ref: b0d15713beb8559d76eee9bf5c86ab70edbcdff4
dir: /vp9/encoder/vp9_encodemb.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vp9_rtcd.h" #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/quantize.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_scan.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_rd.h" #include "vp9/encoder/vp9_tokenize.h" struct optimize_ctx { ENTROPY_CONTEXT ta[MAX_MB_PLANE][16]; ENTROPY_CONTEXT tl[MAX_MB_PLANE][16]; }; void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; #if CONFIG_VP9_HIGHBITDEPTH if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, x->e_mbd.bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { { 10, 6 }, { 8, 5 }, }; #define USE_GREEDY_OPTIMIZE_B 1 #if USE_GREEDY_OPTIMIZE_B typedef struct { int16_t token; tran_low_t qc; tran_low_t dqc; } vp9_token_state; // 'num' can be negative, but 'shift' must be non-negative. #define RIGHT_SHIFT_POSSIBLY_NEGATIVE(num, shift) \ ((num) >= 0) ? (num) >> (shift) : -((-(num)) >> (shift)) int vp9_optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(xd->mi[0]); vp9_token_state tokens[1025][2]; uint8_t token_cache[1024]; const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE plane_type = get_plane_type(plane); const int default_eob = 16 << (tx_size << 1); const int shift = (tx_size == TX_32X32); const int16_t *const dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); const scan_order *const so = get_scan(xd, tx_size, plane_type, block); const int16_t *const scan = so->scan; const int16_t *const nb = so->neighbors; const int64_t rdmult = ((int64_t)mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; const int64_t rddiv = mb->rddiv; int64_t rd_cost0, rd_cost1; int64_t rate0, rate1; int16_t t0, t1; int i, final_eob; #if CONFIG_VP9_HIGHBITDEPTH const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd); #else const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8); #endif unsigned int(*const token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = mb->token_costs[tx_size][plane_type][ref]; unsigned int(*token_costs_cur)[2][COEFF_CONTEXTS][ENTROPY_TOKENS]; int64_t eob_cost0, eob_cost1; const int ctx0 = ctx; int64_t accu_rate = 0; // Initialized to the worst possible error for the largest transform size. // This ensures that it never goes negative. int64_t accu_error = ((int64_t)1) << 50; int64_t best_block_rd_cost = INT64_MAX; int x_prev = 1; assert((!plane_type && !plane) || (plane_type && plane)); assert(eob <= default_eob); for (i = 0; i < eob; i++) { const int rc = scan[i]; int x = qcoeff[rc]; t0 = vp9_get_token(x); tokens[i][0].qc = x; tokens[i][0].token = t0; tokens[i][0].dqc = dqcoeff[rc]; token_cache[rc] = vp9_pt_energy_class[t0]; } tokens[eob][0].token = EOB_TOKEN; tokens[eob][0].qc = 0; tokens[eob][0].dqc = 0; tokens[eob][1] = tokens[eob][0]; final_eob = 0; // Initial RD cost. token_costs_cur = token_costs + band_translate[0]; rate0 = (*token_costs_cur)[0][ctx0][EOB_TOKEN]; best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error); // For each token, pick one of two choices greedily: // (i) First candidate: Keep current quantized value, OR // (ii) Second candidate: Reduce quantized value by 1. for (i = 0; i < eob; i++) { const int rc = scan[i]; const int x = qcoeff[rc]; const int band_cur = band_translate[i]; const int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i); const int token_tree_sel_cur = (x_prev == 0); token_costs_cur = token_costs + band_cur; if (x == 0) { // No need to search rate0 = (*token_costs_cur)[token_tree_sel_cur][ctx_cur][tokens[i][0].token]; accu_rate += rate0; x_prev = 0; // Note: accu_error does not change. } else { const int dqv = dequant_ptr[rc != 0]; // Compute the distortion for quantizing to 0. const int diff_for_zero_raw = (0 - coeff[rc]) * (1 << shift); const int diff_for_zero = #if CONFIG_VP9_HIGHBITDEPTH (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? RIGHT_SHIFT_POSSIBLY_NEGATIVE(diff_for_zero_raw, xd->bd - 8) : #endif diff_for_zero_raw; const int64_t distortion_for_zero = (int64_t)diff_for_zero * diff_for_zero; // Compute the distortion