ref: a5d9416fd7da3f66485642af9a6f62f686d3b70a
dir: /vp9/common/vp9_mfqe.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/common/vp9_postproc.h" // TODO(jackychen): Replace this function with SSE2 code. There is // one SSE2 implementation in vp8, so will consider how to share it // between vp8 and vp9. static void filter_by_weight(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int block_size, int src_weight) { const int dst_weight = (1 << MFQE_PRECISION) - src_weight; const int rounding_bit = 1 << (MFQE_PRECISION - 1); int r, c; for (r = 0; r < block_size; r++) { for (c = 0; c < block_size; c++) { dst[c] = (src[c] * src_weight + dst[c] * dst_weight + rounding_bit) >> MFQE_PRECISION; } src += src_stride; dst += dst_stride; } } void vp9_filter_by_weight8x8_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int src_weight) { filter_by_weight(src, src_stride, dst, dst_stride, 8, src_weight); } void vp9_filter_by_weight16x16_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int src_weight) { filter_by_weight(src, src_stride, dst, dst_stride, 16, src_weight); } static void filter_by_weight32x32(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int weight) { vp9_filter_by_weight16x16(src, src_stride, dst, dst_stride, weight); vp9_filter_by_weight16x16(src + 16, src_stride, dst + 16, dst_stride, weight); vp9_filter_by_weight16x16(src + src_stride * 16, src_stride, dst + dst_stride * 16, dst_stride, weight); vp9_filter_by_weight16x16(src + src_stride * 16 + 16, src_stride, dst + dst_stride * 16 + 16, dst_stride, weight); } static void filter_by_weight64x64(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int weight) { filter_by_weight32x32(src, src_stride, dst, dst_stride, weight); filter_by_weight32x32(src + 32, src_stride, dst + 32, dst_stride, weight); filter_by_weight32x32(src + src_stride * 32, src_stride, dst + dst_stride * 32, dst_stride, weight); filter_by_weight32x32(src + src_stride * 32 + 32, src_stride, dst + dst_stride * 32 + 32, dst_stride, weight); } static void apply_ifactor(const uint8_t *y, int y_stride, uint8_t *yd, int yd_stride, const uint8_t *u, const uint8_t *v, int uv_stride, uint8_t *ud, uint8_t *vd, int uvd_stride, BLOCK_SIZE block_size, int weight) { if (block_size == BLOCK_16X16) { vp9_filter_by_weight16x16(y, y_stride, yd, yd_stride, weight); vp9_filter_by_weight8x8(u, uv_stride, ud, uvd_stride, weight); vp9_filter_by_weight8x8(v, uv_stride, vd, uvd_stride, weight); } else if (block_size == BLOCK_32X32) { filter_by_weight32x32(y, y_stride, yd, yd_stride, weight); vp9_filter_by_weight16x16(u, uv_stride, ud, uvd_stride, weight); vp9_filter_by_weight16x16(v, uv_stride, vd, uvd_stride, weight); } else if (block_size == BLOCK_64X64) { filter_by_weight64x64(y, y_stride, yd, yd_stride, weight); filter_by_weight32x32(u, uv_stride, ud, uvd_stride, weight); filter_by_weight32x32(v, uv_stride, vd, uvd_stride, weight); } } // TODO(jackychen): Determine whether replace it with assembly code. static void copy_mem8x8(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 8; r++) { memcpy(dst, src, 8); src += src_stride; dst += dst_stride; } } static void copy_mem16x16(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 16; r++) { memcpy(dst, src, 16); src += src_stride; dst += dst_stride; } } static void