shithub: libvpx

ref: b165451ad5def2caa84a8e002b3410439c3ac4d0
dir: /vp8/encoder/encodeframe.c/

View raw version
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "vpx_config.h"
#include "vp8_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "encodemb.h"
#include "encodemv.h"
#include "vp8/common/common.h"
#include "onyx_int.h"
#include "vp8/common/extend.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/setupintrarecon.h"
#include "encodeintra.h"
#include "vp8/common/reconinter.h"
#include "rdopt.h"
#include "pickinter.h"
#include "vp8/common/findnearmv.h"
#include <stdio.h>
#include <limits.h>
#include "vp8/common/invtrans.h"
#include "vpx_ports/vpx_timer.h"
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
#include "bitstream.h"
#endif
#include "encodeframe.h"

extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t);
extern void vp8_calc_ref_frame_costs(int *ref_frame_cost, int prob_intra,
                                     int prob_last, int prob_garf);
extern void vp8_convert_rfct_to_prob(VP8_COMP *const cpi);
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
extern void vp8_auto_select_speed(VP8_COMP *cpi);
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x,
                                      MB_ROW_COMP *mbr_ei, int count);
static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x);

#ifdef MODE_STATS
unsigned int inter_y_modes[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
unsigned int inter_uv_modes[4] = { 0, 0, 0, 0 };
unsigned int inter_b_modes[15] = {
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
unsigned int y_modes[5] = { 0, 0, 0, 0, 0 };
unsigned int uv_modes[4] = { 0, 0, 0, 0 };
unsigned int b_modes[14] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
#endif

/* activity_avg must be positive, or flat regions could get a zero weight
 *  (infinite lambda), which confounds analysis.
 * This also avoids the need for divide by zero checks in
 *  vp8_activity_masking().
 */
#define VP8_ACTIVITY_AVG_MIN (64)

/* This is used as a reference when computing the source variance for the
 *  purposes of activity masking.
 * Eventually this should be replaced by custom no-reference routines,
 *  which will be faster.
 */
static const unsigned char VP8_VAR_OFFS[16] = {
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
};

/* Original activity measure from Tim T's code. */
static unsigned int tt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x) {
  unsigned int act;
  unsigned int sse;
  (void)cpi;
  /* TODO: This could also be done over smaller areas (8x8), but that would
   *  require extensive changes elsewhere, as lambda is assumed to be fixed
   *  over an entire MB in most of the code.
   * Another option is to compute four 8x8 variances, and pick a single
   *  lambda using a non-linear combination (e.g., the smallest, or second
   *  smallest, etc.).
   */
  act = vpx_variance16x16(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0,
                          &sse);
  act = act << 4;

  /* If the region is flat, lower the activity some more. */
  if (act < 8 << 12) act = act < 5 << 12 ? act : 5 << 12;

  return act;
}

/* Stub for alternative experimental activity measures. */
static unsigned int alt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x,
                                         int use_dc_pred) {
  return vp8_encode_intra(cpi, x, use_dc_pred);
}

/* Measure the activity of the current macroblock
 * What we measure here is TBD so abstracted to this function
 */
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure(VP8_COMP *cpi, MACROBLOCK *x,
                                        int mb_row, int mb_col) {
  unsigned int mb_activity;

  if (ALT_ACT_MEASURE) {
    int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);

    /* Or use and alternative. */
    mb_activity = alt_activity_measure(cpi, x, use_dc_pred);
  } else {
    /* Original activity measure from Tim T's code. */
    mb_activity = tt_activity_measure(cpi, x);
  }

  if (mb_activity < VP8_ACTIVITY_AVG_MIN) mb_activity = VP8_ACTIVITY_AVG_MIN;

  return mb_activity;
}

/* Calculate an "average" mb activity value for the frame */
#define ACT_MEDIAN 0
static void calc_av_activity(VP8_COMP *cpi, int64_t activity_sum) {
#if ACT_MEDIAN
  /* Find median: Simple n^2 algorithm for experimentation */
  {
    unsigned int median;
    unsigned int i, j;
    unsigned int *sortlist;
    unsigned int tmp;

    /* Create a list to sort to */
    CHECK_MEM_ERROR(sortlist,
                    vpx_calloc(sizeof(unsigned int), cpi->common.MBs));

    /* Copy map to sort list */
    memcpy(sortlist, cpi->mb_activity_map,
           sizeof(unsigned int) * cpi->common.MBs);

    /* Ripple each value down to its correct position */
    for (i = 1; i < cpi->common.MBs; ++i) {
      for (j = i; j > 0; j--) {
        if (sortlist[j] < sortlist[j - 1]) {
          /* Swap values */
          tmp = sortlist[j - 1];
          sortlist[j - 1] = sortlist[j];
          sortlist[j] = tmp;
        } else
          break;
      }
    }

