ref: b1e3e8348d2102753aab4e24c30dc35189fb941f
dir: /vp10/encoder/pickmode.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <limits.h> #include <math.h> #include <stdio.h> #include "./vp10_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vp10/common/blockd.h" #include "vp10/common/common.h" #include "vp10/common/mvref_common.h" #include "vp10/common/pred_common.h" #include "vp10/common/reconinter.h" #include "vp10/common/reconintra.h" #include "vp10/common/scan.h" #include "vp10/encoder/cost.h" #include "vp10/encoder/encoder.h" #include "vp10/encoder/pickmode.h" #include "vp10/encoder/ratectrl.h" #include "vp10/encoder/rd.h" typedef struct { uint8_t *data; int stride; int in_use; } PRED_BUFFER; static int mv_refs_rt(const VP10_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd, const TileInfo *const tile, MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, int_mv *mv_ref_list, int mi_row, int mi_col) { const int *ref_sign_bias = cm->ref_frame_sign_bias; int i, refmv_count = 0; const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type]; int different_ref_found = 0; int context_counter = 0; int const_motion = 0; // Blank the reference vector list memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); // The nearest 2 blocks are treated differently // if the size < 8x8 we get the mv from the bmi substructure, // and we also need to keep a mode count. for (i = 0; i < 2; ++i) { const POSITION *const mv_ref = &mv_ref_search[i]; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; const MB_MODE_INFO *const candidate = &candidate_mi->mbmi; // Keep counts for entropy encoding. context_counter += mode_2_counter[candidate->mode]; different_ref_found = 1; if (candidate->ref_frame[0] == ref_frame) ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1), refmv_count, mv_ref_list, Done); } } const_motion = 1; // Check the rest of the neighbors in much the same way // as before except we don't need to keep track of sub blocks or // mode counts. for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) { const POSITION *const mv_ref = &mv_ref_search[i]; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]->mbmi; different_ref_found = 1; if (candidate->ref_frame[0] == ref_frame) ADD_MV_REF_LIST(candidate->mv[0], refmv_count, mv_ref_list, Done); } } // Since we couldn't find 2 mvs from the same reference frame // go back through the neighbors and find motion vectors from // different reference frames. if (different_ref_found && !refmv_count) { for (i = 0; i < MVREF_NEIGHBOURS; ++i) { const POSITION *mv_ref = &mv_ref_search[i]; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]->mbmi; // If the candidate is INTRA we don't want to consider its mv. IF_DIFF_REF_FRAME_ADD_MV(candidate, ref_frame, ref_sign_bias, refmv_count, mv_ref_list, Done); } } } Done: x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter]; // Clamp vectors for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) clamp_mv_ref(&mv_ref_list[i].as_mv, xd); return const_motion; } static int combined_motion_search(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int64_t best_rd_sofar) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}}; const int step_param = cpi->sf.mv.fullpel_search_step_param; const int sadpb = x->sadperbit16; MV mvp_full; const int ref = mbmi->ref_frame[0]; const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; int dis; int rate_mode; const int tmp_col_min = x->mv_col_min; const int tmp_col_max = x->mv_col_max; const int tmp_row_min = x->mv_row_min; const int tmp_row_max = x->mv_row_max; int rv = 0; int cost_list[5]; const YV12_BUFFER_CONFIG *scaled_ref_frame = vp10_get_scaled_ref_frame(cpi, ref); if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; vp10_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); } vp10_set_mv_search_range(x, &ref_mv); assert(x->mv_best_ref_index[ref] <= 2); if (x->mv_best_ref_index[ref] < 2) mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv; else mvp_full = x->pred_mv[ref]; mvp_full.col >>= 3; mvp_full.row >>= 3; vp10_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb, cond_cost_list(cpi, cost_list), &ref_mv, &tmp_mv->as_mv, INT_MAX, 0); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; // calculate the bit cost on motion vector mvp_full.row = tmp_mv->as_mv.row * 8; mvp_full.col = tmp_mv->as_mv.col * 8; *rate_mv = vp10_mv_bit_cost(&mvp_full, &ref_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); rate_mode = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]] [INTER_OFFSET(NEWMV)]; rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) > best_rd_sofar); if (rv) { cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0); *rate_mv = vp10_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); } if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; } return rv; } static void block_variance(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h, unsigned int *sse, int *sum, int block_size, unsigned int *sse8x8, int *sum8x8, unsigned int *var8x8) { int i, j, k = 0; *sse = 0; *sum = 0; for (i = 0; i < h; i += block_size) { for (j = 0; j < w; j += block_size) { vpx_get8x8var(src + src_stride * i + j, src_stride, ref + ref_stride * i + j, ref_stride, &sse8x8[k], &sum8x8[k]); *sse += sse8x8[k]; *sum += sum8x8[k]; var8x8[k] = sse8x8[k] - (((unsigned int)sum8x8[k] * sum8x8[k]) >> 6); k++; } } } static void calculate_variance(int bw, int bh, TX_SIZE tx_size, unsigned int *sse_i, int *sum_i, unsigned int *var_o, unsigned int *sse_o, int *sum_o) { const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); int i, j, k = 0; for (i = 0; i < nh; i += 2) { for (j = 0; j < nw; j += 2) { sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; var_o[k] = sse_o[k] - (((unsigned int)sum_o[k] * sum_o[k]) >> (b_width_log2_lookup[unit_size] + b_height_log2_lookup[unit_size] + 6)); k++; } } } static void model_rd_for_sb_y_large(VP10_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum, int64_t *out_dist_sum, unsigned int *var_y, unsigned int *sse_y, int mi_row, int mi_col, int *early_term) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. unsigned int