ref: c3f2c8ad2a00453b63cf3fab89968ad10d9d616b
dir: /test/vp9_error_block_test.cc/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <cmath> #include <cstdlib> #include <string> #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vp9/common/vp9_entropy.h" #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { #if CONFIG_VP9_HIGHBITDEPTH const int kNumIterations = 1000; typedef int64_t (*ErrorBlockFunc)(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bps); typedef std::tr1::tuple<ErrorBlockFunc, ErrorBlockFunc, vpx_bit_depth_t> ErrorBlockParam; class ErrorBlockTest : public ::testing::TestWithParam<ErrorBlockParam> { public: virtual ~ErrorBlockTest() {} virtual void SetUp() { error_block_op_ = GET_PARAM(0); ref_error_block_op_ = GET_PARAM(1); bit_depth_ = GET_PARAM(2); } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: vpx_bit_depth_t bit_depth_; ErrorBlockFunc error_block_op_; ErrorBlockFunc ref_error_block_op_; }; TEST_P(ErrorBlockTest, OperationCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); DECLARE_ALIGNED(16, tran_low_t, coeff[4096]); DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]); int err_count_total = 0; int first_failure = -1; intptr_t block_size; int64_t ssz; int64_t ret; int64_t ref_ssz; int64_t ref_ret; const int msb = bit_depth_ + 8 - 1; for (int i = 0; i < kNumIterations; ++i) { int err_count = 0; block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64 for (int j = 0; j < block_size; j++) { // coeff and dqcoeff will always have at least the same sign, and this // can be used for optimization, so generate test input precisely. if (rnd(2)) { // Positive number coeff[j] = rnd(1 << msb); dqcoeff[j] = rnd(1 << msb); } else { // Negative number coeff[j] = -rnd(1 << msb); dqcoeff[j] = -rnd(1 << msb); } } ref_ret = ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_); ASM_REGISTER_STATE_CHECK(ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_)); err_count += (ref_ret != ret) | (ref_ssz != ssz); if (err_count && !err_count_total) { first_failure = i; } err_count_total += err_count; } EXPECT_EQ(0, err_count_total) << "Error: Error Block Test, C output doesn't match optimized output. " << "First failed at test case " << first_failure; } TEST_P(ErrorBlockTest, ExtremeValues) { ACMRandom rnd(ACMRandom::DeterministicSeed()); DECLARE_ALIGNED(16, tran_low_t, coeff[4096]); DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]); int err_count_total = 0; int first_failure = -1; intptr_t block_size; int64_t ssz; int64_t ret; int64_t ref_ssz; int64_t ref_ret; const int msb = bit_depth_ + 8 - 1; int max_val = ((1 << msb) - 1); for (int i = 0; i < kNumIterations; ++i) { int err_count = 0; int k = (i / 9) % 9; // Change the maximum coeff value, to test different bit boundaries if ( k == 8 && (i % 9) == 0 ) { max_val >>= 1; } block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64 for (int j = 0; j < block_size; j++) { if (k < 4) { // Test at positive maximum values coeff[j] = k % 2 ? max_val : 0; dqcoeff[j] = (k >> 1) % 2 ? max_val : 0; } else if (k < 8) { // Test at negative maximum values coeff[j] = k % 2 ? -max_val : 0; dqcoeff[j] = (k >> 1) % 2 ? -max_val : 0; } else { if (rnd(2)) { // Positive number coeff[j] = rnd(1 << 14); dqcoeff[j] = rnd(1 << 14); } else { // Negative number coeff[j] = -rnd(1 << 14); dqcoeff[j] = -rnd(1 << 14); } } } ref_ret = ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_); ASM_REGISTER_STATE_CHECK(ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_)); err_count += (ref_ret != ret) | (ref_ssz != ssz); if (err_count && !err_count_total) { first_failure = i; } err_count_total += err_count; } EXPECT_EQ(0, err_count_total) << "Error: Error Block Test, C output doesn't match optimized output. " << "First failed at test case " << first_failure; } using std::tr1::make_tuple; #if CONFIG_USE_X86INC int64_t wrap_vp9_highbd_block_error_8bit_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bps) { EXPECT_EQ(8, bps); return vp9_highbd_block_error_8bit_c(coeff, dqcoeff, block_size, ssz); } #if HAVE_SSE2 int64_t wrap_vp9_highbd_block_error_8bit_sse2(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bps) { EXPECT_EQ(8, bps); return vp9_highbd_block_error_8bit_sse2(coeff, dqcoeff, block_size, ssz); } INSTANTIATE_TEST_CASE_P( SSE2, ErrorBlockTest, ::testing::Values( make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c, VPX_BITS_10), make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c, VPX_BITS_12), make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c, VPX_BITS_8), make_tuple(&wrap_vp9_highbd_block_error_8bit_sse2, &wrap_vp9_highbd_block_error_8bit_c, VPX_BITS_8))); #endif // HAVE_SSE2 #if HAVE_AVX int64_t wrap_vp9_highbd_block_error_8bit_avx(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bps) { EXPECT_EQ(8, bps); return vp9_highbd_block_error_8bit_avx(coeff, dqcoeff, block_size, ssz); } INSTANTIATE_TEST_CASE_P( AVX, ErrorBlockTest, ::testing::Values( make_tuple(&wrap_vp9_highbd_block_error_8bit_avx, &wrap_vp9_highbd_block_error_8bit_c, VPX_BITS_8))); #endif // HAVE_AVX #endif // CONFIG_USE_X86INC #endif // CONFIG_VP9_HIGHBITDEPTH } // namespace