    /* Even number MBs so estimate median as mean of two either side. */
    median = (1 + sortlist[cpi->common.MBs >> 1] +
              sortlist[(cpi->common.MBs >> 1) + 1]) >>
             1;

    cpi->activity_avg = median;

    vpx_free(sortlist);
  }
#else
  /* Simple mean for now */
  cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs);
#endif

  if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) {
    cpi->activity_avg = VP8_ACTIVITY_AVG_MIN;
  }

  /* Experimental code: return fixed value normalized for several clips */
  if (ALT_ACT_MEASURE) cpi->activity_avg = 100000;
}

#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0

#if USE_ACT_INDEX
/* Calculate and activity index for each mb */
static void calc_activity_index(VP8_COMP *cpi, MACROBLOCK *x) {
  VP8_COMMON *const cm = &cpi->common;
  int mb_row, mb_col;

  int64_t act;
  int64_t a;
  int64_t b;

#if OUTPUT_NORM_ACT_STATS
  FILE *f = fopen("norm_act.stt", "a");
  fprintf(f, "\n%12d\n", cpi->activity_avg);
#endif

  /* Reset pointers to start of activity map */
  x->mb_activity_ptr = cpi->mb_activity_map;

  /* Calculate normalized mb activity number. */
  for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
    /* for each macroblock col in image */
    for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
      /* Read activity from the map */
      act = *(x->mb_activity_ptr);

      /* Calculate a normalized activity number */
      a = act + 4 * cpi->activity_avg;
      b = 4 * act + cpi->activity_avg;

      if (b >= a)
        *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
      else
        *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);

#if OUTPUT_NORM_ACT_STATS
      fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
      /* Increment activity map pointers */
      x->mb_activity_ptr++;
    }

#if OUTPUT_NORM_ACT_STATS
    fprintf(f, "\n");
#endif
  }

#if OUTPUT_NORM_ACT_STATS
  fclose(f);
#endif
}
#endif

/* Loop through all MBs. Note activity of each, average activity and
 * calculate a normalized activity for each
 */
static void build_activity_map(VP8_COMP *cpi) {
  MACROBLOCK *const x = &cpi->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  VP8_COMMON *const cm = &cpi->common;

#if ALT_ACT_MEASURE
  YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
  int recon_yoffset;
  int recon_y_stride = new_yv12->y_stride;
#endif

  int mb_row, mb_col;
  unsigned int mb_activity;
  int64_t activity_sum = 0;

  /* for each macroblock row in image */
  for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
#if ALT_ACT_MEASURE
    /* reset above block coeffs */
    xd->up_available = (mb_row != 0);
    recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
    /* for each macroblock col in image */
    for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
#if ALT_ACT_MEASURE
      xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
      xd->left_available = (mb_col != 0);
      recon_yoffset += 16;
#endif
      /* Copy current mb to a buffer */
      vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);

      /* measure activity */
      mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col);

      /* Keep frame sum */
      activity_sum += mb_activity;

      /* Store MB level activity details. */
      *x->mb_activity_ptr = mb_activity;

      /* Increment activity map pointer */
      x->mb_activity_ptr++;

      /* adjust to the next column of source macroblocks */
      x->src.y_buffer += 16;
    }

    /* adjust to the next row of mbs */
    x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;

#if ALT_ACT_MEASURE
    /* extend the recon for intra prediction */
    vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8,
                      xd->dst.v_buffer + 8);
#endif
  }

  /* Calculate an "average" MB activity */
  calc_av_activity(cpi, activity_sum);

#if USE_ACT_INDEX
  /* Calculate an activity index number of each mb */
  calc_activity_index(cpi, x);
#endif
}

/* Macroblock activity masking */
void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
  x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
  x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
  x->errorperbit += (x->errorperbit == 0);
#else
  int64_t a;
  int64_t b;
  int64_t act = *(x->mb_activity_ptr);

  /* Apply the masking to the RD multiplier. */
  a = act + (2 * cpi->activity_avg);
  b = (2 * act) + cpi->activity_avg;

  x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a);
  x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
  x->errorperbit += (x->errorperbit == 0);
#endif

  /* Activity based Zbin adjustment */
  adjust_act_zbin(cpi, x);
}

static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row,
                          MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp,
                          int *segment_counts, int *totalrate) {
  int recon_yoffset, recon_uvoffset;
  int mb_col;
  int ref_fb_idx = cm->lst_fb_idx;
  int dst_fb_idx = cm->new_fb_idx;
  int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
  int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
  int map_index = (mb_row * cpi->common.mb_cols);

#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
  const int num_part = (1 << cm->multi_token_partition);
  TOKENEXTRA *tp_start = cpi->tok;
  vp8_writer *w;
#endif

