ref: a622ed554f7072268e4c8d0b8f26d2e8865c2b3b
dir: /vp9/encoder/vp9_ratectrl.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <limits.h> #include <assert.h> #include <math.h> #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_common.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/common/vp9_entropymode.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_seg_common.h" #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 0 #define MIN_BPB_FACTOR 0.005 #define MAX_BPB_FACTOR 50 // Bits Per MB at different Q (Multiplied by 512) #define BPER_MB_NORMBITS 9 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 }; // Tables relating active max Q to active min Q static int kf_low_motion_minq[QINDEX_RANGE]; static int kf_high_motion_minq[QINDEX_RANGE]; static int gf_low_motion_minq[QINDEX_RANGE]; static int gf_high_motion_minq[QINDEX_RANGE]; static int inter_minq[QINDEX_RANGE]; static int afq_low_motion_minq[QINDEX_RANGE]; static int afq_high_motion_minq[QINDEX_RANGE]; // Functions to compute the active minq lookup table entries based on a // formulaic approach to facilitate easier adjustment of the Q tables. // The formulae were derived from computing a 3rd order polynomial best // fit to the original data (after plotting real maxq vs minq (not q index)) static int calculate_minq_index(double maxq, double x3, double x2, double x1, double c) { int i; const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c, maxq); // Special case handling to deal with the step from q2.0 // down to lossless mode represented by q 1.0. if (minqtarget <= 2.0) return 0; for (i = 0; i < QINDEX_RANGE; i++) { if (minqtarget <= vp9_convert_qindex_to_q(i)) return i; } return QINDEX_RANGE - 1; } void vp9_rc_init_minq_luts(void) { int i; for (i = 0; i < QINDEX_RANGE; i++) { const double maxq = vp9_convert_qindex_to_q(i); kf_low_motion_minq[i] = calculate_minq_index(maxq, 0.000001, -0.0004, 0.15, 0.0); kf_high_motion_minq[i] = calculate_minq_index(maxq, 0.000002, -0.0012, 0.5, 0.0); gf_low_motion_minq[i] = calculate_minq_index(maxq, 0.0000015, -0.0009, 0.32, 0.0); gf_high_motion_minq[i] = calculate_minq_index(maxq, 0.0000021, -0.00125, 0.50, 0.0); inter_minq[i] = calculate_minq_index(maxq, 0.00000271, -0.00113, 0.75, 0.0); afq_low_motion_minq[i] = calculate_minq_index(maxq, 0.0000015, -0.0009, 0.33, 0.0); afq_high_motion_minq[i] = calculate_minq_index(maxq, 0.0000021, -0.00125, 0.55, 0.0); } } // These functions use formulaic calculations to make playing with the // quantizer tables easier. If necessary they can be replaced by lookup // tables if and when things settle down in the experimental bitstream double vp9_convert_qindex_to_q(int qindex) { // Convert the index to a real Q value (scaled down to match old Q values) return vp9_ac_quant(qindex, 0) / 4.0; } int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, double correction_factor) { const double q = vp9_convert_qindex_to_q(qindex); int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000; // q based adjustment to baseline enumerator enumerator += (int)(enumerator * q) >> 12; return (int)(0.5 + (enumerator * correction_factor / q)); } void vp9_save_coding_context(VP9_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; VP9_COMMON *cm = &cpi->common; // Stores a snapshot of key state variables which can subsequently be // restored with a call to vp9_restore_coding_context. These functions are // intended for use in a re-code loop in vp9_compress_frame where the // quantizer value is adjusted between loop iterations. vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols)); vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); cc->fc = cm->fc; } void vp9_restore_coding_context(VP9_COMP *cpi) { CODING_CONTEXT *const cc = &cpi->coding_context; VP9_COMMON *cm = &cpi->common; // Restore key state variables to the snapshot state stored in the // previous call to vp9_save_coding_context. vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); vpx_memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy, (cm->mi_rows * cm->mi_cols)); vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); cm->fc = cc->fc; } void vp9_setup_key_frame(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; vp9_setup_past_independence(cm); // interval before next GF cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; /* All buffers are implicitly updated on key frames. */ cpi->refresh_golden_frame = 1; cpi->refresh_alt_ref_frame = 1; } void vp9_setup_inter_frame(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; if (cm->error_resilient_mode || cm->intra_only) vp9_setup_past_independence(cm); assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS); cm->fc = cm->frame_contexts[cm->frame_context_idx]; } static int estimate_bits_at_q(int frame_kind, int q, int mbs, double correction_factor) { const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor)); // Attempt to retain reasonable accuracy without overflow. The cutoff is // chosen such that the