sse; int rate; int64_t dist; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const uint32_t dc_quant = pd->dequant[0]; const uint32_t ac_quant = pd->dequant[1]; const int64_t dc_thr = dc_quant * dc_quant >> 6; const int64_t ac_thr = ac_quant * ac_quant >> 6; unsigned int var; int sum; int skip_dc = 0; const int bw = b_width_log2_lookup[bsize]; const int bh = b_height_log2_lookup[bsize]; const int num8x8 = 1 << (bw + bh - 2); unsigned int sse8x8[64] = {0}; int sum8x8[64] = {0}; unsigned int var8x8[64] = {0}; TX_SIZE tx_size; int i, k; // Calculate variance for whole partition, and also save 8x8 blocks' variance // to be used in following transform skipping test. block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); var = sse - (((int64_t)sum * sum) >> (bw + bh + 4)); *var_y = var; *sse_y = sse; if (cpi->common.tx_mode == TX_MODE_SELECT) { if (sse > (var << 2)) tx_size = MIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); else tx_size = TX_8X8; if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id)) tx_size = TX_8X8; else if (tx_size > TX_16X16) tx_size = TX_16X16; } else { tx_size = MIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); } assert(tx_size >= TX_8X8); xd->mi[0]->mbmi.tx_size = tx_size; // Evaluate if the partition block is a skippable block in Y plane. { unsigned int sse16x16[16] = {0}; int sum16x16[16] = {0}; unsigned int var16x16[16] = {0}; const int num16x16 = num8x8 >> 2; unsigned int sse32x32[4] = {0}; int sum32x32[4] = {0}; unsigned int var32x32[4] = {0}; const int num32x32 = num8x8 >> 4; int ac_test = 1; int dc_test = 1; const int num = (tx_size == TX_8X8) ? num8x8 : ((tx_size == TX_16X16) ? num16x16 : num32x32); const unsigned int *sse_tx = (tx_size == TX_8X8) ? sse8x8 : ((tx_size == TX_16X16) ? sse16x16 : sse32x32); const unsigned int *var_tx = (tx_size == TX_8X8) ? var8x8 : ((tx_size == TX_16X16) ? var16x16 : var32x32); // Calculate variance if tx_size > TX_8X8 if (tx_size >= TX_16X16) calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, sum16x16); if (tx_size == TX_32X32) calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32, sse32x32, sum32x32); // Skipping test x->skip_txfm[0] = SKIP_TXFM_NONE; for (k = 0; k < num; k++) // Check if all ac coefficients can be quantized to zero. if (!(var_tx[k] < ac_thr || var == 0)) { ac_test = 0; break; } for (k = 0; k < num; k++) // Check if dc coefficient can be quantized to zero. if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { dc_test = 0; break; } if (ac_test) { x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; if (dc_test) x->skip_txfm[0] = SKIP_TXFM_AC_DC; } else if (dc_test) { skip_dc = 1; } } if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { int skip_uv[2] = {0}; unsigned int var_uv[2]; unsigned int sse_uv[2]; *out_rate_sum = 0; *out_dist_sum = sse << 4; // Transform skipping test in UV planes. for (i = 1; i <= 2; i++) { struct macroblock_plane *const p = &x->plane[i]; struct macroblockd_plane *const pd = &xd->plane[i]; const TX_SIZE uv_tx_size = get_uv_tx_size(&xd->mi[0]->mbmi, pd); const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size]; const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd); const int uv_bw = b_width_log2_lookup[uv_bsize]; const int uv_bh = b_height_log2_lookup[uv_bsize]; const int sf = (uv_bw - b_width_log2_lookup[unit_size]) + (uv_bh - b_height_log2_lookup[unit_size]); const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf); const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf); int j = i - 1; vp10_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i); var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse_uv[j]); if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) skip_uv[j] = 1; else break; } // If the transform in YUV planes are skippable, the mode search checks // fewer inter modes and doesn't check intra modes. if (skip_uv[0] & skip_uv[1]) { *early_term = 1; } return; } if (!skip_dc) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], dc_quant >> (xd->bd - 5), &rate, &dist); } else { vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], dc_quant >> 3, &rate, &dist); } #else vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], dc_quant >> 3, &rate, &dist); #endif // CONFIG_VP9_HIGHBITDEPTH } if (!skip_dc) { *out_rate_sum = rate >> 1; *out_dist_sum = dist << 3; } else { *out_rate_sum = 0; *out_dist_sum = (sse - var) << 4; } #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> (xd->bd - 5), &rate, &dist); } else { vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, &rate, &dist); } #else vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, &rate, &dist); #endif // CONFIG_VP9_HIGHBITDEPTH *out_rate_sum += rate; *out_dist_sum += dist << 4; } static void model_rd_for_sb_y(VP10_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum, int64_t *out_dist_sum, unsigned int *var_y, unsigned int *sse_y) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. unsigned int sse; int rate; int64_t dist; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const int64_t dc_thr = p->quant_thred[0] >> 6; const int64_t ac_thr = p->quant_thred[1] >> 6; const uint32_t dc_quant = pd->dequant[0]; const uint32_t ac_quant = pd->dequant[1]; unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); int skip_dc = 0; *var_y = var; *sse_y = sse; if (cpi->common.tx_mode == TX_MODE_SELECT) { if (sse > (var << 2)) xd->mi[0]->mbmi.tx_size = MIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); else xd->mi[0]->mbmi.tx_size = TX_8X8; if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id)) xd->mi[0]->mbmi.tx_size = TX_8X8; else if (xd->mi[0]->mbmi.tx_size > TX_16X16) xd->mi[0]->mbmi.tx_size = TX_16X16; } else { xd->mi[0]->mbmi.tx_size = MIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); } // Evaluate if the partition block is a skippable block in Y plane. { const BLOCK_SIZE unit_size = txsize_to_bsize[xd->mi[0]->mbmi.tx_size]; const unsigned int num_blk_log2 = (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) + (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]); const unsigned int sse_tx = sse >> num_blk_log2; const