#if CONFIG_MULTITHREAD
  const int nsync = cpi->mt_sync_range;
  const int rightmost_col = cm->mb_cols + nsync;
  volatile const int *last_row_current_mb_col;
  volatile int *current_mb_col = &cpi->mt_current_mb_col[mb_row];

  if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) {
    last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1];
  } else {
    last_row_current_mb_col = &rightmost_col;
  }
#endif

#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
  if (num_part > 1)
    w = &cpi->bc[1 + (mb_row % num_part)];
  else
    w = &cpi->bc[1];
#endif

  /* reset above block coeffs */
  xd->above_context = cm->above_context;

  xd->up_available = (mb_row != 0);
  recon_yoffset = (mb_row * recon_y_stride * 16);
  recon_uvoffset = (mb_row * recon_uv_stride * 8);

  cpi->tplist[mb_row].start = *tp;
  /* printf("Main mb_row = %d\n", mb_row); */

  /* Distance of Mb to the top & bottom edges, specified in 1/8th pel
   * units as they are always compared to values that are in 1/8th pel
   */
  xd->mb_to_top_edge = -((mb_row * 16) << 3);
  xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;

  /* Set up limit values for vertical motion vector components
   * to prevent them extending beyond the UMV borders
   */
  x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
  x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);

  /* Set the mb activity pointer to the start of the row. */
  x->mb_activity_ptr = &cpi->mb_activity_map[map_index];

  /* for each macroblock col in image */
  for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
    *tp = cpi->tok;
#endif
    /* Distance of Mb to the left & right edges, specified in
     * 1/8th pel units as they are always compared to values
     * that are in 1/8th pel units
     */
    xd->mb_to_left_edge = -((mb_col * 16) << 3);
    xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;

    /* Set up limit values for horizontal motion vector components
     * to prevent them extending beyond the UMV borders
     */
    x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
    x->mv_col_max =
        ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);

    xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
    xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
    xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
    xd->left_available = (mb_col != 0);

    x->rddiv = cpi->RDDIV;
    x->rdmult = cpi->RDMULT;

    /* Copy current mb to a buffer */
    vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);

#if CONFIG_MULTITHREAD
    if (cpi->b_multi_threaded != 0) {
      *current_mb_col = mb_col - 1; /* set previous MB done */

      if ((mb_col & (nsync - 1)) == 0) {
        while (mb_col > (*last_row_current_mb_col - nsync)) {
          x86_pause_hint();
          thread_sleep(0);
        }
      }
    }
#endif

    if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x);

    /* Is segmentation enabled */
    /* MB level adjustment to quantizer */
    if (xd->segmentation_enabled) {
      /* Code to set segment id in xd->mbmi.segment_id for current MB
       * (with range checking)
       */
      if (cpi->segmentation_map[map_index + mb_col] <= 3) {
        xd->mode_info_context->mbmi.segment_id =
            cpi->segmentation_map[map_index + mb_col];
      } else {
        xd->mode_info_context->mbmi.segment_id = 0;
      }

      vp8cx_mb_init_quantizer(cpi, x, 1);
    } else {
      /* Set to Segment 0 by default */
      xd->mode_info_context->mbmi.segment_id = 0;
    }

    x->active_ptr = cpi->active_map + map_index + mb_col;

    if (cm->frame_type == KEY_FRAME) {
      *totalrate += vp8cx_encode_intra_macroblock(cpi, x, tp);
#ifdef MODE_STATS
      y_modes[xd->mbmi.mode]++;
#endif
    } else {
      *totalrate += vp8cx_encode_inter_macroblock(
          cpi, x, tp, recon_yoffset, recon_uvoffset, mb_row, mb_col);

#ifdef MODE_STATS
      inter_y_modes[xd->mbmi.mode]++;

      if (xd->mbmi.mode == SPLITMV) {
        int b;

        for (b = 0; b < xd->mbmi.partition_count; ++b) {
          inter_b_modes[x->partition->bmi[b].mode]++;
        }
      }

#endif

      // Keep track of how many (consecutive) times a  block is coded
      // as ZEROMV_LASTREF, for base layer frames.
      // Reset to 0 if its coded as anything else.
      if (cpi->current_layer == 0) {
        if (xd->mode_info_context->mbmi.mode == ZEROMV &&
            xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) {
          // Increment, check for wrap-around.
          if (cpi->consec_zero_last[map_index + mb_col] < 255) {
            cpi->consec_zero_last[map_index + mb_col] += 1;
          }
          if (cpi->consec_zero_last_mvbias[map_index + mb_col] < 255) {
            cpi->consec_zero_last_mvbias[map_index + mb_col] += 1;
          }
        } else {
          cpi->consec_zero_last[map_index + mb_col] = 0;
          cpi->consec_zero_last_mvbias[map_index + mb_col] = 0;
        }
        if (x->zero_last_dot_suppress) {
          cpi->consec_zero_last_mvbias[map_index + mb_col] = 0;
        }
      }