for the first candidate const int diff0_raw = (dqcoeff[rc] - coeff[rc]) * (1 << shift); const int diff0 = #if CONFIG_VP9_HIGHBITDEPTH (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? RIGHT_SHIFT_POSSIBLY_NEGATIVE(diff0_raw, xd->bd - 8) : #endif // CONFIG_VP9_HIGHBITDEPTH diff0_raw; const int64_t distortion0 = (int64_t)diff0 * diff0; // Compute the distortion for the second candidate const int sign = -(x < 0); // -1 if x is negative and 0 otherwise. const int x1 = x - 2 * sign - 1; // abs(x1) = abs(x) - 1. int64_t distortion1; if (x1 != 0) { const int dqv_step = #if CONFIG_VP9_HIGHBITDEPTH (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? dqv >> (xd->bd - 8) : #endif // CONFIG_VP9_HIGHBITDEPTH dqv; const int diff_step = (dqv_step + sign) ^ sign; const int diff1 = diff0 - diff_step; assert(dqv > 0); // We aren't right shifting a negative number above. distortion1 = (int64_t)diff1 * diff1; } else { distortion1 = distortion_for_zero; } { // Calculate RDCost for current coeff for the two candidates. const int64_t base_bits0 = vp9_get_token_cost(x, &t0, cat6_high_cost); const int64_t base_bits1 = vp9_get_token_cost(x1, &t1, cat6_high_cost); rate0 = base_bits0 + (*token_costs_cur)[token_tree_sel_cur][ctx_cur][t0]; rate1 = base_bits1 + (*token_costs_cur)[token_tree_sel_cur][ctx_cur][t1]; } { int rdcost_better_for_x1, eob_rdcost_better_for_x1; int dqc0, dqc1; int64_t best_eob_cost_cur; // Calculate RD Cost effect on the next coeff for the two candidates. int64_t next_bits0 = 0; int64_t next_bits1 = 0; int64_t next_eob_bits0 = 0; int64_t next_eob_bits1 = 0; if (i < default_eob - 1) { int ctx_next, token_tree_sel_next; const int band_next = band_translate[i + 1]; unsigned int( *const token_costs_next)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = token_costs + band_next; token_cache[rc] = vp9_pt_energy_class[t0]; ctx_next = get_coef_context(nb, token_cache, i + 1); token_tree_sel_next = (x == 0); next_bits0 = (*token_costs_next)[token_tree_sel_next][ctx_next] [tokens[i + 1][0].token]; next_eob_bits0 = (*token_costs_next)[token_tree_sel_next][ctx_next][EOB_TOKEN]; token_cache[rc] = vp9_pt_energy_class[t1]; ctx_next = get_coef_context(nb, token_cache, i + 1); token_tree_sel_next = (x1 == 0); next_bits1 = (*token_costs_next)[token_tree_sel_next][ctx_next] [tokens[i + 1][0].token]; if (x1 != 0) { next_eob_bits1 = (*token_costs_next)[token_tree_sel_next][ctx_next][EOB_TOKEN]; } } // Compare the total RD costs for two candidates. rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), distortion0); rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), distortion1); rdcost_better_for_x1 = (rd_cost1 < rd_cost0); eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0), (accu_error + distortion0 - distortion_for_zero)); eob_cost1 = eob_cost0; if (x1 != 0) { eob_cost1 = RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1), (accu_error + distortion1 - distortion_for_zero)); eob_rdcost_better_for_x1 = (eob_cost1 < eob_cost0); } else { eob_rdcost_better_for_x1 = 0; } // Calculate the two candidate de-quantized values. dqc0 = dqcoeff[rc]; dqc1 = 0; if (rdcost_better_for_x1 + eob_rdcost_better_for_x1) { if (x1 != 0) { dqc1 = RIGHT_SHIFT_POSSIBLY_NEGATIVE(x1 * dqv, shift); } else { dqc1 = 0; } } // Pick and record the better quantized and de-quantized values. if (rdcost_better_for_x1) { qcoeff[rc] = x1; dqcoeff[rc] = dqc1; accu_rate += rate1; accu_error += distortion1 - distortion_for_zero; assert(distortion1 <= distortion_for_zero); token_cache[rc] = vp9_pt_energy_class[t1]; } else { accu_rate += rate0; accu_error += distortion0 - distortion_for_zero; assert(distortion0 <= distortion_for_zero); token_cache[rc] = vp9_pt_energy_class[t0]; } assert(accu_error >= 0); x_prev = qcoeff[rc]; // Update based on selected quantized value. best_eob_cost_cur = eob_cost0; tokens[i][1].token = t0; tokens[i][1].qc = x; tokens[i][1].dqc = dqc0; if ((x1 != 0) && eob_rdcost_better_for_x1) { best_eob_cost_cur = eob_cost1; tokens[i][1].token = t1; tokens[i][1].qc = x1; tokens[i][1].dqc = dqc1; } // Determine whether to move the eob