ref: aa2af3ff6e46f4865b2ae887d90b638620d0097f
dir: /vp9/encoder/x86/vp9_variance_impl_intrin_avx2.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> // AVX2 void vp9_get16x16var_avx2(const unsigned char *src_ptr, int source_stride, const unsigned char *ref_ptr, int recon_stride, unsigned int *SSE, int *Sum) { __m256i src, src_expand_low, src_expand_high, ref, ref_expand_low; __m256i ref_expand_high, madd_low, madd_high; unsigned int i, src_2strides, ref_2strides; __m256i zero_reg = _mm256_set1_epi16(0); __m256i sum_ref_src = _mm256_set1_epi16(0); __m256i madd_ref_src = _mm256_set1_epi16(0); // processing two strides in a 256 bit register reducing the number // of loop stride by half (comparing to the sse2 code) src_2strides = source_stride << 1; ref_2strides = recon_stride << 1; for (i = 0; i < 8; i++) { src = _mm256_castsi128_si256( _mm_loadu_si128((__m128i const *) (src_ptr))); src = _mm256_inserti128_si256(src, _mm_loadu_si128((__m128i const *)(src_ptr+source_stride)), 1); ref =_mm256_castsi128_si256( _mm_loadu_si128((__m128i const *) (ref_ptr))); ref = _mm256_inserti128_si256(ref, _mm_loadu_si128((__m128i const *)(ref_ptr+recon_stride)), 1); // expanding to 16 bit each lane src_expand_low = _mm256_unpacklo_epi8(src, zero_reg); src_expand_high = _mm256_unpackhi_epi8(src, zero_reg); ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg); ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg); // src-ref src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low); src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high); // madd low (src - ref) madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low); // add high to low src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high); // madd high (src - ref) madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high); sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low); // add high to low madd_ref_src = _mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high)); src_ptr+= src_2strides; ref_ptr+= ref_2strides; } { __m128i sum_res, madd_res; __m128i expand_sum_low, expand_sum_high, expand_sum; __m128i expand_madd_low, expand_madd_high, expand_madd; __m128i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum; // extract the low lane and add it to the high lane sum_res = _mm_add_epi16(_mm256_castsi256_si128(sum_ref_src), _mm256_extractf128_si256(sum_ref_src, 1)); madd_res = _mm_add_epi32(_mm256_castsi256_si128(madd_ref_src), _mm256_extractf128_si256(madd_ref_src, 1)); // padding each 2 bytes with another 2 zeroed bytes expand_sum_low = _mm_unpacklo_epi16(_mm256_castsi256_si128(zero_reg), sum_res); expand_sum_high = _mm_unpackhi_epi16(_mm256_castsi256_si128(zero_reg), sum_res); // shifting the sign 16 bits right expand_sum_low = _mm_srai_epi32(expand_sum_low, 16); expand_sum_high = _mm_srai_epi32(expand_sum_high, 16); expand_sum = _mm_add_epi32(expand_sum_low, expand_sum_high); // expand each 32 bits of the madd result to 64 bits expand_madd_low = _mm_unpacklo_epi32(madd_res, _mm256_castsi256_si128(zero_reg)); expand_madd_high = _mm_unpackhi_epi32(madd_res, _mm256_castsi256_si128(zero_reg)); expand_madd = _mm_add_epi32(expand_madd_low, expand_madd_high); ex_expand_sum_low = _mm_unpacklo_epi32(expand_sum, _mm256_castsi256_si128(zero_reg)); ex_expand_sum_high = _mm_unpackhi_epi32(expand_sum, _mm256_castsi256_si128(zero_reg)); ex_expand_sum = _mm_add_epi32(ex_expand_sum_low, ex_expand_sum_high); // shift 8 bytes eight madd_res = _mm_srli_si128(expand_madd, 8); sum_res = _mm_srli_si128(ex_expand_sum, 8); madd_res = _mm_add_epi32(madd_res, expand_madd); sum_res = _mm_add_epi32(sum_res, ex_expand_sum); *((int*)SSE)= _mm_cvtsi128_si32(madd_res); *((int*)Sum)= _mm_cvtsi128_si32(sum_res); } } void vp9_get32x32var_avx2(const unsigned char *src_ptr, int source_stride, const unsigned char *ref_ptr, int recon_stride, unsigned int *SSE, int *Sum) { __m256i src, src_expand_low, src_expand_high, ref, ref_expand_low; __m256i ref_expand_high, madd_low, madd_high; unsigned int i; __m256i zero_reg = _mm256_set1_epi16(0); __m256i sum_ref_src = _mm256_set1_epi16(0); __m256i madd_ref_src = _mm256_set1_epi16(0); // processing 32 elements in parallel for (i = 0; i < 16; i++) { src = _mm256_loadu_si256((__m256i const *) (src_ptr)); ref = _mm256_loadu_si256((__m256i const *) (ref_ptr)); // expanding to 16 bit each lane src_expand_low = _mm256_unpacklo_epi8(src, zero_reg); src_expand_high = _mm256_unpackhi_epi8(src, zero_reg); ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg); ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg); // src-ref src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low); src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high); // madd low (src - ref) madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low); // add high to low src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high); // madd high (src - ref) madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high); sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low); // add high to low madd_ref_src = _mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high)); src_ptr+= source_stride; ref_ptr+= recon_stride; } { __m256i expand_sum_low, expand_sum_high, expand_sum; __m256i expand_madd_low, expand_madd_high, expand_madd; __m256i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum; // padding each 2 bytes with another 2 zeroed bytes expand_sum_low = _mm256_unpacklo_epi16(zero_reg, sum_ref_src); expand_sum_high = _mm256_unpackhi_epi16(zero_reg, sum_ref_src); // shifting the sign 16 bits right expand_sum_low = _mm256_srai_epi32(expand_sum_low, 16); expand_sum_high = _mm256_srai_epi32(expand_sum_high, 16); expand_sum = _mm256_add_epi32(expand_sum_low, expand_sum_high); // expand each 32 bits of the madd result to 64 bits expand_madd_low = _mm256_unpacklo_epi32(madd_ref_src, zero_reg); expand_madd_high = _mm256_unpackhi_epi32(madd_ref_src, zero_reg); expand_madd = _mm256_add_epi32(expand_madd_low, expand_madd_high); ex_expand_sum_low = _mm256_unpacklo_epi32(expand_sum, zero_reg); ex_expand_sum_high = _mm256_unpackhi_epi32(expand_sum, zero_reg); ex_expand_sum = _mm256_add_epi32(ex_expand_sum_low, ex_expand_sum_high); // shift 8 bytes eight madd_ref_src = _mm256_srli_si256(expand_madd, 8); sum_ref_src = _mm256_srli_si256(ex_expand_sum, 8); madd_ref_src = _mm256_add_epi32(madd_ref_src, expand_madd); sum_ref_src = _mm256_add_epi32(sum_ref_src, ex_expand_sum); // extract the low lane and the high lane and add the results *((int*)SSE)= _mm_cvtsi128_si32(_mm256_castsi256_si128(madd_ref_src)) + _mm_cvtsi128_si32(_mm256_extractf128_si256(madd_ref_src, 1)); *((int*)Sum)= _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_ref_src)) + _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_ref_src, 1)); } }