unsigned int var_tx = var >> num_blk_log2; x->skip_txfm[0] = SKIP_TXFM_NONE; // Check if all ac coefficients can be quantized to zero. if (var_tx < ac_thr || var == 0) { x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; // Check if dc coefficient can be quantized to zero. if (sse_tx - var_tx < dc_thr || sse == var) x->skip_txfm[0] = SKIP_TXFM_AC_DC; } else { if (sse_tx - var_tx < dc_thr || sse == var) skip_dc = 1; } } if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { *out_rate_sum = 0; *out_dist_sum = sse << 4; return; } if (!skip_dc) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], dc_quant >> (xd->bd - 5), &rate, &dist); } else { vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], dc_quant >> 3, &rate, &dist); } #else vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], dc_quant >> 3, &rate, &dist); #endif // CONFIG_VP9_HIGHBITDEPTH } if (!skip_dc) { *out_rate_sum = rate >> 1; *out_dist_sum = dist << 3; } else { *out_rate_sum = 0; *out_dist_sum = (sse - var) << 4; } #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> (xd->bd - 5), &rate, &dist); } else { vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, &rate, &dist); } #else vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, &rate, &dist); #endif // CONFIG_VP9_HIGHBITDEPTH *out_rate_sum += rate; *out_dist_sum += dist << 4; } #if CONFIG_VP9_HIGHBITDEPTH static void block_yrd(VP10_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist, int *skippable, int64_t *sse, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; unsigned int var_y, sse_y; (void)plane; (void)tx_size; model_rd_for_sb_y(cpi, bsize, x, xd, rate, dist, &var_y, &sse_y); *sse = INT_MAX; *skippable = 0; return; } #else static void block_yrd(VP10_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist, int *skippable, int64_t *sse, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; const struct macroblockd_plane *pd = &xd->plane[plane]; const struct macroblock_plane *const p = &x->plane[plane]; const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; const int step = 1 << (tx_size << 1); const int block_step = (1 << tx_size); int block = 0, r, c; int shift = tx_size == TX_32X32 ? 0 : 2; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); int eob_cost = 0; (void)cpi; vp10_subtract_plane(x, bsize, plane); *skippable = 1; // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (r = 0; r < max_blocks_high; r += block_step) { for (c = 0; c < num_4x4_w; c += block_step) { if (c < max_blocks_wide) { const scan_order *const scan_order = &vp10_default_scan_orders[tx_size]; tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[bsize]; const int16_t *src_diff; src_diff = &p->src_diff[(r * diff_stride + c) << 2]; switch (tx_size) { case TX_32X32: vpx_fdct32x32_rd(src_diff, coeff, diff_stride); vp10_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_16X16: vp10_hadamard_16x16(src_diff, diff_stride, (int16_t *)coeff); vp10_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_8X8: vp10_hadamard_8x8(src_diff, diff_stride, (int16_t *)coeff); vp10_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; case TX_4X4: x->fwd_txm4x4(src_diff, coeff, diff_stride); vp10_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp, p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, scan_order->iscan); break; default: assert(0); break; } *skippable &= (*eob == 0); eob_cost += 1; } block += step; } } if (*skippable && *sse < INT64_MAX) { *rate = 0; *dist = (*sse << 6) >> shift; *sse = *dist; return; } block = 0; *rate = 0; *dist = 0; if (*sse < INT64_MAX) *sse = (*sse << 6) >> shift; for (r = 0; r < max_blocks_high; r += block_step) { for (c = 0; c < num_4x4_w; c += block_step) { if (c < max_blocks_wide) { tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; if (*eob == 1) *rate += (int)abs(qcoeff[0]); else if (*eob > 1) *rate += (int)vp10_satd((const int16_t *)qcoeff, step << 4); *dist += vp10_block_error_fp(coeff, dqcoeff, step << 4) >> shift; } block += step; } } if (*skippable == 0) { *rate <<= 10; *rate += (eob_cost << 8); } } #endif static void model_rd_for_sb_uv(VP10_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum, int64_t *out_dist_sum, unsigned int *var_y, unsigned int *sse_y) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. unsigned int sse; int rate; int64_t dist; int i; *out_rate_sum = 0; *out_dist_sum = 0; for (i = 1; i <= 2; ++i) { struct macroblock_plane *const p = &x->plane[i]; struct macroblockd_plane *const pd = &xd->plane[i]; const uint32_t dc_quant = pd->dequant[0]; const uint32_t ac_quant = pd->dequant[1]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); unsigned int var; if (!x->color_sensitivity[i - 1]) continue; var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); *var_y += var; *sse_y += sse; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], dc_quant >> (xd->bd - 5), &rate, &dist); } else { vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], dc_quant >> 3, &rate, &dist); } #else vp10_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], dc_quant >> 3, &rate, &dist); #endif // CONFIG_VP9_HIGHBITDEPTH *out_rate_sum += rate >> 1; *out_dist_sum += dist << 3; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> (xd->bd - 5), &rate, &dist); } else { vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, &rate, &dist); } #else vp10_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, &rate, &dist); #endif // CONFIG_VP9_HIGHBITDEPTH *out_rate_sum += rate; *out_dist_sum += dist << 4; } } static int get_pred_buffer(PRED_BUFFER *p, int len) { int i; for (i = 0; i < len; i++) { if (!p[i].in_use) { p[i].in_use = 1; return i; } } return -1; } static void free_pred_buffer(PRED_BUFFER *p) { if (p != NULL) p->in_use = 0; } static void encode_breakout_test(VP10_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, MV_REFERENCE_FRAME ref_frame, PREDICTION_MODE this_mode, unsigned int var_y, unsigned int sse_y, struct buf_2d yv12_mb[][MAX_MB_PLANE], int *rate, int64_t *dist) { MACROBLOCKD *xd = &x->e_mbd; const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]); unsigned int var = var_y, sse = sse_y; // Skipping threshold for ac. unsigned int thresh_ac; // Skipping threshold for dc. unsigned int thresh_dc; if (x->encode_breakout > 0) { // Set a maximum for threshold to avoid big PSNR loss in low bit rate // case. Use extreme low threshold for static frames to limit // skipping. const unsigned int max_thresh = 36000; // The encode_breakout input const unsigned int min_thresh = MIN(((unsigned int)x->encode_breakout << 4), max_thresh); #if CONFIG_VP9_HIGHBITDEPTH const int shift = (xd->bd << 1) - 16; #endif // Calculate threshold according to dequant value. thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3; #if CONFIG_VP9_HIGHBITDEPTH if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift); } #endif // CONFIG_VP9_HIGHBITDEPTH thresh_ac = clamp(thresh_ac, min_thresh, max_thresh); // Adjust ac threshold according to partition size. thresh_ac >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6); #if CONFIG_VP9_HIGHBITDEPTH if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift); } #endif // CONFIG_VP9_HIGHBITDEPTH } else { thresh_ac = 0; thresh_dc = 0; } // Y skipping condition checking for ac and dc. if (var <= thresh_ac && (sse - var) <= thresh_dc) { unsigned int sse_u, sse_v; unsigned int var_u, var_v; // Skip UV prediction unless breakout is zero (lossless) to save // computation with low impact on the result if (x->encode_breakout == 0) { xd->plane[1].pre[0] = yv12_mb[ref_frame][1]; xd->plane[2].pre[0] = yv12_mb[ref_frame][2]; vp10_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); } var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, x->plane[1].src.stride, xd->plane[1].dst.buf, xd->plane[1].dst.stride, &sse_u); // U skipping condition checking if (((var_u << 2) <= thresh_ac) && (sse_u - var_u <= thresh_dc)) { var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf, x->plane[2].src.stride, xd->plane[2].dst.buf, xd->plane[2].dst.stride, &sse_v); // V skipping condition checking if (((var_v << 2) <= thresh_ac) && (sse_v - var_v <= thresh_dc)) { x->skip = 1; // The cost of skip bit needs to be added. *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] [INTER_OFFSET(this_mode)]; // More on this part of rate // rate += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); // Scaling factor for SSE from spatial domain to frequency // domain is 16. Adjust distortion accordingly. // TODO(yunqingwang): In this function, only y-plane dist is // calculated. *dist = (sse << 4); // + ((sse_u + sse_v) << 4); // *disable_skip = 1; } } } } struct estimate_block_intra_args { VP10_COMP *cpi; MACROBLOCK *x; PREDICTION_MODE mode; int rate; int64_t dist; }; static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct estimate_block_intra_args* const args = arg; VP10_COMP *const cpi = args->cpi; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; uint8_t *const src_buf_base = p->src.buf; uint8_t *const dst_buf_base = pd->dst.buf; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; int i, j; int rate; int64_t dist; int64_t this_sse = INT64_MAX; int is_skippable; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j); assert(plane == 0); (void) plane; p->src.buf = &src_buf_base[4 * (j * src_stride + i)]; pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)]; // Use source buffer as an approximation for the fully reconstructed buffer. vp10_predict_intra_block(xd, b_width_log2_lookup[plane_bsize], tx_size, args->mode, x->skip_encode ? p->src.buf : pd->dst.buf, x->skip_encode ? src_stride : dst_stride, pd->dst.buf, dst_stride, i, j, 0); // TODO(jingning): This needs further refactoring. block_yrd(cpi, x, &rate, &dist, &is_skippable, &this_sse, 0, bsize_tx, MIN(tx_size, TX_16X16)); x->skip_txfm[0] = is_skippable; rate += vp10_cost_bit(vp10_get_skip_prob(&cpi->common, xd), is_skippable); p->src.buf = src_buf_base; pd->dst.buf = dst_buf_base; args->rate += rate; args->dist += dist; } static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = { {THR_DC, THR_V_PRED, THR_H_PRED, THR_TM}, {THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV}, {THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG}, }; static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED, TM_PRED }; static int mode_offset(const PREDICTION_MODE mode) { if (mode >= NEARESTMV) { return INTER_OFFSET(mode); } else { switch (mode) { case DC_PRED: return 0; case V_PRED: return 1; case H_PRED: return 2; case TM_PRED: return 3; default: return -1; } } } static INLINE void update_thresh_freq_fact(VP10_COMP *cpi, TileDataEnc *tile_data, BLOCK_SIZE bsize, MV_REFERENCE_FRAME ref_frame, THR_MODES best_mode_idx, PREDICTION_MODE mode) { THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx]; if (thr_mode_idx == best_mode_idx) *freq_fact -= (*freq_fact >> 4); else *freq_fact = MIN(*freq_fact + RD_THRESH_INC, cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); } void vp10_pick_intra_mode(VP10_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; RD_COST this_rdc, best_rdc; PREDICTION_MODE this_mode; struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 }; const TX_SIZE intra_tx_size = MIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); MODE_INFO *const mic = xd->mi[0]; int *bmode_costs; const MODE_INFO *above_mi = xd->mi[-xd->mi_stride]; const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL; const PREDICTION_MODE A = vp10_above_block_mode(mic, above_mi, 0); const PREDICTION_MODE L = vp10_left_block_mode(mic, left_mi, 0); bmode_costs = cpi->y_mode_costs[A][L]; (void) ctx; vp10_rd_cost_reset(&best_rdc); vp10_rd_cost_reset(&this_rdc); mbmi->ref_frame[0] = INTRA_FRAME; mbmi->mv[0].as_int = INVALID_MV; mbmi->uv_mode = DC_PRED; memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); // Change the limit of this loop to add other intra prediction // mode tests. for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) { args.mode = this_mode; args.rate = 0; args.dist = 0; mbmi->tx_size = intra_tx_size; vp10_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, &args); this_rdc.rate = args.rate; this_rdc.dist = args.dist; this_rdc.rate += bmode_costs[this_mode]; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); if (this_rdc.rdcost < best_rdc.rdcost) { best_rdc = this_rdc; mbmi->mode = this_mode; } } *rd_cost = best_rdc; } static void init_ref_frame_cost(VP10_COMMON *const cm, MACROBLOCKD *const xd, int ref_frame_cost[MAX_REF_FRAMES]) { vpx_prob intra_inter_p = vp10_get_intra_inter_prob(cm, xd); vpx_prob ref_single_p1 = vp10_get_pred_prob_single_ref_p1(cm, xd); vpx_prob ref_single_p2 = vp10_get_pred_prob_single_ref_p2(cm, xd); ref_frame_cost[INTRA_FRAME] = vp10_cost_bit(intra_inter_p, 0); ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] = ref_frame_cost[ALTREF_FRAME] = vp10_cost_bit(intra_inter_p, 1); ref_frame_cost[LAST_FRAME] += vp10_cost_bit(ref_single_p1, 0); ref_frame_cost[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p1, 1); ref_frame_cost[ALTREF_FRAME] += vp10_cost_bit(ref_single_p1, 1); ref_frame_cost[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p2, 0); ref_frame_cost[ALTREF_FRAME] += vp10_cost_bit(ref_single_p2, 1); } typedef struct { MV_REFERENCE_FRAME ref_frame; PREDICTION_MODE pred_mode; } REF_MODE; #define RT_INTER_MODES 8 static const REF_MODE ref_mode_set[RT_INTER_MODES] = { {LAST_FRAME, ZEROMV}, {LAST_FRAME, NEARESTMV}, {GOLDEN_FRAME, ZEROMV}, {LAST_FRAME, NEARMV}, {LAST_FRAME, NEWMV}, {GOLDEN_FRAME, NEARESTMV}, {GOLDEN_FRAME, NEARMV}, {GOLDEN_FRAME, NEWMV} }; // TODO(jingning) placeholder for inter-frame non-RD mode decision. // this needs various further optimizations. to be continued.. void vp10_pick_inter_mode(VP10_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, int mi_row, int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { VP10_COMMON *const cm = &cpi->common; SPEED_FEATURES *const sf = &cpi->sf; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; struct macroblockd_plane *const pd = &xd->plane[0]; PREDICTION_MODE best_mode = ZEROMV; MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME; MV_REFERENCE_FRAME usable_ref_frame; TX_SIZE best_tx_size = TX_SIZES; INTERP_FILTER best_pred_filter = EIGHTTAP; int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; struct buf_2d yv12_mb[4][MAX_MB_PLANE]; static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; RD_COST this_rdc, best_rdc; uint8_t skip_txfm = SKIP_TXFM_NONE, best_mode_skip_txfm = SKIP_TXFM_NONE; // var_y and sse_y are saved to be used in skipping checking unsigned int var_y = UINT_MAX; unsigned int sse_y = UINT_MAX; // Reduce the intra cost penalty for small blocks (<=16x16). const int reduction_fac = (bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0; const int intra_cost_penalty = vp10_get_intra_cost_penalty( cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac; const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv, intra_cost_penalty, 0); const int *const rd_threshes = cpi->rd.threshes[mbmi->segment_id][bsize]; const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; INTERP_FILTER filter_ref; const int bsl = mi_width_log2_lookup[bsize]; const int pred_filter_search = cm->interp_filter == SWITCHABLE ? (((mi_row + mi_col) >> bsl) + get_chessboard_index(cm->current_video_frame)) & 0x1 : 0; int const_motion[MAX_REF_FRAMES] = { 0 }; const int bh = num_4x4_blocks_high_lookup[bsize] << 2; const int bw = num_4x4_blocks_wide_lookup[bsize] << 2; // For speed 6, the result of interp filter is reused later in actual encoding // process. // tmp[3] points to dst buffer, and the other 3 point to allocated buffers. PRED_BUFFER tmp[4]; DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]); #endif struct buf_2d orig_dst = pd->dst; PRED_BUFFER *best_pred = NULL; PRED_BUFFER *this_mode_pred = NULL; const int pixels_in_block = bh * bw; int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready; int ref_frame_skip_mask = 0; int idx; int best_pred_sad = INT_MAX; int best_early_term = 0; int ref_frame_cost[MAX_REF_FRAMES]; init_ref_frame_cost(cm, xd, ref_frame_cost); if (reuse_inter_pred) { int i; for (i = 0; i < 3; i++) { #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]); else tmp[i].data = &pred_buf[pixels_in_block * i]; #else tmp[i].data = &pred_buf[pixels_in_block * i]; #endif // CONFIG_VP9_HIGHBITDEPTH tmp[i].stride = bw; tmp[i].in_use = 0; } tmp[3].data = pd->dst.buf; tmp[3].stride = pd->dst.stride; tmp[3].in_use = 0; } x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; x->skip = 0; if (xd->up_available) filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter; else if (xd->left_available) filter_ref = xd->mi[-1]->mbmi.interp_filter; else filter_ref = cm->interp_filter; // initialize mode decisions vp10_rd_cost_reset(&best_rdc); vp10_rd_cost_reset(rd_cost); mbmi->sb_type = bsize; mbmi->ref_frame[0] = NONE; mbmi->ref_frame[1] = NONE; mbmi->tx_size = MIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cm->tx_mode]); #if CONFIG_VP9_TEMPORAL_DENOISING vp10_denoiser_reset_frame_stats(ctx); #endif if (cpi->rc.frames_since_golden == 0) { usable_ref_frame = LAST_FRAME; } else { usable_ref_frame = GOLDEN_FRAME; } for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) { const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); x->pred_mv_sad[ref_frame] = INT_MAX; frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; frame_mv[ZEROMV][ref_frame].as_int = 0; if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; vp10_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); if (cm->use_prev_frame_mvs) vp10_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col, NULL, NULL, x->mbmi_ext->mode_context); else const_motion[ref_frame] = mv_refs_rt(cm, x, xd, tile_info, xd->mi[0], ref_frame, candidates, mi_row, mi_col); vp10_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, &frame_mv[NEARESTMV][ref_frame], &frame_mv[NEARMV][ref_frame]); if (!vp10_is_scaled(sf) && bsize >= BLOCK_8X8) vp10_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, bsize); } else { ref_frame_skip_mask |= (1 << ref_frame); } } for (idx = 0; idx < RT_INTER_MODES; ++idx) { int rate_mv = 0; int mode_rd_thresh; int mode_index; int i; PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode; int64_t this_sse; int is_skippable; int this_early_term = 