position to i+1 if (best_eob_cost_cur < best_block_rd_cost) { best_block_rd_cost = best_eob_cost_cur; final_eob = i + 1; } } } } assert(final_eob <= eob); if (final_eob > 0) { int rc; assert(tokens[final_eob - 1][1].qc != 0); i = final_eob - 1; rc = scan[i]; qcoeff[rc] = tokens[i][1].qc; dqcoeff[rc] = tokens[i][1].dqc; } for (i = final_eob; i < eob; i++) { int rc = scan[i]; qcoeff[rc] = 0; dqcoeff[rc] = 0; } mb->plane[plane].eobs[block] = final_eob; return final_eob; } #undef RIGHT_SHIFT_POSSIBLY_NEGATIVE #else #define UPDATE_RD_COST() \ { \ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \ } // This function is a place holder for now but may ultimately need // to scan previous tokens to work out the correct context. static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb, int idx, int token, uint8_t *token_cache) { int bak = token_cache[scan[idx]], pt; token_cache[scan[idx]] = vp9_pt_energy_class[token]; pt = get_coef_context(nb, token_cache, idx + 1); token_cache[scan[idx]] = bak; return pt; } static const int16_t band_count_table[TX_SIZES][8] = { { 1, 2, 3, 4, 3, 16 - 13, 0 }, { 1, 2, 3, 4, 11, 64 - 21, 0 }, { 1, 2, 3, 4, 11, 256 - 21, 0 }, { 1, 2, 3, 4, 11, 1024 - 21, 0 }, }; static const int16_t band_cum_count_table[TX_SIZES][8] = { { 0, 1, 3, 6, 10, 13, 16, 0 }, { 0, 1, 3, 6, 10, 21, 64, 0 }, { 0, 1, 3, 6, 10, 21, 256, 0 }, { 0, 1, 3, 6, 10, 21, 1024, 0 }, }; typedef struct vp9_token_state { int64_t error; int rate; int16_t next; int16_t token; tran_low_t qc; tran_low_t dqc; uint8_t best_index; } vp9_token_state; int vp9_optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(xd->mi[0]); vp9_token_state tokens[1025][2]; uint8_t token_cache[1024]; const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE type = get_plane_type(plane); const int default_eob = 16 << (tx_size << 1); const int shift = (tx_size == TX_32X32); const int16_t *const dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); const scan_order *const so = get_scan(xd, tx_size, type, block); const int16_t *const scan = so->scan; const int16_t *const nb = so->neighbors; const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift }; int next = eob, sz = 0; const int64_t rdmult = ((int64_t)mb->rdmult * plane_rd_mult[ref][type]) >> 1; const int64_t rddiv = mb->rddiv; int64_t rd_cost0, rd_cost1; int rate0, rate1; int64_t error0, error1; int16_t t0, t1; int best, band = (eob < default_eob) ? band_translate[eob] : band_translate[eob - 1]; int pt, i, final_eob; #if CONFIG_VP9_HIGHBITDEPTH const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd); #else const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8); #endif unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = mb->token_costs[tx_size][type][ref]; const int16_t *band_counts = &band_count_table[tx_size][band]; int16_t band_left = eob - band_cum_count_table[tx_size][band] + 1; token_costs += band; assert((!type && !plane) || (type && plane)); assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = EOB_TOKEN; tokens[eob][0].qc = 0; tokens[eob][1] = tokens[eob][0]; for (i = 0; i < eob; i++) { const int rc = scan[i]; token_cache[rc] = vp9_pt_energy_class[vp9_get_token(qcoeff[rc])]; } for (i = eob; i-- > 0;) { int base_bits, d2, dx; const int rc = scan[i]; int x = qcoeff[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; base_bits = vp9_get_token_cost(x, &t0, cat6_high_cost); /* Consider both possible successor states. */ if (next < default_eob) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += (*token_costs)[0][pt][tokens[next][0].token]; rate1 += (*token_costs)[0][pt][tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_VP9_HIGHBITDEPTH d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; tokens[i][0].dqc = dqcoeff[rc]; tokens[i][0].best_index = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) && (abs(x) * dequant_ptr[rc != 0] < (abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])) { sz = -(x < 0); x -= 2 * sz + 1; } else { tokens[i][1] = tokens[i][0]; next = i; if (!