maximum product of Bpm and MBs fits 31 bits. The // largest Bpm takes 20 bits. return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs : (bpm * mbs) >> BPER_MB_NORMBITS; } static void calc_iframe_target_size(VP9_COMP *cpi) { // boost defaults to half second int target; // Clear down mmx registers to allow floating point in what follows vp9_clear_system_state(); // __asm emms; // New Two pass RC target = cpi->rc.per_frame_bandwidth; if (cpi->oxcf.rc_max_intra_bitrate_pct) { int max_rate = cpi->rc.per_frame_bandwidth * cpi->oxcf.rc_max_intra_bitrate_pct / 100; if (target > max_rate) target = max_rate; } cpi->rc.this_frame_target = target; } // Do the best we can to define the parameters for the next GF based // on what information we have available. // // In this experimental code only two pass is supported // so we just use the interval determined in the two pass code. static void calc_gf_params(VP9_COMP *cpi) { // Set the gf interval cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; } static void calc_pframe_target_size(VP9_COMP *cpi) { const int min_frame_target = MAX(cpi->rc.min_frame_bandwidth, cpi->rc.av_per_frame_bandwidth >> 5); if (cpi->refresh_alt_ref_frame) { // Special alt reference frame case // Per frame bit target for the alt ref frame cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits; cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; } else { // Normal frames (gf,and inter) cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; } // Check that the total sum of adjustments is not above the maximum allowed. // That is, having allowed for the KF and GF penalties, we have not pushed // the current inter-frame target too low. If the adjustment we apply here is // not capable of recovering all the extra bits we have spent in the KF or GF, // then the remainder will have to be recovered over a longer time span via // other buffer / rate control mechanisms. if (cpi->rc.this_frame_target < min_frame_target) cpi->rc.this_frame_target = min_frame_target; // Adjust target frame size for Golden Frames: if (cpi->rc.frames_till_gf_update_due == 0) { cpi->refresh_golden_frame = 1; calc_gf_params(cpi); // If we are using alternate ref instead of gf then do not apply the boost // It will instead be applied to the altref update // Jims modified boost if (!cpi->source_alt_ref_active) { // The spend on the GF is defined in the two pass code // for two pass encodes cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; } else { // If there is an active ARF at this location use the minimum // bits on this frame even if it is a constructed arf. // The active maximum quantizer insures that an appropriate // number of bits will be spent if needed for constructed ARFs. cpi->rc.this_frame_target = 0; } } } void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { const int q = cpi->common.base_qindex; int correction_factor = 100; double rate_correction_factor; double adjustment_limit; int projected_size_based_on_q = 0; // Clear down mmx registers to allow floating point in what follows vp9_clear_system_state(); // __asm emms; if (cpi->common.frame_type == KEY_FRAME) { rate_correction_factor = cpi->rc.key_frame_rate_correction_factor; } else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) rate_correction_factor = cpi->rc.gf_rate_correction_factor; else rate_correction_factor = cpi->rc.rate_correction_factor; } // Work out how big we would have expected the frame to be at this Q given // the current correction factor. // Stay in double to avoid int overflow when values are large projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q, cpi->common.MBs, rate_correction_factor); // Work out a size correction factor. if (projected_size_based_on_q > 0) correction_factor = (100 * cpi->rc.projected_frame_size) / projected_size_based_on_q; // More heavily damped adjustment used if we have been oscillating either side // of target. switch (damp_var) { case 0: adjustment_limit = 0.75; break; case 1: adjustment_limit = 0.375; break; case 2: default: adjustment_limit = 0.25; break; } // if ( (correction_factor > 102) && (Q < cpi->rc.active_worst_quality) ) if (correction_factor > 102) { // We are not already at the worst allowable quality correction_factor = (int)(100 + ((correction_factor - 100) * adjustment_limit)); rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); // Keep rate_correction_factor within limits if (rate_correction_factor > MAX_BPB_FACTOR) rate_correction_factor = MAX_BPB_FACTOR; } else if (correction_factor < 99) { // We are not already at the best allowable quality correction_factor = (int)(100 - ((100 - correction_factor) * adjustment_limit)); rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); // Keep rate_correction_factor within limits if (rate_correction_factor < MIN_BPB_FACTOR) rate_correction_factor = MIN_BPB_FACTOR; } if (cpi->common.frame_type == KEY_FRAME) { cpi->rc.key_frame_rate_correction_factor = rate_correction_factor; } else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) cpi->rc.gf_rate_correction_factor = rate_correction_factor; else cpi->rc.rate_correction_factor = rate_correction_factor; } } int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame) { int q = cpi->rc.active_worst_quality; int i; int last_error = INT_MAX; int target_bits_per_mb; int bits_per_mb_at_this_q; double correction_factor; // Select the appropriate correction factor based upon type of frame. if (cpi->common.frame_type == KEY_FRAME) { correction_factor = cpi->rc.key_frame_rate_correction_factor; } else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) correction_factor = cpi->rc.gf_rate_correction_factor; else correction_factor = cpi->rc.rate_correction_factor; } // Calculate required scaling factor based on target frame size and size of // frame produced using previous Q. if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int else target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; i = cpi->rc.active_best_quality; do { bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i, correction_factor); if (bits_per_mb_at_this_q <= target_bits_per_mb) { if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) q = i; else q = i - 1; break; } else { last_error = bits_per_mb_at_this_q - target_bits_per_mb; } } while (++i <= cpi->rc.active_worst_quality); return q; } static int get_active_quality(int q, int gfu_boost, int low, int high, int *low_motion_minq, int *high_motion_minq) { int active_best_quality; if (gfu_boost > high) { active_best_quality = low_motion_minq[q]; } else if (gfu_boost < low) { active_best_quality = high_motion_minq[q]; } else { const int gap = high - low; const int offset = high - gfu_boost; const int qdiff = high_motion_minq[q] - low_motion_minq[q]; const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; active_best_quality = low_motion_minq[q] + adjustment; } return active_best_quality; } int vp9_rc_pick_q_and_adjust_q_bounds(VP9_COMP *cpi, int *bottom_index, int *top_index) { // Set an active best quality and if necessary active worst quality int q = cpi->rc.active_worst_quality; VP9_COMMON *const cm = &cpi->common; if (frame_is_intra_only(cm)) { #if !CONFIG_MULTIPLE_ARF // Handle the special case for key frames forced when we have75 reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping. if (cpi->this_key_frame_forced) { int delta_qindex; int qindex = cpi->rc.last_boosted_qindex; double last_boosted_q = vp9_convert_qindex_to_q(qindex); delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q, (last_boosted_q * 0.75)); cpi->rc.active_best_quality = MAX(qindex + delta_qindex, cpi->rc.best_quality); } else if (cpi->pass == 0 && cpi->common.current_video_frame == 0) { // If this is the first (key) frame in 1-pass, active best/worst is // the user best/worst-allowed, and leave the top_index to active_worst. cpi->rc.active_best_quality = cpi->oxcf.best_allowed_q; cpi->rc.active_worst_quality = cpi->oxcf.worst_allowed_q; } else { int high = 5000; int low = 400; double q_adj_factor = 1.0; double q_val; // Baseline value derived from cpi->active_worst_quality and kf boost cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.kf_boost, low, high, kf_low_motion_minq, kf_high_motion_minq); // Allow somewhat lower kf minq with small image formats. if ((cm->width * cm->height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Make a further adjustment based on the kf zero motion measure. q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct); // Convert the adjustment factor to a qindex delta // on active_best_quality. q_val = vp9_convert_qindex_to_q(cpi->rc.active_best_quality); cpi->rc.active_best_quality += vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor)); } #else double current_q; // Force the KF quantizer to be 30% of the active_worst_quality. current_q = vp9_convert_qindex_to_q(cpi->rc.active_worst_quality); cpi->rc.active_best_quality = cpi->rc.active_worst_quality + vp9_compute_qdelta(cpi, current_q, current_q * 0.3); #endif } else if (!cpi->is_src_frame_alt_ref && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { int high = 2000; int low = 400; // Use the lower of cpi->rc.active_worst_quality and recent // average Q as basis for GF/ARF best Q limit unless last frame was // a key frame. if (cpi->frames_since_key > 1 && cpi->rc.avg_frame_qindex < cpi->rc.active_worst_quality) { q = cpi->rc.avg_frame_qindex; } // For constrained quality dont allow Q less than the cq level if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { if (q < cpi->cq_target_quality) q = cpi->cq_target_quality; if (cpi->frames_since_key > 1) { cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost, low, high, afq_low_motion_minq, afq_high_motion_minq); } else { cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost, low, high, gf_low_motion_minq, gf_high_motion_minq); } // Constrained quality use slightly lower active best. cpi->rc.active_best_quality = cpi->rc.active_best_quality * 