copy_mem32x32(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { copy_mem16x16(src, src_stride, dst, dst_stride); copy_mem16x16(src + 16, src_stride, dst + 16, dst_stride); copy_mem16x16(src + src_stride * 16, src_stride, dst + dst_stride * 16, dst_stride); copy_mem16x16(src + src_stride * 16 + 16, src_stride, dst + dst_stride * 16 + 16, dst_stride); } void copy_mem64x64(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { copy_mem32x32(src, src_stride, dst, dst_stride); copy_mem32x32(src + 32, src_stride, dst + 32, dst_stride); copy_mem32x32(src + src_stride * 32, src_stride, dst + src_stride * 32, dst_stride); copy_mem32x32(src + src_stride * 32 + 32, src_stride, dst + src_stride * 32 + 32, dst_stride); } static void copy_block(const uint8_t *y, const uint8_t *u, const uint8_t *v, int y_stride, int uv_stride, uint8_t *yd, uint8_t *ud, uint8_t *vd, int yd_stride, int uvd_stride, BLOCK_SIZE bs) { if (bs == BLOCK_16X16) { copy_mem16x16(y, y_stride, yd, yd_stride); copy_mem8x8(u, uv_stride, ud, uvd_stride); copy_mem8x8(v, uv_stride, vd, uvd_stride); } else if (bs == BLOCK_32X32) { copy_mem32x32(y, y_stride, yd, yd_stride); copy_mem16x16(u, uv_stride, ud, uvd_stride); copy_mem16x16(v, uv_stride, vd, uvd_stride); } else { copy_mem64x64(y, y_stride, yd, yd_stride); copy_mem32x32(u, uv_stride, ud, uvd_stride); copy_mem32x32(v, uv_stride, vd, uvd_stride); } } static void get_thr(BLOCK_SIZE bs, int qdiff, int *sad_thr, int *vdiff_thr) { const int adj = qdiff >> MFQE_PRECISION; if (bs == BLOCK_16X16) { *sad_thr = 7 + adj; } else if (bs == BLOCK_32X32) { *sad_thr = 6 + adj; } else { // BLOCK_64X64 *sad_thr = 5 + adj; } *vdiff_thr = 125 + qdiff; } static void mfqe_block(BLOCK_SIZE bs, const uint8_t *y, const uint8_t *u, const uint8_t *v, int y_stride, int uv_stride, uint8_t *yd, uint8_t *ud, uint8_t *vd, int yd_stride, int uvd_stride, int qdiff) { int sad, sad_thr, vdiff, vdiff_thr; uint32_t sse; get_thr(bs, qdiff, &sad_thr, &vdiff_thr); if (bs == BLOCK_16X16) { vdiff = (vpx_variance16x16(y, y_stride, yd, yd_stride, &sse) + 128) >> 8; sad = (vpx_sad16x16(y, y_stride, yd, yd_stride) + 128) >> 8; } else if (bs == BLOCK_32X32) { vdiff = (vpx_variance32x32(y, y_stride, yd, yd_stride, &sse) + 512) >> 10; sad = (vpx_sad32x32(y, y_stride, yd, yd_stride) + 512) >> 10; } else /* if (bs == BLOCK_64X64) */ { vdiff = (vpx_variance64x64(y, y_stride, yd, yd_stride, &sse) + 2048) >> 12; sad = (vpx_sad64x64(y, y_stride, yd, yd_stride) + 2048) >> 12; } // vdiff > sad * 3 means vdiff should not be too small, otherwise, // it might be a lighting change in smooth area. When there is a // lighting change in smooth area, it is dangerous to do MFQE. if (sad > 1 && vdiff > sad * 3) { const int weight = 1 << MFQE_PRECISION; int ifactor = weight * sad * vdiff / (sad_thr * vdiff_thr); // When ifactor equals weight, no MFQE is done. if (ifactor > weight) { ifactor = weight; } apply_ifactor(y, y_stride, yd, yd_stride, u, v, uv_stride, ud, vd, uvd_stride, bs, ifactor); } else { // Copy the block from current frame (i.e., no mfqe is done). copy_block(y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride, bs); } } static int mfqe_decision(MODE_INFO *mi, BLOCK_SIZE cur_bs) { // Check the motion in current block(for inter frame), // or check the motion in the correlated block in last