(--band_left)) { --band_counts; band_left = *band_counts; --token_costs; } continue; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; base_bits = 0; } else { base_bits = vp9_get_token_cost(x, &t0, cat6_high_cost); t1 = t0; } if (next < default_eob) { if (t0 != EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += (*token_costs)[!x][pt][tokens[next][0].token]; } if (t1 != EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache); rate1 += (*token_costs)[!x][pt][tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz; } else { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; } #else dx -= (dequant_ptr[rc != 0] + sz) ^ sz; #endif // CONFIG_VP9_HIGHBITDEPTH d2 = dx * dx; tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; if (x) { tran_low_t offset = dq_step[rc != 0]; // The 32x32 transform coefficient uses half quantization step size. // Account for the rounding difference in the dequantized coefficeint // value when the quantization index is dropped from an even number // to an odd number. if (shift & x) offset += (dequant_ptr[rc != 0] & 0x01); if (sz == 0) tokens[i][1].dqc = dqcoeff[rc] - offset; else tokens[i][1].dqc = dqcoeff[rc] + offset; } else { tokens[i][1].dqc = 0; } tokens[i][1].best_index = best; /* Finally, make this the new head of the trellis. */ next = i; } else { /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ pt = get_coef_context(nb, token_cache, i + 1); t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != EOB_TOKEN) { tokens[next][0].rate += (*token_costs)[1][pt][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != EOB_TOKEN) { tokens[next][1].rate += (*token_costs)[1][pt][t1]; tokens[next][1].token = ZERO_TOKEN; } tokens[i][0].best_index = tokens[i][1].best_index = 0; /* Don't update next, because we didn't add a new node. */ } if (!(--band_left)) { --band_counts; band_left = *band_counts; --token_costs; } } /* Now pick the best path through the whole trellis. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += (*token_costs)[0][ctx][t0]; rate1 += (*token_costs)[0][ctx][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = -1; for (i = next; i < eob; i = next) { const int x = tokens[i][best].qc; const int rc = scan[i]; if (x) final_eob = i; qcoeff[rc] = x; dqcoeff[rc] = tokens[i][best].dqc; next = tokens[i][best].next; best = tokens[i][best].best_index; } final_eob++; mb->plane[plane].eobs[block] = final_eob; return final_eob; } #endif // USE_GREEDY_OPTIMIZE_B static INLINE void fdct32x32(int rd_transform, const int16_t *src, tran_low_t *dst, int src_stride) { if (rd_transform) vpx_fdct32x32_rd(src, dst, src_stride); else vpx_fdct32x32(src, dst, src_stride); } #if CONFIG_VP9_HIGHBITDEPTH static INLINE void highbd_fdct32x32(int rd_transform, const int16_t *src, tran_low_t *dst, int src_stride) { if (rd_transform) vpx_highbd_fdct32x32_rd(src, dst, src_stride); else vpx_highbd_fdct32x32(src, dst, src_stride); } #endif // CONFIG_VP9_HIGHBITDEPTH void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; src_diff = &p->src_diff[4 * (row * diff_stride + col)]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (tx_size) { case TX_32X32: highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); vp9_highbd_quantize_fp_32x32(coeff, 1024, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_16X16: vpx_highbd_fdct16x16(src_diff, coeff, diff_stride); vp9_highbd_quantize_fp(coeff, 256, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_8X8: vpx_highbd_fdct8x8(src_diff, coeff, diff_stride); vp9_highbd_quantize_fp(coeff, 64, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_4X4: x->fwd_txfm4x4(src_diff, coeff, diff_stride); vp9_highbd_quantize_fp(coeff, 16, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; default: assert(0); } return; } #endif // CONFIG_VP9_HIGHBITDEPTH switch (tx_size) { case TX_32X32: fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_16X16: vpx_fdct16x16(src_diff, coeff, diff_stride); vp9_quantize_fp(coeff, 256, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_8X8: vp9_fdct8x8_quant(src_diff, diff_stride, coeff, 64, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_4X4: x->fwd_txfm4x4(src_diff, coeff, diff_stride); vp9_quantize_fp(coeff, 