      /* Special case code for cyclic refresh
       * If cyclic update enabled then copy xd->mbmi.segment_id; (which
       * may have been updated based on mode during
       * vp8cx_encode_inter_macroblock()) back into the global
       * segmentation map
       */
      if ((cpi->current_layer == 0) &&
          (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled)) {
        cpi->segmentation_map[map_index + mb_col] =
            xd->mode_info_context->mbmi.segment_id;

        /* If the block has been refreshed mark it as clean (the
         * magnitude of the -ve influences how long it will be before
         * we consider another refresh):
         * Else if it was coded (last frame 0,0) and has not already
         * been refreshed then mark it as a candidate for cleanup
         * next time (marked 0) else mark it as dirty (1).
         */
        if (xd->mode_info_context->mbmi.segment_id) {
          cpi->cyclic_refresh_map[map_index + mb_col] = -1;
        } else if ((xd->mode_info_context->mbmi.mode == ZEROMV) &&
                   (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) {
          if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) {
            cpi->cyclic_refresh_map[map_index + mb_col] = 0;
          }
        } else {
          cpi->cyclic_refresh_map[map_index + mb_col] = 1;
        }
      }
    }

    cpi->tplist[mb_row].stop = *tp;

#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
    /* pack tokens for this MB */
    {
      int tok_count = *tp - tp_start;
      vp8_pack_tokens(w, tp_start, tok_count);
    }
#endif
    /* Increment pointer into gf usage flags structure. */
    x->gf_active_ptr++;

    /* Increment the activity mask pointers. */
    x->mb_activity_ptr++;

    /* adjust to the next column of macroblocks */
    x->src.y_buffer += 16;
    x->src.u_buffer += 8;
    x->src.v_buffer += 8;

    recon_yoffset += 16;
    recon_uvoffset += 8;

    /* Keep track of segment usage */
    segment_counts[xd->mode_info_context->mbmi.segment_id]++;

    /* skip to next mb */
    xd->mode_info_context++;
    x->partition_info++;
    xd->above_context++;
  }

  /* extend the recon for intra prediction */
  vp8_extend_mb_row(&cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16,
                    xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);

#if CONFIG_MULTITHREAD
  if (cpi->b_multi_threaded != 0) *current_mb_col = rightmost_col;
#endif

  /* this is to account for the border */
  xd->mode_info_context++;
  x->partition_info++;
}

static void init_encode_frame_mb_context(VP8_COMP *cpi) {
  MACROBLOCK *const x = &cpi->mb;
  VP8_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;

  /* GF active flags data structure */
  x->gf_active_ptr = (signed char *)cpi->gf_active_flags;

  /* Activity map pointer */
  x->mb_activity_ptr = cpi->mb_activity_map;

  x->act_zbin_adj = 0;

  x->partition_info = x->pi;

  xd->mode_info_context = cm->mi;
  xd->mode_info_stride = cm->mode_info_stride;

  xd->frame_type = cm->frame_type;

  /* reset intra mode contexts */
  if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm);

  /* Copy data over into macro block data structures. */
  x->src = *cpi->Source;
  xd->pre = cm->yv12_fb[cm->lst_fb_idx];
  xd->dst = cm->yv12_fb[cm->new_fb_idx];

  /* set up frame for intra coded blocks */
  vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);

  vp8_build_block_offsets(x);

  xd->mode_info_context->mbmi.mode = DC_PRED;
  xd->mode_info_context->mbmi.uv_mode = DC_PRED;

  xd->left_context = &cm->left_context;

  x->mvc = cm->fc.mvc;

  memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);

  /* Special case treatment when GF and ARF are not sensible options
   * for reference
   */
  if (cpi->ref_frame_flags == VP8_LAST_FRAME) {
    vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 255,
                             128);
  } else if ((cpi->oxcf.number_of_layers > 1) &&
             (cpi->ref_frame_flags == VP8_GOLD_FRAME)) {
    vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 255);
  } else if ((cpi->oxcf.number_of_layers > 1) &&
             (cpi->ref_frame_flags == VP8_ALTR_FRAME)) {
    vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 1);
  } else {
    vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded,
                             cpi->prob_last_coded, cpi->prob_gf_coded);
  }

  xd->fullpixel_mask = 0xffffffff;
  if (cm->full_pixel) xd->fullpixel_mask = 0xfffffff8;

  vp8_zero(x->coef_counts);
  vp8_zero(x->ymode_count);
  vp8_zero(x->uv_mode_count) x->prediction_error = 0;
  x->intra_error = 0;
  vp8_zero(x->count_mb_ref_frame_usage);
}