0; if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode))) continue; ref_frame = ref_mode_set[idx].ref_frame; if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue; if (const_motion[ref_frame] && this_mode == NEARMV) continue; i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME; if ((cpi->ref_frame_flags & flag_list[i]) && sf->reference_masking) if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1)) ref_frame_skip_mask |= (1 << ref_frame); if (ref_frame_skip_mask & (1 << ref_frame)) continue; // Select prediction reference frames. for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; mbmi->ref_frame[0] = ref_frame; set_ref_ptrs(cm, xd, ref_frame, NONE); mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)]; mode_rd_thresh = best_mode_skip_txfm ? rd_threshes[mode_index] << 1 : rd_threshes[mode_index]; if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, rd_thresh_freq_fact[mode_index])) continue; if (this_mode == NEWMV) { if (ref_frame > LAST_FRAME) { int tmp_sad; int dis, cost_list[5]; if (bsize < BLOCK_16X16) continue; tmp_sad = vp10_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) continue; if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) continue; frame_mv[NEWMV][ref_frame].as_int = mbmi->mv[0].as_int; rate_mv = vp10_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; cpi->find_fractional_mv_step(x, &frame_mv[NEWMV][ref_frame].as_mv, &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref_frame], NULL, 0, 0); } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost)) { continue; } } if (this_mode == NEWMV && ref_frame == LAST_FRAME && frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) { const int pre_stride = xd->plane[0].pre[0].stride; const uint8_t * const pre_buf = xd->plane[0].pre[0].buf + (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride + (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3); best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride); x->pred_mv_sad[LAST_FRAME] = best_pred_sad; } if (this_mode != NEARESTMV && frame_mv[this_mode][ref_frame].as_int == frame_mv[NEARESTMV][ref_frame].as_int) continue; mbmi->mode = this_mode; mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int; // Search for the best prediction filter type, when the resulting // motion vector is at sub-pixel accuracy level for luma component, i.e., // the last three bits are all zeros. if (reuse_inter_pred) { if (!this_mode_pred) { this_mode_pred = &tmp[3]; } else { this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; pd->dst.buf = this_mode_pred->data; pd->dst.stride = bw; } } if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && pred_filter_search && (ref_frame == LAST_FRAME) && (((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) != 0)) { int pf_rate[3]; int64_t pf_dist[3]; unsigned int pf_var[3]; unsigned int pf_sse[3]; TX_SIZE pf_tx_size[3]; int64_t best_cost = INT64_MAX; INTERP_FILTER best_filter = SWITCHABLE, filter; PRED_BUFFER *current_pred = this_mode_pred; for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) { int64_t cost; mbmi->interp_filter = filter; vp10_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter], &pf_var[filter], &pf_sse[filter]); pf_rate[filter] += vp10_get_switchable_rate(cpi, xd); cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]); pf_tx_size[filter] = mbmi->tx_size; if (cost < best_cost) { best_filter = filter; best_cost = cost; skip_txfm = x->skip_txfm[0]; if (reuse_inter_pred) { if (this_mode_pred != current_pred) { free_pred_buffer(this_mode_pred); this_mode_pred = current_pred; } if (filter < EIGHTTAP_SHARP) { current_pred = &tmp[get_pred_buffer(tmp, 3)]; pd->dst.buf = current_pred->data; pd->dst.stride = bw; } } } } if (reuse_inter_pred && this_mode_pred != current_pred) free_pred_buffer(current_pred); mbmi->interp_filter = best_filter; mbmi->tx_size = pf_tx_size[best_filter]; this_rdc.rate = pf_rate[best_filter]; this_rdc.dist = pf_dist[best_filter]; var_y = pf_var[best_filter]; sse_y = pf_sse[best_filter]; x->skip_txfm[0] = skip_txfm; if (reuse_inter_pred) { pd->dst.buf = this_mode_pred->data; pd->dst.stride = this_mode_pred->stride; } } else { mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref; vp10_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); // For large partition blocks, extra testing is done. if (bsize > BLOCK_32X32 && !cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id) && cm->base_qindex) { model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col, &this_early_term); } else { model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, &var_y, &sse_y); } } if (!this_early_term) { this_sse = (int64_t)sse_y; block_yrd(cpi, x, &this_rdc.rate, &this_rdc.dist, &is_skippable, &this_sse, 0, bsize, MIN(mbmi->tx_size, TX_16X16)); x->skip_txfm[0] = is_skippable; if (is_skippable) { this_rdc.rate = vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); } else { if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) < RDCOST(x->rdmult, x->rddiv, 0, this_sse)) { this_rdc.rate += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0); } else { this_rdc.rate = vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); this_rdc.dist = this_sse; x->skip_txfm[0] = SKIP_TXFM_AC_DC; } } if (cm->interp_filter == SWITCHABLE) { if ((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) this_rdc.rate += vp10_get_switchable_rate(cpi, xd); } } else { this_rdc.rate += cm->interp_filter == SWITCHABLE ? vp10_get_switchable_rate(cpi, xd) : 0; this_rdc.rate += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); } if (x->color_sensitivity[0] || x->color_sensitivity[1]) { int uv_rate = 0; int64_t uv_dist = 0; if (x->color_sensitivity[0]) vp10_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1); if (x->color_sensitivity[1]) vp10_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2); model_rd_for_sb_uv(cpi, bsize, x, xd, &uv_rate, &uv_dist, &var_y, &sse_y); this_rdc.rate += uv_rate; this_rdc.dist += uv_dist; } this_rdc.rate += rate_mv; this_rdc.rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]][INTER_OFFSET( this_mode)]; this_rdc.rate += ref_frame_cost[ref_frame]; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); // Skipping checking: test to see if this block can be reconstructed by // prediction only. if (cpi->allow_encode_breakout) { encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode, var_y, sse_y, yv12_mb, &this_rdc.rate, &this_rdc.dist); if (x->skip) { this_rdc.rate += rate_mv; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); } } #if CONFIG_VP9_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0) vp10_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx); #else (void)ctx; #endif if (this_rdc.rdcost < best_rdc.rdcost || x->skip) { best_rdc = this_rdc; best_mode = this_mode; best_pred_filter = mbmi->interp_filter; best_tx_size = mbmi->tx_size; best_ref_frame = ref_frame; best_mode_skip_txfm = x->skip_txfm[0]; best_early_term = this_early_term; if (reuse_inter_pred) { free_pred_buffer(best_pred); best_pred = this_mode_pred; } } else { if (reuse_inter_pred) free_pred_buffer(this_mode_pred); } if (x->skip) break; // If early termination flag is 1 and at least 2 modes are checked, // the mode search is terminated. if (best_early_term && idx > 0) { x->skip = 1; break; } } mbmi->mode = best_mode; mbmi->interp_filter = best_pred_filter; mbmi->tx_size = best_tx_size; mbmi->ref_frame[0] = best_ref_frame; mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int; xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int; x->skip_txfm[0] = best_mode_skip_txfm; // Perform intra prediction search, if the best SAD is above a certain // threshold. if (best_rdc.rdcost == INT64_MAX || (!x->skip && best_rdc.rdcost > inter_mode_thresh && bsize <= cpi->sf.max_intra_bsize)) { struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 }; const TX_SIZE intra_tx_size = MIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); int i; TX_SIZE best_intra_tx_size = TX_SIZES; if (reuse_inter_pred && best_pred != NULL) { if (best_pred->data == orig_dst.buf) { this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) vpx_highbd_convolve_copy(best_pred->data, best_pred->stride, this_mode_pred->data, this_mode_pred->stride, NULL, 0, NULL, 0, bw, bh, xd->bd); else vpx_convolve_copy(best_pred->data, best_pred->stride, this_mode_pred->data, this_mode_pred->stride, NULL, 0, NULL, 0, bw, bh); #else vpx_convolve_copy(best_pred->data, best_pred->stride, this_mode_pred->data, this_mode_pred->stride, NULL, 0, NULL, 0, bw, bh); #endif // CONFIG_VP9_HIGHBITDEPTH best_pred = this_mode_pred; } } pd->dst = orig_dst; for (i = 0; i < 4; ++i) { const PREDICTION_MODE this_mode = intra_mode_list[i]; THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; int mode_rd_thresh = rd_threshes[mode_index]; if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize])) continue; if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, rd_thresh_freq_fact[mode_index])) continue; mbmi->mode = this_mode; mbmi->ref_frame[0] = INTRA_FRAME; args.mode = this_mode; args.rate = 0; args.dist = 0; mbmi->tx_size = intra_tx_size; vp10_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, &args); this_rdc.rate = args.rate; this_rdc.dist = args.dist; this_rdc.rate += cpi->mbmode_cost[this_mode]; this_rdc.rate += ref_frame_cost[INTRA_FRAME]; this_rdc.rate += intra_cost_penalty; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); if (this_rdc.rdcost < best_rdc.rdcost) { best_rdc = this_rdc; best_mode = this_mode; best_intra_tx_size = mbmi->tx_size; best_ref_frame = INTRA_FRAME; mbmi->uv_mode = this_mode; mbmi->mv[0].as_int = INVALID_MV; best_mode_skip_txfm = x->skip_txfm[0]; } } // Reset mb_mode_info to the best inter mode. if (best_ref_frame != INTRA_FRAME) { mbmi->tx_size = best_tx_size; } else { mbmi->tx_size = best_intra_tx_size; } } pd->dst = orig_dst; mbmi->mode = best_mode; mbmi->ref_frame[0] = best_ref_frame; x->skip_txfm[0] = best_mode_skip_txfm; if (reuse_inter_pred && best_pred != NULL) { if (best_pred->data != orig_dst.buf && is_inter_mode(mbmi->mode)) { #if CONFIG_VP9_HIGHBITDEPTH if (cm->use_highbitdepth) vpx_highbd_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, pd->dst.stride, NULL, 0, NULL, 0, bw, bh, xd->bd); else vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, pd->dst.stride, NULL, 0, NULL, 0, bw, bh); #else vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, pd->dst.stride, NULL, 0, NULL, 0, bw, bh); #endif // CONFIG_VP9_HIGHBITDEPTH } } if (cpi->sf.adaptive_rd_thresh) { THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mbmi->mode)]; if (best_ref_frame == INTRA_FRAME) { // Only consider the modes that are included in the intra_mode_list. int intra_modes = sizeof(intra_mode_list)/sizeof(PREDICTION_MODE); int i; // TODO(yunqingwang): Check intra mode mask and only update freq_fact // for those valid modes. for (i = 0; i < intra_modes; i++) { update_thresh_freq_fact(cpi, tile_data, bsize, INTRA_FRAME, best_mode_idx, intra_mode_list[i]); } } else { for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { PREDICTION_MODE this_mode; if (best_ref_frame != ref_frame) continue; for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { update_thresh_freq_fact(cpi, tile_data, bsize, ref_frame, best_mode_idx, this_mode); } } } } *rd_cost = best_rdc; } void vp10_pick_inter_mode_sub8x8(VP10_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { VP10_COMMON *const cm = &cpi->common; SPEED_FEATURES *const sf = &cpi->sf; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const struct segmentation *const seg = &cm->seg; MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE; MV_REFERENCE_FRAME best_ref_frame = NONE; unsigned char segment_id = mbmi->segment_id; struct buf_2d yv12_mb[4][MAX_MB_PLANE]; static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; int64_t best_rd = INT64_MAX; b_mode_info bsi[MAX_REF_FRAMES][4]; int ref_frame_skip_mask = 0; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy; x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; ctx->pred_pixel_ready = 0; for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); int_mv