; op[9] = (b1 + c1 + 4) >> 3; op[10] = (b1 - c1 + 4) >> 3; a1 = ip[12] + ip[14]; b1 = ip[12] - ip[14]; op[12] = (a1 + d2 + 4) >> 3; op[15] = (a1 - d2 + 4) >> 3; op[13] = (b1 + c2 + 4) >> 3; op[14] = (b1 - c2 + 4) >> 3; ip = output; for (r = 0; r < 4; ++r) { for (c = 0; c < 4; ++c) { short a = ip[c] + pred_ptr[c]; dst_ptr[c] = cm[a]; } ip += 4; dst_ptr += dst_stride; pred_ptr += pred_stride; } } void vp8_dc_only_idct_add_dspr2(short input_dc, unsigned char *pred_ptr, int pred_stride, unsigned char *dst_ptr, int dst_stride) { int a1; int i, absa1; int t2, vector_a1, vector_a; /* a1 = ((input_dc + 4) >> 3); */ __asm__ __volatile__( "addi %[a1], %[input_dc], 4 \n\t" "sra %[a1], %[a1], 3 \n\t" : [a1] "=r"(a1) : [input_dc] "r"(input_dc)); if (a1 < 0) { /* use quad-byte * input and output memory are four byte aligned */ __asm__ __volatile__( "abs %[absa1], %[a1] \n\t" "replv.qb %[vector_a1], %[absa1] \n\t" : [absa1] "=r"(absa1), [vector_a1] "=r"(vector_a1) : [a1] "r"(a1)); /* use (a1 - predptr[c]) instead a1 + predptr[c] */ for (i = 4; i--;) { __asm__ __volatile__( "lw %[t2], 0(%[pred_ptr]) \n\t" "add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t" "subu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t" "sw %[vector_a], 0(%[dst_ptr]) \n\t" "add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" : [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dst_ptr] "+&r"(dst_ptr), [pred_ptr] "+&r"(pred_ptr) : [dst_stride] "r"(dst_stride), [pred_stride] "r"(pred_stride), [vector_a1] "r"(vector_a1)); } } else { /* use quad-byte * input and output memory are four byte aligned */ __asm__ __volatile__("replv.qb %[vector_a1], %[a1] \n\t" : [vector_a1] "=r"(vector_a1) : [a1] "r"(a1)); for (i = 4; i--;) { __asm__ __volatile__( "lw %[t2], 0(%[pred_ptr]) \n\t" "add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t" "addu_s.qb %[vector_a], %[vector_a1], %[t2] \n\t" "sw %[vector_a], 0(%[dst_ptr]) \n\t" "add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" : [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dst_ptr] "+&r"(dst_ptr), [pred_ptr] "+&r"(pred_ptr) : [dst_stride] "r"(dst_stride), [pred_stride] "r"(pred_stride), [vector_a1] "r"(vector_a1)); } } } void vp8_short_inv_walsh4x4_dspr2(short *input, short *mb_dqcoeff) { short output[16]; int i; int a1, b1, c1, d1; int a2, b2, c2, d2; short *ip = input; short *op = output; prefetch_load_short(ip); for (i = 4; i--;) { a1 = ip[0] + ip[12]; b1 = ip[4] + ip[8]; c1 = ip[4] - ip[8]; d1 = ip[0] - ip[12]; op[0] = a1 + b1; op[4] = c1 + d1; op[8] = a1 - b1; op[12] = d1 - c1; ip++; op++; } ip = output; op = output; prefetch_load_short(ip); for (i = 4; i--;) { a1 = ip[0] + ip[3] + 3; b1 = ip[1] + ip[2]; c1 = ip[1] - ip[2]; d1 = ip[0] - ip[3] + 3; a2 = a1 + b1; b2 = d1 + c1; c2 = a1 - b1; d2 = d1 - c1; op[0] = a2 >> 3; op[1] = b2 >> 3; op[2] = c2 >> 3; op[3] = d2 >> 3; ip += 4; op += 4; } for (i = 0; i < 16; ++i) { mb_dqcoeff[i * 16] = output[i]; } } void vp8_short_inv_walsh4x4_1_dspr2(short *input, short *mb_dqcoeff) { int a1; a1 = ((input[0] + 3) >> 3); __asm__ __volatile__( "sh %[a1], 0(%[mb_dqcoeff]) \n\t" "sh %[a1], 32(%[mb_dqcoeff]) \n\t" "sh %[a1], 64(%[mb_dqcoeff]) \n\t" "sh %[a1], 96(%[mb_dqcoeff]) \n\t" "sh %[a1], 128(%[mb_dqcoeff]) \n\t" "sh %[a1], 160(%[mb_dqcoeff]) \n\t" "sh %[a1], 192(%[mb_dqcoeff]) \n\t" "sh %[a1], 224(%[mb_dqcoeff]) \n\t" "sh %[a1], 256(%[mb_dqcoeff]) \n\t" "sh %[a1], 288(%[mb_dqcoeff]) \n\t" "sh %[a1], 320(%[mb_dqcoeff]) \n\t" "sh %[a1], 352(%[mb_dqcoeff]) \n\t" "sh %[a1], 384(%[mb_dqcoeff]) \n\t" "sh %[a1], 416(%[mb_dqcoeff]) \n\t" "sh %[a1], 448(%[mb_dqcoeff]) \n\t" "sh %[a1], 480(%[mb_dqcoeff]) \n\t" : : [a1] "r"(a1), [mb_dqcoeff] "r"(mb_dqcoeff)); } #endif