frame (for keyframe). const int mv_len_square = mi->mbmi.mv[0].as_mv.row * mi->mbmi.mv[0].as_mv.row + mi->mbmi.mv[0].as_mv.col * mi->mbmi.mv[0].as_mv.col; const int mv_threshold = 100; return mi->mbmi.mode >= NEARESTMV && // Not an intra block cur_bs >= BLOCK_16X16 && mv_len_square <= mv_threshold; } // Process each partiton in a super block, recursively. static void mfqe_partition(VP9_COMMON *cm, MODE_INFO *mi, BLOCK_SIZE bs, const uint8_t *y, const uint8_t *u, const uint8_t *v, int y_stride, int uv_stride, uint8_t *yd, uint8_t *ud, uint8_t *vd, int yd_stride, int uvd_stride) { int mi_offset, y_offset, uv_offset; const BLOCK_SIZE cur_bs = mi->mbmi.sb_type; const int qdiff = cm->base_qindex - cm->postproc_state.last_base_qindex; const int bsl = b_width_log2_lookup[bs]; PARTITION_TYPE partition = partition_lookup[bsl][cur_bs]; const BLOCK_SIZE subsize = get_subsize(bs, partition); if (cur_bs < BLOCK_8X8) { // If there are blocks smaller than 8x8, it must be on the boundary. return; } // No MFQE on blocks smaller than 16x16 if (bs == BLOCK_16X16) { partition = PARTITION_NONE; } if (bs == BLOCK_64X64) { mi_offset = 4; y_offset = 32; uv_offset = 16; } else { mi_offset = 2; y_offset = 16; uv_offset = 8; } switch (partition) { BLOCK_SIZE mfqe_bs, bs_tmp; case PARTITION_HORZ: if (bs == BLOCK_64X64) { mfqe_bs = BLOCK_64X32; bs_tmp = BLOCK_32X32; } else { mfqe_bs = BLOCK_32X16; bs_tmp = BLOCK_16X16; } if (mfqe_decision(mi, mfqe_bs)) { // Do mfqe on the first square partition. mfqe_block(bs_tmp, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride, qdiff); // Do mfqe on the second square partition. mfqe_block(bs_tmp, y + y_offset, u + uv_offset, v + uv_offset, y_stride, uv_stride, yd + y_offset, ud + uv_offset, vd + uv_offset, yd_stride, uvd_stride, qdiff); } if (mfqe_decision(mi + mi_offset * cm->mi_stride, mfqe_bs)) { // Do mfqe on the first square partition. mfqe_block(bs_tmp, y + y_offset * y_stride, u + uv_offset * uv_stride, v + uv_offset * uv_stride, y_stride, uv_stride, yd + y_offset * yd_stride, ud + uv_offset * uvd_stride, vd + uv_offset * uvd_stride, yd_stride, uvd_stride, qdiff); // Do mfqe on the second square partition. mfqe_block(bs_tmp, y + y_offset * y_stride + y_offset, u + uv_offset * uv_stride + uv_offset, v + uv_offset * uv_stride + uv_offset, y_stride, uv_stride, yd + y_offset * yd_stride + y_offset, ud + uv_offset * uvd_stride + uv_offset, vd + uv_offset * uvd_stride + uv_offset, yd_stride, uvd_stride, qdiff); } break; case PARTITION_VERT: if (bs == BLOCK_64X64) { mfqe_bs = BLOCK_32X64; bs_tmp = BLOCK_32X32; } else { mfqe_bs = BLOCK_16X32; bs_tmp = BLOCK_16X16; } if (mfqe_decision(mi, mfqe_bs)) { // Do mfqe on the first square partition. mfqe_block(bs_tmp, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride, qdiff); // Do mfqe on the second square partition. mfqe_block(bs_tmp, y + y_offset * y_stride, u + uv_offset * uv_stride, v + uv_offset * uv_stride, y_stride, uv_stride, yd + y_offset * yd_stride, ud + uv_offset * uvd_stride, vd + uv_offset * uvd_stride, yd_stride, uvd_stride, qdiff); } if (mfqe_decision(mi + mi_offset, mfqe_bs)) { // Do mfqe on the first square partition. mfqe_block(bs_tmp, y + y_offset, u + uv_offset, v + uv_offset, y_stride, uv_stride, yd + y_offset, ud + uv_offset, vd + uv_offset, yd_stride, uvd_stride, qdiff); // Do