#if CONFIG_MULTITHREAD
static void sum_coef_counts(MACROBLOCK *x, MACROBLOCK *x_thread) {
  int i = 0;
  do {
    int j = 0;
    do {
      int k = 0;
      do {
        /* at every context */

        /* calc probs and branch cts for this frame only */
        int t = 0; /* token/prob index */

        do {
          x->coef_counts[i][j][k][t] += x_thread->coef_counts[i][j][k][t];
        } while (++t < ENTROPY_NODES);
      } while (++k < PREV_COEF_CONTEXTS);
    } while (++j < COEF_BANDS);
  } while (++i < BLOCK_TYPES);
}
#endif  // CONFIG_MULTITHREAD

void vp8_encode_frame(VP8_COMP *cpi) {
  int mb_row;
  MACROBLOCK *const x = &cpi->mb;
  VP8_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  TOKENEXTRA *tp = cpi->tok;
  int segment_counts[MAX_MB_SEGMENTS];
  int totalrate;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
  BOOL_CODER *bc = &cpi->bc[1]; /* bc[0] is for control partition */
  const int num_part = (1 << cm->multi_token_partition);
#endif

  memset(segment_counts, 0, sizeof(segment_counts));
  totalrate = 0;

  if (cpi->compressor_speed == 2) {
    if (cpi->oxcf.cpu_used < 0) {
      cpi->Speed = -(cpi->oxcf.cpu_used);
    } else {
      vp8_auto_select_speed(cpi);
    }
  }

  /* Functions setup for all frame types so we can use MC in AltRef */
  if (!cm->use_bilinear_mc_filter) {
    xd->subpixel_predict = vp8_sixtap_predict4x4;
    xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
    xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
    xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
  } else {
    xd->subpixel_predict = vp8_bilinear_predict4x4;
    xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
    xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
    xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
  }

  cpi->mb.skip_true_count = 0;
  cpi->tok_count = 0;

#if 0
    /* Experimental code */
    cpi->frame_distortion = 0;
    cpi->last_mb_distortion = 0;
#endif

  xd->mode_info_context = cm->mi;

  vp8_zero(cpi->mb.MVcount);

  vp8cx_frame_init_quantizer(cpi);

  vp8_initialize_rd_consts(cpi, x,
                           vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));

  vp8cx_initialize_me_consts(cpi, cm->base_qindex);

  if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
    /* Initialize encode frame context. */
    init_encode_frame_mb_context(cpi);

    /* Build a frame level activity map */
    build_activity_map(cpi);
  }

  /* re-init encode frame context. */
  init_encode_frame_mb_context(cpi);

#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
  {
    int i;
    for (i = 0; i < num_part; ++i) {
      vp8_start_encode(&bc[i], cpi->partition_d[i + 1],
                       cpi->partition_d_end[i + 1]);
      bc[i].error = &cm->error;
    }
  }

#endif

  {
    struct vpx_usec_timer emr_timer;
    vpx_usec_timer_start(&emr_timer);

#if CONFIG_MULTITHREAD
    if (cpi->b_multi_threaded) {
      int i;

      vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei,
                                cpi->encoding_thread_count);

      for (i = 0; i < cm->mb_rows; ++i) cpi->mt_current_mb_col[i] = -1;

      for (i = 0; i < cpi->encoding_thread_count; ++i) {
        sem_post(&cpi->h_event_start_encoding[i]);
      }

      for (mb_row = 0; mb_row < cm->mb_rows;
           mb_row += (cpi->encoding_thread_count + 1)) {
        vp8_zero(cm->left_context)

#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
            tp = cpi->tok;
#else
            tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
#endif

        encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);

        /* adjust to the next row of mbs */
        x->src.y_buffer +=
            16 * x->src.y_stride * (cpi->encoding_thread_count + 1) -
            16 * cm->mb_cols;
        x->src.u_buffer +=
            8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) -
            8 * cm->mb_cols;
        x->src.v_buffer +=
            8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) -
            8 * cm->mb_cols;

        xd->mode_info_context +=
            xd->mode_info_stride * cpi->encoding_thread_count;
        x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
        x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count;
      }
      /* Wait for all the threads to finish. */
      for (i = 0; i < cpi->encoding_thread_count; ++i) {
        sem_wait(&cpi->h_event_end_encoding[i]);
      }

      for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
        cpi->tok_count += (unsigned int)(cpi->tplist[mb_row].stop -
                                         cpi->tplist[mb_row].start);
      }

      if (xd->segmentation_enabled) {
        int j;