dummy_mv[2]; x->pred_mv_sad[ref_frame] = INT_MAX; if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame]; const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; vp10_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); vp10_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col, NULL, NULL, mbmi_ext->mode_context); vp10_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, &dummy_mv[0], &dummy_mv[1]); } else { ref_frame_skip_mask |= (1 << ref_frame); } } mbmi->sb_type = bsize; mbmi->tx_size = TX_4X4; mbmi->uv_mode = DC_PRED; mbmi->ref_frame[0] = LAST_FRAME; mbmi->ref_frame[1] = NONE; mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { int64_t this_rd = 0; int plane; if (ref_frame_skip_mask & (1 << ref_frame)) continue; // TODO(jingning, agrange): Scaling reference frame not supported for // sub8x8 blocks. Is this supported now? if (ref_frame > INTRA_FRAME && vp10_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) continue; // If the segment reference frame feature is enabled.... // then do nothing if the current ref frame is not allowed.. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) continue; mbmi->ref_frame[0] = ref_frame; x->skip = 0; set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); // Select prediction reference frames. for (plane = 0; plane < MAX_MB_PLANE; plane++) xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane]; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { int_mv b_mv[MB_MODE_COUNT]; int64_t b_best_rd = INT64_MAX; const int i = idy * 2 + idx; PREDICTION_MODE this_mode; RD_COST this_rdc; unsigned int var_y, sse_y; struct macroblock_plane *p = &x->plane[0]; struct macroblockd_plane *pd = &xd->plane[0]; const struct buf_2d orig_src = p->src; const struct buf_2d orig_dst = pd->dst; struct buf_2d orig_pre[2]; memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre)); // set buffer pointers for sub8x8 motion search. p->src.buf = &p->src.buf[vp10_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; pd->dst.buf = &pd->dst.buf[vp10_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; pd->pre[0].buf = &pd->pre[0].buf[vp10_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)]; b_mv[ZEROMV].as_int = 0; b_mv[NEWMV].as_int = INVALID_MV; vp10_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col, &b_mv[NEARESTMV], &b_mv[NEARMV], mbmi_ext->mode_context); for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { int b_rate = 0; xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int; if (this_mode == NEWMV) { const int step_param = cpi->sf.mv.fullpel_search_step_param; MV mvp_full; MV tmp_mv; int cost_list[5]; const int tmp_col_min = x->mv_col_min; const int tmp_col_max = x->mv_col_max; const int tmp_row_min = x->mv_row_min; const int tmp_row_max = x->mv_row_max; int dummy_dist; if (i == 0) { mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3; mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3; } else { mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3; mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3; } vp10_set_mv_search_range(x, &mbmi_ext->ref_mvs[0]->as_mv); vp10_full_pixel_search( cpi, x, bsize, &mvp_full, step_param, x->sadperbit4, cond_cost_list(cpi, cost_list), &mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv, INT_MAX, 0); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; // calculate the bit cost on motion vector mvp_full.row = tmp_mv.row * 8; mvp_full.col = tmp_mv.col * 8; b_rate += vp10_mv_bit_cost(&mvp_full, &mbmi_ext->ref_mvs[ref_frame][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] [INTER_OFFSET(NEWMV)]; if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd) continue; cpi->find_fractional_mv_step(x, &tmp_mv, &mbmi_ext->ref_mvs[ref_frame][0].as_mv, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &dummy_dist, &x->pred_sse[ref_frame], NULL, 0, 0); xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv; } else { b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] [INTER_OFFSET(this_mode)]; } #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_highbd_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride, pd->dst.buf, pd->dst.stride, &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf, 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0, vp10_filter_kernels[mbmi->interp_filter], MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * (i & 0x01), mi_row * MI_SIZE + 4 * (i >> 1), xd->bd); } else { #endif vp10_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride, pd->dst.buf, pd->dst.stride, &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf, 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0, vp10_filter_kernels[mbmi->interp_filter], MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * (i & 0x01), mi_row * MI_SIZE + 4 * (i >> 1)); #if CONFIG_VP9_HIGHBITDEPTH } #endif model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, &var_y, &sse_y); this_rdc.rate += b_rate; this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); if (this_rdc.rdcost < b_best_rd) { b_best_rd = this_rdc.rdcost; bsi[ref_frame][i].as_mode = this_mode; bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv; } } // mode search // restore source and prediction buffer pointers. p->src = orig_src; pd->pre[0] = orig_pre[0]; pd->dst = orig_dst; this_rd += b_best_rd; xd->mi[0]->bmi[i] = bsi[ref_frame][i]; if (num_4x4_blocks_wide > 1) xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i]; if (num_4x4_blocks_high > 1) xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i]; } } // loop through sub8x8 blocks if (this_rd < best_rd) { best_rd = this_rd; best_ref_frame = ref_frame; } } // reference frames mbmi->tx_size = TX_4X4; mbmi->ref_frame[0] = best_ref_frame; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { const int block = idy * 2 + idx; xd->mi[0]->bmi[block] = bsi[best_ref_frame][block]; if (num_4x4_blocks_wide > 1) xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block]; if (num_4x4_blocks_high > 1) xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block]; } } mbmi->mode = xd->mi[0]->bmi[3].as_mode; ctx->mic = *(xd->mi[0]); ctx->mbmi_ext = *x->mbmi_ext; ctx->skip_txfm[0] = SKIP_TXFM_NONE; ctx->skip = 0; // Dummy assignment for speed -5. No effect in speed -6. rd_cost->rdcost = best_rd; }