mfqe on the second square partition. mfqe_block(bs_tmp, y + y_offset * y_stride + y_offset, u + uv_offset * uv_stride + uv_offset, v + uv_offset * uv_stride + uv_offset, y_stride, uv_stride, yd + y_offset * yd_stride + y_offset, ud + uv_offset * uvd_stride + uv_offset, vd + uv_offset * uvd_stride + uv_offset, yd_stride, uvd_stride, qdiff); } break; case PARTITION_NONE: if (mfqe_decision(mi, cur_bs)) { // Do mfqe on this partition. mfqe_block(cur_bs, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride, qdiff); } else { // Copy the block from current frame(i.e., no mfqe is done). copy_block(y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride, bs); } break; case PARTITION_SPLIT: // Recursion on four square partitions, e.g. if bs is 64X64, // then look into four 32X32 blocks in it. mfqe_partition(cm, mi, subsize, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride); mfqe_partition(cm, mi + mi_offset, subsize, y + y_offset, u + uv_offset, v + uv_offset, y_stride, uv_stride, yd + y_offset, ud + uv_offset, vd + uv_offset, yd_stride, uvd_stride); mfqe_partition(cm, mi + mi_offset * cm->mi_stride, subsize, y + y_offset * y_stride, u + uv_offset * uv_stride, v + uv_offset * uv_stride, y_stride, uv_stride, yd + y_offset * yd_stride, ud + uv_offset * uvd_stride, vd + uv_offset * uvd_stride, yd_stride, uvd_stride); mfqe_partition(cm, mi + mi_offset * cm->mi_stride + mi_offset, subsize, y + y_offset * y_stride + y_offset, u + uv_offset * uv_stride + uv_offset, v + uv_offset * uv_stride + uv_offset, y_stride, uv_stride, yd + y_offset * yd_stride + y_offset, ud + uv_offset * uvd_stride + uv_offset, vd + uv_offset * uvd_stride + uv_offset, yd_stride, uvd_stride); break; default: assert(0); } } void vp9_mfqe(VP9_COMMON *cm) { int mi_row, mi_col; // Current decoded frame. const YV12_BUFFER_CONFIG *show = cm->frame_to_show; // Last decoded frame and will store the MFQE result. YV12_BUFFER_CONFIG *dest = &cm->post_proc_buffer; // Loop through each super block. for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) { for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { MODE_INFO *mi; MODE_INFO *mi_local = cm->mi + (mi_row * cm->mi_stride + mi_col); // Motion Info in last frame. MODE_INFO *mi_prev = cm->postproc_state.prev_mi + (mi_row * cm->mi_stride + mi_col); const uint32_t y_stride = show->y_stride; const uint32_t uv_stride = show->uv_stride; const uint32_t yd_stride = dest->y_stride; const uint32_t uvd_stride = dest->uv_stride; const uint32_t row_offset_y = mi_row << 3; const uint32_t row_offset_uv = mi_row << 2; const uint32_t col_offset_y = mi_col << 3; const uint32_t col_offset_uv = mi_col << 2; const uint8_t *y = show->y_buffer + row_offset_y * y_stride + col_offset_y; const uint8_t *u = show->u_buffer + row_offset_uv * uv_stride + col_offset_uv; const uint8_t *v = show->v_buffer + row_offset_uv * uv_stride + col_offset_uv; uint8_t *yd = dest->y_buffer + row_offset_y * yd_stride + col_offset_y; uint8_t *ud = dest->u_buffer + row_offset_uv * uvd_stride + col_offset_uv; uint8_t *vd = dest->v_buffer + row_offset_uv * uvd_stride + col_offset_uv; if (frame_is_intra_only(cm)) { mi = mi_prev; } else { mi = mi_local; } mfqe_partition(cm, mi, BLOCK_64X64, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride); } } }