        if (xd->segmentation_enabled) {
          for (i = 0; i < cpi->encoding_thread_count; ++i) {
            for (j = 0; j < 4; ++j) {
              segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j];
            }
          }
        }
      }

      for (i = 0; i < cpi->encoding_thread_count; ++i) {
        int mode_count;
        int c_idx;
        totalrate += cpi->mb_row_ei[i].totalrate;

        cpi->mb.skip_true_count += cpi->mb_row_ei[i].mb.skip_true_count;

        for (mode_count = 0; mode_count < VP8_YMODES; ++mode_count) {
          cpi->mb.ymode_count[mode_count] +=
              cpi->mb_row_ei[i].mb.ymode_count[mode_count];
        }

        for (mode_count = 0; mode_count < VP8_UV_MODES; ++mode_count) {
          cpi->mb.uv_mode_count[mode_count] +=
              cpi->mb_row_ei[i].mb.uv_mode_count[mode_count];
        }

        for (c_idx = 0; c_idx < MVvals; ++c_idx) {
          cpi->mb.MVcount[0][c_idx] += cpi->mb_row_ei[i].mb.MVcount[0][c_idx];
          cpi->mb.MVcount[1][c_idx] += cpi->mb_row_ei[i].mb.MVcount[1][c_idx];
        }

        cpi->mb.prediction_error += cpi->mb_row_ei[i].mb.prediction_error;
        cpi->mb.intra_error += cpi->mb_row_ei[i].mb.intra_error;

        for (c_idx = 0; c_idx < MAX_REF_FRAMES; ++c_idx) {
          cpi->mb.count_mb_ref_frame_usage[c_idx] +=
              cpi->mb_row_ei[i].mb.count_mb_ref_frame_usage[c_idx];
        }

        for (c_idx = 0; c_idx < MAX_ERROR_BINS; ++c_idx) {
          cpi->mb.error_bins[c_idx] += cpi->mb_row_ei[i].mb.error_bins[c_idx];
        }

        /* add up counts for each thread */
        sum_coef_counts(x, &cpi->mb_row_ei[i].mb);
      }

    } else
#endif  // CONFIG_MULTITHREAD
    {

      /* for each macroblock row in image */
      for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
        vp8_zero(cm->left_context)

#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
            tp = cpi->tok;
#endif

        encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);

        /* adjust to the next row of mbs */
        x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
        x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
        x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
      }

      cpi->tok_count = (unsigned int)(tp - cpi->tok);
    }

#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
    {
      int i;
      for (i = 0; i < num_part; ++i) {
        vp8_stop_encode(&bc[i]);
        cpi->partition_sz[i + 1] = bc[i].pos;
      }
    }
#endif

    vpx_usec_timer_mark(&emr_timer);
    cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
  }

  // Work out the segment probabilities if segmentation is enabled
  // and needs to be updated
  if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
    int tot_count;
    int i;

    /* Set to defaults */
    memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));

    tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] +
                segment_counts[3];

    if (tot_count) {
      xd->mb_segment_tree_probs[0] =
          ((segment_counts[0] + segment_counts[1]) * 255) / tot_count;

      tot_count = segment_counts[0] + segment_counts[1];

      if (tot_count > 0) {
        xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count;
      }

      tot_count = segment_counts[2] + segment_counts[3];

      if (tot_count > 0) {
        xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count;
      }

      /* Zero probabilities not allowed */
      for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) {
        if (xd->mb_segment_tree_probs[i] == 0) xd->mb_segment_tree_probs[i] = 1;
      }
    }
  }

  /* projected_frame_size in units of BYTES */
  cpi->projected_frame_size = totalrate >> 8;

  /* Make a note of the percentage MBs coded Intra. */
  if (cm->frame_type == KEY_FRAME) {
    cpi->this_frame_percent_intra = 100;
  } else {
    int tot_modes;

    tot_modes = cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] +
                cpi->mb.count_mb_ref_frame_usage[LAST_FRAME] +
                cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME] +
                cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME];

    if (tot_modes) {
      cpi->this_frame_percent_intra =
          cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes;
    }
  }

