ref: aaa6cdcc2ea68fbab1d4422174fac85459ad6d37
dir: /vpx_dsp/x86/vpx_subpixel_8t_intrin_ssse3.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <tmmintrin.h> #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/vpx_filter.h" #include "vpx_dsp/x86/convolve.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/emmintrin_compat.h" // filters only for the 4_h8 convolution DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = { 0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6 }; DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = { 4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10 }; // filters for 8_h8 and 16_h8 DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = { 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 }; DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = { 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 }; DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = { 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 }; // These are reused by the avx2 intrinsics. filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3; filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3; void vpx_filter_block1d4_h8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i firstFilters, secondFilters, shuffle1, shuffle2; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, srcReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter into the first lane firstFilters = _mm_shufflelo_epi16(filtersReg, 0); // duplicate only the third 16 bit in the filter into the first lane secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); // duplicate only the seconds 16 bits in the filter into the second lane // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); // duplicate only the forth 16 bits in the filter into the second lane // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); // loading the local filters shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8); shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1); srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // extract the higher half of the lane srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8); srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8); minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2); // add and saturate all the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr += src_pixels_per_line; // save only 4 bytes *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1); output_ptr += output_pitch; } } void vpx_filter_block1d8_h8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg; __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits (first and second byte) // across 128 bit register firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 128 bit register forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); filt1Reg = _mm_load_si128((__m128i const *)filt1_global); filt2Reg = _mm_load_si128((__m128i const *)filt2_global); filt3Reg = _mm_load_si128((__m128i const *)filt3_global); filt4Reg = _mm_load_si128((__m128i const *)filt4_global); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg); srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // filter the source buffer srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg); srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters); // add and saturate all the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr += src_pixels_per_line; // save only 8 bytes _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); output_ptr += output_pitch; } } void vpx_filter_block1d8_v8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i addFilterReg64, filtersReg, minReg; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5; __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7; __m128i srcReg8; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits in the filter secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits in the filter thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits in the filter forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); // load the first 7 rows of 8 bytes srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr); srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); for (i = 0; i < output_height; i++) { // load the last 8 bytes srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); // merge the result together srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2); srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4); // merge the result together srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6); srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters); // add and saturate the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5); srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr += src_pitch; // shift down a row srcReg1 = srcReg2; srcReg2 = srcReg3; srcReg3 = srcReg4; srcReg4 = srcReg5; srcReg5 = srcReg6; srcReg6 = srcReg7; srcReg7 = srcReg8; // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); output_ptr += out_pitch; } } filter8_1dfunction vpx_filter_block1d16_v8_ssse3; filter8_1dfunction vpx_filter_block1d16_h8_ssse3; filter8_1dfunction vpx_filter_block1d8_v8_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_ssse3; filter8_1dfunction vpx_filter_block1d4_v8_ssse3; filter8_1dfunction vpx_filter_block1d4_h8_ssse3; filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3; filter8_1dfunction vpx_filter_block1d16_v2_ssse3; filter8_1dfunction vpx_filter_block1d16_h2_ssse3; filter8_1dfunction vpx_filter_block1d8_v2_ssse3; filter8_1dfunction vpx_filter_block1d8_h2_ssse3; filter8_1dfunction vpx_filter_block1d4_v2_ssse3; filter8_1dfunction vpx_filter_block1d4_h2_ssse3; filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3; // void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, // int y_step_q4, int w, int h); // void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, // int y_step_q4, int w, int h); FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3); FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , ssse3); FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3); FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, ssse3); #define TRANSPOSE_8X8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3, out4, out5, out6, out7) \ { \ const __m128i tr0_0 = _mm_unpacklo_epi8(in0, in1); \ const __m128i tr0_1 = _mm_unpacklo_epi8(in2, in3); \ const __m128i tr0_2 = _mm_unpacklo_epi8(in4, in5); \ const __m128i tr0_3 = _mm_unpacklo_epi8(in6, in7); \ \ const __m128i tr1_0 = _mm_unpacklo_epi16(tr0_0, tr0_1); \ const __m128i tr1_1 = _mm_unpackhi_epi16(tr0_0, tr0_1); \ const __m128i tr1_2 = _mm_unpacklo_epi16(tr0_2, tr0_3); \ const __m128i tr1_3 = _mm_unpackhi_epi16(tr0_2, tr0_3); \ \ const __m128i tr2_0 = _mm_unpacklo_epi32(tr1_0, tr1_2); \ const __m128i tr2_1 = _mm_unpackhi_epi32(tr1_0, tr1_2); \ const __m128i tr2_2 = _mm_unpacklo_epi32(tr1_1, tr1_3); \ const __m128i tr2_3 = _mm_unpackhi_epi32(tr1_1, tr1_3); \ \ out0 = _mm_unpacklo_epi64(tr2_0, tr2_0); \ out1 = _mm_unpackhi_epi64(tr2_0, tr2_0); \ out2 = _mm_unpacklo_epi64(tr2_1, tr2_1); \ out3 = _mm_unpackhi_epi64(tr2_1, tr2_1); \ out4 = _mm_unpacklo_epi64(tr2_2, tr2_2); \ out5 = _mm_unpackhi_epi64(tr2_2, tr2_2); \ out6 = _mm_unpacklo_epi64(tr2_3, tr2_3); \ out7 = _mm_unpackhi_epi64(tr2_3, tr2_3); \ } static void filter_horiz_w8_ssse3(const uint8_t *src_x, ptrdiff_t src_pitch, uint8_t *dst, const int16_t *x_filter) { const __m128i k_256 = _mm_set1_epi16(1 << 8); const __m128i f_values = _mm_load_si128((const __m128i *)x_filter); // pack and duplicate the filter values const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); const __m128i A = _mm_loadl_epi64((const __m128i *)src_x); const __m128i B = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch)); const __m128i C = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 2)); const __m128i D = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 3)); const __m128i E = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 4)); const __m128i F = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 5)); const __m128i G = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 6)); const __m128i H = _mm_loadl_epi64((const __m128i *)(src_x + src_pitch * 7)); // 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17 const __m128i tr0_0 = _mm_unpacklo_epi16(A, B); // 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37 const __m128i tr0_1 = _mm_unpacklo_epi16(C, D); // 40 41 50 51 42 43 52 53 44 45 54 55 46 47 56 57 const __m128i tr0_2 = _mm_unpacklo_epi16(E, F); // 60 61 70 71 62 63 72 73 64 65 74 75 66 67 76 77 const __m128i tr0_3 = _mm_unpacklo_epi16(G, H); // 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); // 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37 const __m128i tr1_1 = _mm_unpackhi_epi32(tr0_0, tr0_1); // 40 41 50 51 60 61 70 71 42 43 52 53 62 63 72 73 const __m128i tr1_2 = _mm_unpacklo_epi32(tr0_2, tr0_3); // 44 45 54 55 64 65 74 75 46 47 56 57 66 67 76 77 const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 const __m128i s1s0 = _mm_unpacklo_epi64(tr1_0, tr1_2); const __m128i s3s2 = _mm_unpackhi_epi64(tr1_0, tr1_2); const __m128i s5s4 = _mm_unpacklo_epi64(tr1_1, tr1_3); const __m128i s7s6 = _mm_unpackhi_epi64(tr1_1, tr1_3); // multiply 2 adjacent elements with the filter and add the result const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); // add and saturate the results together const __m128i min_x2x1 = _mm_min_epi16(x2, x1); const __m128i max_x2x1 = _mm_max_epi16(x2, x1); __m128i temp = _mm_adds_epi16(x0, x3); temp = _mm_adds_epi16(temp, min_x2x1); temp = _mm_adds_epi16(temp, max_x2x1); // round and shift by 7 bit each 16 bit temp = _mm_mulhrs_epi16(temp, k_256); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)dst, temp); } static void transpose8x8_to_dst(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride) { __m128i A, B, C, D, E, F, G, H; A = _mm_loadl_epi64((const __m128i *)src); B = _mm_loadl_epi64((const __m128i *)(src + src_stride)); C = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2)); D = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3)); E = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4)); F = _mm_loadl_epi64((const __m128i *)(src + src_stride * 5)); G = _mm_loadl_epi64((const __m128i *)(src + src_stride * 6)); H = _mm_loadl_epi64((const __m128i *)(src + src_stride * 7)); TRANSPOSE_8X8(A, B, C, D, E, F, G, H, A, B, C, D, E, F, G, H); _mm_storel_epi64((__m128i *)dst, A); _mm_storel_epi64((__m128i *)(dst + dst_stride * 1), B); _mm_storel_epi64((__m128i *)(dst + dst_stride * 2), C); _mm_storel_epi64((__m128i *)(dst + dst_stride * 3), D); _mm_storel_epi64((__m128i *)(dst + dst_stride * 4), E); _mm_storel_epi64((__m128i *)(dst + dst_stride * 5), F); _mm_storel_epi64((__m128i *)(dst + dst_stride * 6), G); _mm_storel_epi64((__m128i *)(dst + dst_stride * 7), H); } static void scaledconvolve_horiz_w8(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *x_filters, int x0_q4, int x_step_q4, int w, int h) { DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; // This function processes 8x8 areas. The intermediate height is not always // a multiple of 8, so force it to be a multiple of 8 here. y = h + (8 - (h & 0x7)); do { int x_q4 = x0_q4; for (x = 0; x < w; x += 8) { // process 8 src_x steps for (z = 0; z < 8; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; if (x_q4 & SUBPEL_MASK) { filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); } else { int i; for (i = 0; i < 8; ++i) { temp[z * 8 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 8x8 filters values back to dst transpose8x8_to_dst(temp, 8, dst + x, dst_stride); } src += src_stride * 8; dst += dst_stride * 8; } while (y -= 8); } static void filter_horiz_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *dst, const int16_t *filter) { const __m128i k_256 = _mm_set1_epi16(1 << 8); const __m128i f_values = _mm_load_si128((const __m128i *)filter); // pack and duplicate the filter values const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr); const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); // TRANSPOSE... // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // // TO // // 00 10 20 30 // 01 11 21 31 // 02 12 22 32 // 03 13 23 33 // 04 14 24 34 // 05 15 25 35 // 06 16 26 36 // 07 17 27 37 // // 00 01 10 11 02 03 12 13 04 05 14 15 06 07 16 17 const __m128i tr0_0 = _mm_unpacklo_epi16(A, B); // 20 21 30 31 22 23 32 33 24 25 34 35 26 27 36 37 const __m128i tr0_1 = _mm_unpacklo_epi16(C, D); // 00 01 10 11 20 21 30 31 02 03 12 13 22 23 32 33 const __m128i s1s0 = _mm_unpacklo_epi32(tr0_0, tr0_1); // 04 05 14 15 24 25 34 35 06 07 16 17 26 27 36 37 const __m128i s5s4 = _mm_unpackhi_epi32(tr0_0, tr0_1); // 02 03 12 13 22 23 32 33 const __m128i s3s2 = _mm_srli_si128(s1s0, 8); // 06 07 16 17 26 27 36 37 const __m128i s7s6 = _mm_srli_si128(s5s4, 8); // multiply 2 adjacent elements with the filter and add the result const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); // add and saturate the results together const __m128i min_x2x1 = _mm_min_epi16(x2, x1); const __m128i max_x2x1 = _mm_max_epi16(x2, x1); __m128i temp = _mm_adds_epi16(x0, x3); temp = _mm_adds_epi16(temp, min_x2x1); temp = _mm_adds_epi16(temp, max_x2x1); // round and shift by 7 bit each 16 bit temp = _mm_mulhrs_epi16(temp, k_256); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 4 bytes *(int *)dst = _mm_cvtsi128_si32(temp); } static void transpose4x4_to_dst(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride) { __m128i A = _mm_cvtsi32_si128(*(const int *)src); __m128i B = _mm_cvtsi32_si128(*(const int *)(src + src_stride)); __m128i C = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 2)); __m128i D = _mm_cvtsi32_si128(*(const int *)(src + src_stride * 3)); // 00 10 01 11 02 12 03 13 const __m128i tr0_0 = _mm_unpacklo_epi8(A, B); // 20 30 21 31 22 32 23 33 const __m128i tr0_1 = _mm_unpacklo_epi8(C, D); // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 A = _mm_unpacklo_epi16(tr0_0, tr0_1); B = _mm_srli_si128(A, 4); C = _mm_srli_si128(A, 8); D = _mm_srli_si128(A, 12); *(int *)(dst) = _mm_cvtsi128_si32(A); *(int *)(dst + dst_stride) = _mm_cvtsi128_si32(B); *(int *)(dst + dst_stride * 2) = _mm_cvtsi128_si32(C); *(int *)(dst + dst_stride * 3) = _mm_cvtsi128_si32(D); } static void scaledconvolve_horiz_w4(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *x_filters, int