16, x->skip_block, p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; default: assert(0); break; } } void vp9_xform_quant_dc(MACROBLOCK *x, int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; src_diff = &p->src_diff[4 * (row * diff_stride + col)]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (tx_size) { case TX_32X32: vpx_highbd_fdct32x32_1(src_diff, coeff, diff_stride); vpx_highbd_quantize_dc_32x32(coeff, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; case TX_16X16: vpx_highbd_fdct16x16_1(src_diff, coeff, diff_stride); vpx_highbd_quantize_dc(coeff, 256, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; case TX_8X8: vpx_highbd_fdct8x8_1(src_diff, coeff, diff_stride); vpx_highbd_quantize_dc(coeff, 64, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; case TX_4X4: x->fwd_txfm4x4(src_diff, coeff, diff_stride); vpx_highbd_quantize_dc(coeff, 16, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; default: assert(0); } return; } #endif // CONFIG_VP9_HIGHBITDEPTH switch (tx_size) { case TX_32X32: vpx_fdct32x32_1(src_diff, coeff, diff_stride); vpx_quantize_dc_32x32(coeff, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; case TX_16X16: vpx_fdct16x16_1(src_diff, coeff, diff_stride); vpx_quantize_dc(coeff, 256, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; case TX_8X8: vpx_fdct8x8_1(src_diff, coeff, diff_stride); vpx_quantize_dc(coeff, 64, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; case TX_4X4: x->fwd_txfm4x4(src_diff, coeff, diff_stride); vpx_quantize_dc(coeff, 16, x->skip_block, p->round, p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], eob); break; default: assert(0); break; } } void vp9_xform_quant(MACROBLOCK *x, int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; src_diff = &p->src_diff[4 * (row * diff_stride + col)]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { switch (tx_size) { case TX_32X32: highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_16X16: vpx_highbd_fdct16x16(src_diff, coeff, diff_stride); vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_8X8: vpx_highbd_fdct8x8(src_diff, coeff, diff_stride); vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_4X4: x->fwd_txfm4x4(src_diff, coeff, diff_stride); vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; default: assert(0); } return; } #endif // CONFIG_VP9_HIGHBITDEPTH switch (tx_size) { case TX_32X32: fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_16X16: vpx_fdct16x16(src_diff, coeff, diff_stride); vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_8X8: vpx_fdct8x8(src_diff, coeff, diff_stride); vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_4X4: x->fwd_txfm4x4(src_diff, coeff, diff_stride); vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; default: assert(0); break; } } static void encode_block(int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; ENTROPY_CONTEXT *a, *l; dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; a = &args->ta[col]; l = &args->tl[row]; // TODO(jingning): per transformed block zero forcing only enabled for // luma component. will integrate chroma components as well. if (x->zcoeff_blk[tx_size][block] && plane == 0) { p->eobs[block] = 0; *a = *l = 0; return; } if (!x->skip_recode) { if (x->quant_fp) { // Encoding process for rtc mode if (x->skip_txfm[0] == SKIP_TXFM_AC_DC && plane == 0) { // skip forward transform p->eobs[block] = 0; *a = *l = 0; return; } else { vp9_xform_quant_fp(x, plane, block, row, col, plane_bsize, tx_size); } } else { if (max_txsize_lookup[plane_bsize] == tx_size) { int txfm_blk_index = (plane << 2) + (block >> (tx_size << 1)); if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_NONE) { // full forward transform and quantization vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size); } else if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_AC_ONLY) { // fast path forward transform and quantization vp9_xform_quant_dc(x, plane, block, row, col, plane_bsize, tx_size); } else { // skip forward transform p->eobs[block] = 0; *a = *l = 0; return; } } else { vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size); } } } if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { const int ctx = combine_entropy_contexts(*a, *l); *a = *l = vp9_optimize_b(x, plane, block, tx_size, ctx) > 0; } else { *a = *l = p->eobs[block] > 0; } if (p->eobs[block]) *(args->skip) = 0; if (x->skip_encode || p->eobs[block] == 0) return; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); switch (tx_size) { case TX_32X32: vp9_highbd_idct32x32_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], xd->bd); break; case TX_16X16: vp9_highbd_idct16x16_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], xd->bd); break; case TX_8X8: vp9_highbd_idct8x8_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], xd->bd); break; case TX_4X4: // this is like vp9_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. x->highbd_itxfm_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], xd->bd); break; default: assert(0 && "Invalid transform size"); } return; } #endif // CONFIG_VP9_HIGHBITDEPTH switch (tx_size) { case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); break; case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); break; case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); break; case TX_4X4: // this is like vp9_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. x->itxfm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); break; default: assert(0 && "Invalid transform size"); break; } } static void encode_block_pass1(int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { MACROBLOCK *const x = (MACROBLOCK *)arg; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size); if (p->eobs[block] > 0) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { x->highbd_itxfm_add(dqcoeff, CONVERT_TO_SHORTPTR(dst), pd->dst.stride, p->eobs[block], xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH x->itxfm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } } void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) { vp9_subtract_plane(x, bsize, 0); vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, x); } void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MODE_INFO *mi = xd->mi[0]; struct encode_b_args arg = { x, 1, NULL, NULL, &mi->skip }; int plane; mi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { if (!x->skip_recode) vp9_subtract_plane(x, bsize, plane); if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; vp9_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); arg.enable_coeff_opt = 1; } else { arg.enable_coeff_opt = 0; } arg.ta = ctx.ta[plane]; arg.tl = ctx.tl[plane]; vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); } } void vp9_encode_block_intra(int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = xd->mi[0]; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const scan_order *scan_order; TX_TYPE tx_type = DCT_DCT; PREDICTION_MODE mode; const int bwl = b_width_log2_lookup[plane_bsize]; const int diff_stride = 4 * (1 << bwl); uint8_t *src, *dst; int16_t *src_diff; uint16_t *eob = &p->eobs[block]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; ENTROPY_CONTEXT *a = NULL; ENTROPY_CONTEXT *l = NULL; int entropy_ctx = 0; dst = &pd->dst.buf[4 * (row * dst_stride + col)]; src = &p->src.buf[4 * (row * src_stride + col)]; src_diff = &p->src_diff[4 * (row * diff_stride + col)]; if (args->enable_coeff_opt) { a = &args->ta[col]; l = &args->tl[row]; entropy_ctx = combine_entropy_contexts(*a, *l); } if (tx_size == TX_4X4) { tx_type = get_tx_type_4x4(get_plane_type(plane), xd, block); scan_order = &vp9_scan_orders[TX_4X4][tx_type]; mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mi->uv_mode; } else { mode = plane == 0 ? mi->mode : mi->uv_mode; if (tx_size == TX_32X32) { scan_order = &vp9_default_scan_orders[TX_32X32]; } else { tx_type = get_tx_type(get_plane_type(plane), xd); scan_order = &vp9_scan_orders[tx_size][tx_type]; } } vp9_predict_intra_block( xd, bwl, tx_size, mode, (x->skip_encode || x->fp_src_pred) ? src : dst, (x->skip_encode || x->fp_src_pred) ? src_stride : dst_stride, dst, dst_stride, col, row, plane); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); switch (tx_size) { case TX_32X32: if (!x->skip_recode) { vpx_highbd_subtract_block(32, 32, src_diff, diff_stride, src, src_stride, dst, dst_stride, xd->bd); highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) { vp9_highbd_idct32x32_add(dqcoeff, dst16, dst_stride, *eob, xd->bd); } break; case TX_16X16: if (!x->skip_recode) { vpx_highbd_subtract_block(16, 16, src_diff, diff_stride, src, src_stride, dst, dst_stride, xd->bd); if (tx_type == DCT_DCT) vpx_highbd_fdct16x16(src_diff, coeff, diff_stride); else vp9_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type); vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) { vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, dst_stride, *eob, xd->bd); } break; case TX_8X8: if (!x->skip_recode) { vpx_highbd_subtract_block(8, 8, src_diff, diff_stride, src, src_stride, dst, dst_stride, xd->bd); if (tx_type == DCT_DCT) vpx_highbd_fdct8x8(src_diff, coeff, diff_stride); else vp9_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type); vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) { vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, dst_stride, *eob, xd->bd); } break; case TX_4X4: if (!x->skip_recode) { vpx_highbd_subtract_block(4, 4, src_diff, diff_stride, src, src_stride, dst, dst_stride, xd->bd); if (tx_type != DCT_DCT) vp9_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type); else x->fwd_txfm4x4(src_diff, coeff, diff_stride); vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) { if (tx_type == DCT_DCT) { // this is like vp9_short_idct4x4 but has a special case around // eob<=1 which is significant (not just an optimization) for the // lossless case. x->highbd_itxfm_add(dqcoeff, dst16, dst_stride, *eob, xd->bd); } else { vp9_highbd_iht4x4_16_add(dqcoeff, dst16, dst_stride, tx_type, xd->bd); } } break; default: assert(0); return; } if (*eob) *(args->skip) = 0; return; } #endif // CONFIG_VP9_HIGHBITDEPTH switch (tx_size) { case TX_32X32: if (!x->skip_recode) { vpx_subtract_block(32, 32, src_diff, diff_stride, src, src_stride, dst, dst_stride); fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) vp9_idct32x32_add(dqcoeff, dst, dst_stride, *eob); break; case TX_16X16: if (!x->skip_recode) { vpx_subtract_block(16, 16, src_diff, diff_stride, src, src_stride, dst, dst_stride); vp9_fht16x16(src_diff, coeff, diff_stride, tx_type); vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) vp9_iht16x16_add(tx_type, dqcoeff, dst, dst_stride, *eob); break; case TX_8X8: if (!x->skip_recode) { vpx_subtract_block(8, 8, src_diff, diff_stride, src, src_stride, dst, dst_stride); vp9_fht8x8(src_diff, coeff, diff_stride, tx_type); vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) vp9_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob); break; case TX_4X4: if (!x->skip_recode) { vpx_subtract_block(4, 4, src_diff, diff_stride, src, src_stride, dst, dst_stride); if (tx_type != DCT_DCT) vp9_fht4x4(src_diff, coeff, diff_stride, tx_type); else x->fwd_txfm4x4(src_diff, coeff, diff_stride); vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); } if (args->enable_coeff_opt && !x->skip_recode) { *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; } if (!x->skip_encode && *eob) { if (tx_type == DCT_DCT) // this is like vp9_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. x->itxfm_add(dqcoeff, dst, dst_stride, *eob); else vp9_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type); } break; default: assert(0); break; } if (*eob) *(args->skip) = 0; } void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane, int enable_optimize_b) { const MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = { x, enable_optimize_b, ctx.ta[plane], ctx.tl[plane], &xd->mi[0]->skip }; if (enable_optimize_b && x->optimize && (!x->skip_recode || !x->skip_optimize)) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(xd->mi[0], pd) : xd->mi[0]->tx_size; vp9_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); } else { arg.enable_coeff_opt = 0; } vp9_foreach_transformed_block_in_plane(xd, bsize, plane, vp9_encode_block_intra, &arg); }