#if !CONFIG_REALTIME_ONLY
  /* Adjust the projected reference frame usage probability numbers to
   * reflect what we have just seen. This may be useful when we make
   * multiple iterations of the recode loop rather than continuing to use
   * values from the previous frame.
   */
  if ((cm->frame_type != KEY_FRAME) &&
      ((cpi->oxcf.number_of_layers > 1) ||
       (!cm->refresh_alt_ref_frame && !cm->refresh_golden_frame))) {
    vp8_convert_rfct_to_prob(cpi);
  }
#endif
}
void vp8_setup_block_ptrs(MACROBLOCK *x) {
  int r, c;
  int i;

  for (r = 0; r < 4; ++r) {
    for (c = 0; c < 4; ++c) {
      x->block[r * 4 + c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
    }
  }

  for (r = 0; r < 2; ++r) {
    for (c = 0; c < 2; ++c) {
      x->block[16 + r * 2 + c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
    }
  }

  for (r = 0; r < 2; ++r) {
    for (c = 0; c < 2; ++c) {
      x->block[20 + r * 2 + c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
    }
  }

  x->block[24].src_diff = x->src_diff + 384;

  for (i = 0; i < 25; ++i) {
    x->block[i].coeff = x->coeff + i * 16;
  }
}

void vp8_build_block_offsets(MACROBLOCK *x) {
  int block = 0;
  int br, bc;

  vp8_build_block_doffsets(&x->e_mbd);

  /* y blocks */
  x->thismb_ptr = &x->thismb[0];
  for (br = 0; br < 4; ++br) {
    for (bc = 0; bc < 4; ++bc) {
      BLOCK *this_block = &x->block[block];
      this_block->base_src = &x->thismb_ptr;
      this_block->src_stride = 16;
      this_block->src = 4 * br * 16 + 4 * bc;
      ++block;
    }
  }

  /* u blocks */
  for (br = 0; br < 2; ++br) {
    for (bc = 0; bc < 2; ++bc) {
      BLOCK *this_block = &x->block[block];
      this_block->base_src = &x->src.u_buffer;
      this_block->src_stride = x->src.uv_stride;
      this_block->src = 4 * br * this_block->src_stride + 4 * bc;
      ++block;
    }
  }

  /* v blocks */
  for (br = 0; br < 2; ++br) {
    for (bc = 0; bc < 2; ++bc) {
      BLOCK *this_block = &x->block[block];
      this_block->base_src = &x->src.v_buffer;
      this_block->src_stride = x->src.uv_stride;
      this_block->src = 4 * br * this_block->src_stride + 4 * bc;
      ++block;
    }
  }
}

static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
  const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;

#ifdef MODE_STATS
  const int is_key = cpi->common.frame_type == KEY_FRAME;

  ++(is_key ? uv_modes : inter_uv_modes)[uvm];

  if (m == B_PRED) {
    unsigned int *const bct = is_key ? b_modes : inter_b_modes;

    int b = 0;

    do {
      ++bct[xd->block[b].bmi.mode];
    } while (++b < 16);
  }

#else
  (void)cpi;
#endif

  ++x->ymode_count[m];
  ++x->uv_mode_count[uvm];
}

/* Experimental stub function to create a per MB zbin adjustment based on
 * some previously calculated measure of MB activity.
 */
static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
  x->act_zbin_adj = *(x->mb_activity_ptr);
#else
  int64_t a;
  int64_t b;
  int64_t act = *(x->mb_activity_ptr);

  /* Apply the masking to the RD multiplier. */
  a = act + 4 * cpi->activity_avg;
  b = 4 * act + cpi->activity_avg;

  if (act > cpi->activity_avg) {
    x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
  } else {
    x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
  }
#endif
}

int vp8cx_encode_intra_macroblock(VP8_COMP *cpi, MACROBLOCK *x,
                                  TOKENEXTRA **t) {
  MACROBLOCKD *xd = &x->e_mbd;
  int rate;

  if (cpi->sf.RD && cpi->compressor_speed != 2) {
    vp8_rd_pick_intra_mode(x, &rate);
  } else {
    vp8_pick_intra_mode(x, &rate);
  }

  if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
    adjust_act_zbin(cpi, x);
    vp8_update_zbin_extra(cpi, x);
  }

  if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED) {
    vp8_encode_intra4x4mby(x);
  } else {
    vp8_encode_intra16x16mby(x);
  }

  vp8_encode_intra16x16mbuv(x);

  sum_intra_stats(cpi, x);

  vp8_tokenize_mb(cpi, x, t);

  if (xd->mode_info_context->mbmi.mode != B_PRED) vp8_inverse_transform_mby(xd);

  vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv,
                                xd->dst.u_buffer, xd->dst.v_buffer,
                                xd->dst.uv_stride, xd->eobs + 16);
  return rate;
}
#ifdef SPEEDSTATS
extern int cnt_pm;
#endif

extern void vp8_fix_contexts(MACROBLOCKD *x);

int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
                                  int recon_yoffset, int recon_uvoffset,
                                  int mb_row, int mb_col) {
  MACROBLOCKD *const xd = &x->e_mbd;
  int intra_error = 0;
  int rate;
  int distortion;

  x->skip = 0;

  if (xd->segmentation_enabled) {
    x->encode_breakout =
        cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id];
  } else {
    x->encode_breakout = cpi->oxcf.encode_breakout;
  }