x0_q4, int x_step_q4, int w, int h) { DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; for (y = 0; y < h; y += 4) { int x_q4 = x0_q4; for (x = 0; x < w; x += 4) { // process 4 src_x steps for (z = 0; z < 4; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; if (x_q4 & SUBPEL_MASK) { filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); } else { int i; for (i = 0; i < 4; ++i) { temp[z * 4 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 4x4 filters values back to dst transpose4x4_to_dst(temp, 4, dst + x, dst_stride); } src += src_stride * 4; dst += dst_stride * 4; } } static void filter_vert_w4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *dst, const int16_t *filter) { const __m128i k_256 = _mm_set1_epi16(1 << 8); const __m128i f_values = _mm_load_si128((const __m128i *)filter); // pack and duplicate the filter values const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); const __m128i A = _mm_cvtsi32_si128(*(const int *)src_ptr); const __m128i B = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch)); const __m128i C = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 2)); const __m128i D = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 3)); const __m128i E = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 4)); const __m128i F = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 5)); const __m128i G = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 6)); const __m128i H = _mm_cvtsi32_si128(*(const int *)(src_ptr + src_pitch * 7)); const __m128i s1s0 = _mm_unpacklo_epi8(A, B); const __m128i s3s2 = _mm_unpacklo_epi8(C, D); const __m128i s5s4 = _mm_unpacklo_epi8(E, F); const __m128i s7s6 = _mm_unpacklo_epi8(G, H); // multiply 2 adjacent elements with the filter and add the result const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); // add and saturate the results together const __m128i min_x2x1 = _mm_min_epi16(x2, x1); const __m128i max_x2x1 = _mm_max_epi16(x2, x1); __m128i temp = _mm_adds_epi16(x0, x3); temp = _mm_adds_epi16(temp, min_x2x1); temp = _mm_adds_epi16(temp, max_x2x1); // round and shift by 7 bit each 16 bit temp = _mm_mulhrs_epi16(temp, k_256); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 4 bytes *(int *)dst = _mm_cvtsi128_si32(temp); } static void scaledconvolve_vert_w4(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4, int y_step_q4, int w, int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } static void filter_vert_w8_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *dst, const int16_t *filter) { const __m128i k_256 = _mm_set1_epi16(1 << 8); const __m128i f_values = _mm_load_si128((const __m128i *)filter); // pack and duplicate the filter values const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); const __m128i A = _mm_loadl_epi64((const __m128i *)src_ptr); const __m128i B = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); const __m128i C = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); const __m128i D = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); const __m128i E = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); const __m128i F = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); const __m128i G = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); const __m128i H = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); const __m128i s1s0 = _mm_unpacklo_epi8(A, B); const __m128i s3s2 = _mm_unpacklo_epi8(C, D); const __m128i s5s4 = _mm_unpacklo_epi8(E, F); const __m128i s7s6 = _mm_unpacklo_epi8(G, H); // multiply 2 adjacent elements with the filter and add the result const __m128i x0 = _mm_maddubs_epi16(s1s0, f1f0); const __m128i x1 = _mm_maddubs_epi16(s3s2, f3f2); const __m128i x2 = _mm_maddubs_epi16(s5s4, f5f4); const __m128i x3 = _mm_maddubs_epi16(s7s6, f7f6); // add and saturate the results together const __m128i min_x2x1 = _mm_min_epi16(x2, x1); const __m128i max_x2x1 = _mm_max_epi16(x2, x1); __m128i temp = _mm_adds_epi16(x0, x3); temp = _mm_adds_epi16(temp, min_x2x1); temp = _mm_adds_epi16(temp, max_x2x1); // round and shift by 7 bit each 16 bit temp = _mm_mulhrs_epi16(temp, k_256); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)dst, temp); } static void scaledconvolve_vert_w8(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4, int y_step_q4, int w, int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } static void filter_vert_w16_ssse3(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *dst, const int16_t *filter, int w) { const __m128i k_256 = _mm_set1_epi16(1 << 8); const __m128i f_values = _mm_load_si128((const __m128i *)filter); // pack and duplicate the filter values const __m128i f1f0 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); const __m128i f3f2 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); const __m128i f5f4 