15 / 16; } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { if (!cpi->refresh_alt_ref_frame) { cpi->rc.active_best_quality = cpi->cq_target_quality; } else { if (cpi->frames_since_key > 1) { cpi->rc.active_best_quality = get_active_quality( q, cpi->rc.gfu_boost, low, high, afq_low_motion_minq, afq_high_motion_minq); } else { cpi->rc.active_best_quality = get_active_quality( q, cpi->rc.gfu_boost, low, high, gf_low_motion_minq, gf_high_motion_minq); } } } else { cpi->rc.active_best_quality = get_active_quality( q, cpi->rc.gfu_boost, low, high, gf_low_motion_minq, gf_high_motion_minq); } } else { if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { cpi->rc.active_best_quality = cpi->cq_target_quality; } else { cpi->rc.active_best_quality = inter_minq[q]; // 1-pass: for now, use the average Q for the active_best, if its lower // than active_worst. if (cpi->pass == 0 && (cpi->rc.avg_frame_qindex < q)) cpi->rc.active_best_quality = inter_minq[cpi->rc.avg_frame_qindex]; // For the constrained quality mode we don't want // q to fall below the cq level. if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (cpi->rc.active_best_quality < cpi->cq_target_quality)) { // If we are strongly undershooting the target rate in the last // frames then use the user passed in cq value not the auto // cq value. if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth) cpi->rc.active_best_quality = cpi->oxcf.cq_level; else cpi->rc.active_best_quality = cpi->cq_target_quality; } } } // Clip the active best and worst quality values to limits if (cpi->rc.active_worst_quality > cpi->rc.worst_quality) cpi->rc.active_worst_quality = cpi->rc.worst_quality; if (cpi->rc.active_best_quality < cpi->rc.best_quality) cpi->rc.active_best_quality = cpi->rc.best_quality; if (cpi->rc.active_best_quality > cpi->rc.worst_quality) cpi->rc.active_best_quality = cpi->rc.worst_quality; if (cpi->rc.active_worst_quality < cpi->rc.active_best_quality) cpi->rc.active_worst_quality = cpi->rc.active_best_quality; *top_index = cpi->rc.active_worst_quality; *bottom_index = cpi->rc.active_best_quality; #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY // Limit Q range for the adaptive loop. if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) { if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) { *top_index = (cpi->rc.active_worst_quality + cpi->rc.active_best_quality * 3) / 4; } } else if (!cpi->is_src_frame_alt_ref && (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { *top_index = (cpi->rc.active_worst_quality + cpi->rc.active_best_quality) / 2; } #endif if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { q = cpi->rc.active_best_quality; // Special case code to try and match quality with forced key frames } else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { q = cpi->rc.last_boosted_qindex; } else { // Determine initial Q to try. if (cpi->pass == 0) { // 1-pass: for now, use per-frame-bw for target size of frame, scaled // by |x| for key frame. int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1; q = vp9_rc_regulate_q(cpi, scale * cpi->rc.av_per_frame_bandwidth); } else { q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target); } if (q > *top_index) q = *top_index; } return q; } static int estimate_keyframe_frequency(VP9_COMP *cpi) { int i; // Average key frame frequency int av_key_frame_frequency = 0; /* First key frame at start of sequence is a special case. We have no * frequency data. */ if (cpi->rc.key_frame_count == 1) { /* Assume a default of 1 kf every 2 seconds, or the max kf interval, * whichever is smaller. */ int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; av_key_frame_frequency = (int)cpi->output_framerate * 2; if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) av_key_frame_frequency = cpi->oxcf.key_freq; cpi->rc.prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] = av_key_frame_frequency; } else { unsigned int total_weight = 0; int last_kf_interval = (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; /* reset keyframe context and calculate weighted average of last * KEY_FRAME_CONTEXT keyframes */ for (i = 0; i < KEY_FRAME_CONTEXT; i++) { if (i < KEY_FRAME_CONTEXT - 1) cpi->rc.prior_key_frame_distance[i] = cpi->rc.prior_key_frame_distance[i + 1]; else cpi->rc.prior_key_frame_distance[i] = last_kf_interval; av_key_frame_frequency += prior_key_frame_weight[i] * cpi->rc.prior_key_frame_distance[i]; total_weight += prior_key_frame_weight[i]; } av_key_frame_frequency /= total_weight; } return av_key_frame_frequency; } static void adjust_key_frame_context(VP9_COMP *cpi) { // Clear down mmx registers to allow floating point in what follows vp9_clear_system_state(); cpi->frames_since_key = 0; cpi->rc.key_frame_count++; } static void compute_frame_size_bounds(const VP9_COMP *cpi, int this_frame_target, int *frame_under_shoot_limit, int *frame_over_shoot_limit) { // Set-up bounds on acceptable frame size: if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { *frame_under_shoot_limit = 0; *frame_over_shoot_limit = INT_MAX; } else { if (cpi->common.frame_type == KEY_FRAME) { *frame_over_shoot_limit = this_frame_target * 9 / 8; *frame_under_shoot_limit = this_frame_target * 7 / 8; } else { if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) { *frame_over_shoot_limit = this_frame_target * 9 / 8; *frame_under_shoot_limit = this_frame_target * 7 / 8; } else { // Stron overshoot limit for constrained quality if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { *frame_over_shoot_limit = this_frame_target * 11 / 8; *frame_under_shoot_limit = this_frame_target * 2 / 8; } else { *frame_over_shoot_limit = this_frame_target * 11 / 8; *frame_under_shoot_limit = this_frame_target * 5 / 8; } } } // For very small rate targets where the fractional adjustment // (eg * 7/8) may be tiny make sure there is at least a minimum // range. *frame_over_shoot_limit += 200; *frame_under_shoot_limit -= 200; if (*frame_under_shoot_limit < 0) *frame_under_shoot_limit = 0; } } // return of 0 means drop frame int vp9_rc_pick_frame_size_and_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit) { VP9_COMMON *cm = &cpi->common; if (cm->frame_type == KEY_FRAME) calc_iframe_target_size(cpi); else calc_pframe_target_size(cpi); // Target rate per SB64 (including partial SB64s. cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) / (cpi->common.width * cpi->common.height); compute_frame_size_bounds(cpi, cpi->rc.this_frame_target, frame_under_shoot_limit, frame_over_shoot_limit); return 1; } void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used, int q) { VP9_COMMON *const cm = &cpi->common; // Update rate control heuristics cpi->rc.projected_frame_size = (bytes_used << 3); // Post encode loop adjustment of Q prediction. vp9_rc_update_rate_correction_factors( cpi, (cpi->sf.recode_loop || cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0); cpi->rc.last_q[cm->frame_type] = cm->base_qindex; // Keep record of last boosted (KF/KF/ARF) Q value. // If the current frame is coded at a lower Q then we also update it. // If all mbs in this group are skipped only update if the Q value is // better than that already stored. // This is used to help set quality in forced key frames to reduce popping if ((cm->base_qindex < cpi->rc.last_boosted_qindex) || ((cpi->static_mb_pct < 100) && ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) { cpi->rc.last_boosted_qindex = cm->base_qindex; } if (cm->frame_type == KEY_FRAME) { adjust_key_frame_context(cpi); } // Keep a record of ambient average Q. if (cm->frame_type != KEY_FRAME) cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex + cm->base_qindex) >> 2; // Keep a record from which we can calculate the average Q excluding GF // updates and key frames. if (cm->frame_type != KEY_FRAME && !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { cpi->rc.ni_frames++; cpi->rc.tot_q += vp9_convert_qindex_to_q(q); cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames; // Calculate the average Q for normal inter frames (not key or GFU frames). cpi->rc.ni_tot_qi += q; cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames; } // Update the buffer level variable. // Non-viewable frames are a special case and are treated as pure overhead. if (!cm->show_frame) cpi->rc.bits_off_target -= cpi->rc.projected_frame_size; else cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth - cpi->rc.projected_frame_size; // Clip the buffer level at the maximum buffer size if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size) cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size; // Rolling monitors of whether we are over or underspending used to help // regulate min and Max Q in two pass. if (cm->frame_type != KEY_FRAME) { cpi->rc.rolling_target_bits = ((cpi->rc.rolling_target_bits * 3) + cpi->rc.this_frame_target + 2) / 4; cpi->rc.rolling_actual_bits = ((cpi->rc.rolling_actual_bits * 3) + cpi->rc.projected_frame_size + 2) / 4; cpi->rc.long_rolling_target_bits = ((cpi->rc.long_rolling_target_bits * 31) + cpi->rc.this_frame_target + 16) / 32; cpi->rc.long_rolling_actual_bits = ((cpi->rc.long_rolling_actual_bits * 31) + cpi->rc.projected_frame_size + 16) / 32; } // Actual bits spent cpi->rc.total_actual_bits += cpi->rc.projected_frame_size; // Debug stats cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target - cpi->rc.projected_frame_size); cpi->rc.buffer_level = cpi->rc.bits_off_target; #ifndef DISABLE_RC_LONG_TERM_MEM // Update bits left to the kf and gf groups to account for overshoot or // undershoot on these frames if (cm->frame_type == KEY_FRAME) { cpi->twopass.kf_group_bits += cpi->rc.this_frame_target - cpi->rc.projected_frame_size; cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0); } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) { cpi->twopass.gf_group_bits += cpi->rc.this_frame_target - cpi->rc.projected_frame_size; cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0); } #endif }