#if CONFIG_TEMPORAL_DENOISING
  /* Reset the best sse mode/mv for each macroblock. */
  x->best_reference_frame = INTRA_FRAME;
  x->best_zeromv_reference_frame = INTRA_FRAME;
  x->best_sse_inter_mode = 0;
  x->best_sse_mv.as_int = 0;
  x->need_to_clamp_best_mvs = 0;
#endif

  if (cpi->sf.RD) {
    int zbin_mode_boost_enabled = x->zbin_mode_boost_enabled;

    /* Are we using the fast quantizer for the mode selection? */
    if (cpi->sf.use_fastquant_for_pick) {
      x->quantize_b = vp8_fast_quantize_b;

      /* the fast quantizer does not use zbin_extra, so
       * do not recalculate */
      x->zbin_mode_boost_enabled = 0;
    }
    vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
                           &distortion, &intra_error, mb_row, mb_col);

    /* switch back to the regular quantizer for the encode */
    if (cpi->sf.improved_quant) {
      x->quantize_b = vp8_regular_quantize_b;
    }

    /* restore cpi->zbin_mode_boost_enabled */
    x->zbin_mode_boost_enabled = zbin_mode_boost_enabled;

  } else {
    vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
                        &distortion, &intra_error, mb_row, mb_col);
  }

  x->prediction_error += distortion;
  x->intra_error += intra_error;

  if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
    /* Adjust the zbin based on this MB rate. */
    adjust_act_zbin(cpi, x);
  }

#if 0
    /* Experimental RD code */
    cpi->frame_distortion += distortion;
    cpi->last_mb_distortion = distortion;
#endif

  /* MB level adjutment to quantizer setup */
  if (xd->segmentation_enabled) {
    /* If cyclic update enabled */
    if (cpi->current_layer == 0 && cpi->cyclic_refresh_mode_enabled) {
      /* Clear segment_id back to 0 if not coded (last frame 0,0) */
      if ((xd->mode_info_context->mbmi.segment_id == 1) &&
          ((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) ||
           (xd->mode_info_context->mbmi.mode != ZEROMV))) {
        xd->mode_info_context->mbmi.segment_id = 0;

        /* segment_id changed, so update */
        vp8cx_mb_init_quantizer(cpi, x, 1);
      }
    }
  }

  {
    /* Experimental code.
     * Special case for gf and arf zeromv modes, for 1 temporal layer.
     * Increase zbin size to supress noise.
     */
    x->zbin_mode_boost = 0;
    if (x->zbin_mode_boost_enabled) {
      if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
        if (xd->mode_info_context->mbmi.mode == ZEROMV) {
          if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME &&
              cpi->oxcf.number_of_layers == 1) {
            x->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
          } else {
            x->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
          }
        } else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
          x->zbin_mode_boost = 0;
        } else {
          x->zbin_mode_boost = MV_ZBIN_BOOST;
        }
      }
    }

    /* The fast quantizer doesn't use zbin_extra, only do so with
     * the regular quantizer. */
    if (cpi->sf.improved_quant) vp8_update_zbin_extra(cpi, x);
  }

  x->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame]++;

  if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
    vp8_encode_intra16x16mbuv(x);

    if (xd->mode_info_context->mbmi.mode == B_PRED) {
      vp8_encode_intra4x4mby(x);
    } else {
      vp8_encode_intra16x16mby(x);
    }

    sum_intra_stats(cpi, x);
  } else {
    int ref_fb_idx;

    if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) {
      ref_fb_idx = cpi->common.lst_fb_idx;
    } else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) {
      ref_fb_idx = cpi->common.gld_fb_idx;
    } else {
      ref_fb_idx = cpi->common.alt_fb_idx;
    }

    xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
    xd->pre.u_buffer =
        cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
    xd->pre.v_buffer =
        cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;

    if (!x->skip) {
      vp8_encode_inter16x16(x);
    } else {
      vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer,
                                         xd->dst.v_buffer, xd->dst.y_stride,
                                         xd->dst.uv_stride);
    }
  }

  if (!x->skip) {
    vp8_tokenize_mb(cpi, x, t);

    if (xd->mode_info_context->mbmi.mode != B_PRED) {
      vp8_inverse_transform_mby(xd);
    }

    vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv,
                                  xd->dst.u_buffer, xd->dst.v_buffer,
                                  xd->dst.uv_stride, xd->eobs + 16);
  } else {
    /* always set mb_skip_coeff as it is needed by the loopfilter */
    xd->mode_info_context->mbmi.mb_skip_coeff = 1;

    if (cpi->common.mb_no_coeff_skip) {
      x->skip_true_count++;
      vp8_fix_contexts(xd);
    } else {
      vp8_stuff_mb(cpi, x, t);
    }
  }

  return rate;
}