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); const __m128i f7f6 = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); int i; for (i = 0; i < w; i += 16) { const __m128i A = _mm_loadu_si128((const __m128i *)src_ptr); const __m128i B = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)); const __m128i C = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)); const __m128i D = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)); const __m128i E = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)); const __m128i F = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)); const __m128i G = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)); const __m128i H = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); // merge the result together const __m128i s1s0_lo = _mm_unpacklo_epi8(A, B); const __m128i s7s6_lo = _mm_unpacklo_epi8(G, H); const __m128i s1s0_hi = _mm_unpackhi_epi8(A, B); const __m128i s7s6_hi = _mm_unpackhi_epi8(G, H); // multiply 2 adjacent elements with the filter and add the result const __m128i x0_lo = _mm_maddubs_epi16(s1s0_lo, f1f0); const __m128i x3_lo = _mm_maddubs_epi16(s7s6_lo, f7f6); const __m128i x0_hi = _mm_maddubs_epi16(s1s0_hi, f1f0); const __m128i x3_hi = _mm_maddubs_epi16(s7s6_hi, f7f6); // add and saturate the results together const __m128i x3x0_lo = _mm_adds_epi16(x0_lo, x3_lo); const __m128i x3x0_hi = _mm_adds_epi16(x0_hi, x3_hi); // merge the result together const __m128i s3s2_lo = _mm_unpacklo_epi8(C, D); const __m128i s3s2_hi = _mm_unpackhi_epi8(C, D); // multiply 2 adjacent elements with the filter and add the result const __m128i x1_lo = _mm_maddubs_epi16(s3s2_lo, f3f2); const __m128i x1_hi = _mm_maddubs_epi16(s3s2_hi, f3f2); // merge the result together const __m128i s5s4_lo = _mm_unpacklo_epi8(E, F); const __m128i s5s4_hi = _mm_unpackhi_epi8(E, F); // multiply 2 adjacent elements with the filter and add the result const __m128i x2_lo = _mm_maddubs_epi16(s5s4_lo, f5f4); const __m128i x2_hi = _mm_maddubs_epi16(s5s4_hi, f5f4); // add and saturate the results together __m128i temp_lo = _mm_adds_epi16(x3x0_lo, _mm_min_epi16(x1_lo, x2_lo)); __m128i temp_hi = _mm_adds_epi16(x3x0_hi, _mm_min_epi16(x1_hi, x2_hi)); // add and saturate the results together temp_lo = _mm_adds_epi16(temp_lo, _mm_max_epi16(x1_lo, x2_lo)); temp_hi = _mm_adds_epi16(temp_hi, _mm_max_epi16(x1_hi, x2_hi)); // round and shift by 7 bit each 16 bit temp_lo = _mm_mulhrs_epi16(temp_lo, k_256); temp_hi = _mm_mulhrs_epi16(temp_hi, k_256); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result temp_hi = _mm_packus_epi16(temp_lo, temp_hi); src_ptr += 16; // save 16 bytes convolve result _mm_store_si128((__m128i *)&dst[i], temp_hi); } } static void scaledconvolve_vert_w16(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4, int y_step_q4, int w, int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, w); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } static void scaledconvolve2d(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *const filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { // Note: Fixed size intermediate buffer, temp, places limits on parameters. // 2d filtering proceeds in 2 steps: // (1) Interpolate horizontally into an intermediate buffer, temp. // (2) Interpolate temp vertically to derive the sub-pixel result. // Deriving the maximum number of rows in the temp buffer (135): // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). // --Largest block size is 64x64 pixels. // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the // original frame (in 1/16th pixel units). // --Must round-up because block may be located at sub-pixel position. // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. // --Require an additional 8 rows for the horiz_w8 transpose tail. // When calling in frame scaling function, the smallest scaling factor is x1/4 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still // big enough. DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); const int intermediate_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; assert(w <= 64); assert(h <= 64); assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); assert(x_step_q4 <= 64); if (w >= 8) { scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } else { scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } if (w >= 16) { scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else if (w == 8) { scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else { scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } } void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { scaledconvolve2d(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); } // void vp9_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); FUN_CONV_2D(, ssse3); FUN_CONV_2D(avg_, ssse3);