ref: c66fe1a8930cf1ad43b38dd7cb88f8ae0139b0b2
dir: /third_party/libyuv/source/compare.cc/
/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/compare.h" #include <float.h> #include <math.h> #ifdef _OPENMP #include <omp.h> #endif #include "libyuv/basic_types.h" #include "libyuv/compare_row.h" #include "libyuv/cpu_id.h" #include "libyuv/row.h" #include "libyuv/video_common.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // hash seed of 5381 recommended. LIBYUV_API uint32_t HashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) { const int kBlockSize = 1 << 15; // 32768; int remainder; uint32_t (*HashDjb2_SSE)(const uint8_t* src, int count, uint32_t seed) = HashDjb2_C; #if defined(HAS_HASHDJB2_SSE41) if (TestCpuFlag(kCpuHasSSE41)) { HashDjb2_SSE = HashDjb2_SSE41; } #endif #if defined(HAS_HASHDJB2_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { HashDjb2_SSE = HashDjb2_AVX2; } #endif while (count >= (uint64_t)(kBlockSize)) { seed = HashDjb2_SSE(src, kBlockSize, seed); src += kBlockSize; count -= kBlockSize; } remainder = (int)count & ~15; if (remainder) { seed = HashDjb2_SSE(src, remainder, seed); src += remainder; count -= remainder; } remainder = (int)count & 15; if (remainder) { seed = HashDjb2_C(src, remainder, seed); } return seed; } static uint32_t ARGBDetectRow_C(const uint8_t* argb, int width) { int x; for (x = 0; x < width - 1; x += 2) { if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB. return FOURCC_BGRA; } if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA. return FOURCC_ARGB; } if (argb[4] != 255) { // Second pixel first byte is not Alpha of 255. return FOURCC_BGRA; } if (argb[7] != 255) { // Second pixel 4th byte is not Alpha of 255. return FOURCC_ARGB; } argb += 8; } if (width & 1) { if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB. return FOURCC_BGRA; } if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA. return FOURCC_ARGB; } } return 0; } // Scan an opaque argb image and return fourcc based on alpha offset. // Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown. LIBYUV_API uint32_t ARGBDetect(const uint8_t* argb, int stride_argb, int width, int height) { uint32_t fourcc = 0; int h; // Coalesce rows. if (stride_argb == width * 4) { width *= height; height = 1; stride_argb = 0; } for (h = 0; h < height && fourcc == 0; ++h) { fourcc = ARGBDetectRow_C(argb, width); argb += stride_argb; } return fourcc; } // NEON version accumulates in 16 bit shorts which overflow at 65536 bytes. // So actual maximum is 1 less loop, which is 64436 - 32 bytes. LIBYUV_API uint64_t ComputeHammingDistance(const uint8_t* src_a, const uint8_t* src_b, int count) { const int kBlockSize = 1 << 15; // 32768; const int kSimdSize = 64; // SIMD for multiple of 64, and C for remainder int remainder = count & (kBlockSize - 1) & ~(kSimdSize - 1); uint64_t diff = 0; int i; uint32_t (*HammingDistance)(const uint8_t* src_a, const uint8_t* src_b, int count) = HammingDistance_C; #if defined(HAS_HAMMINGDISTANCE_NEON) if (TestCpuFlag(kCpuHasNEON)) { HammingDistance = HammingDistance_NEON; } #endif #if defined(HAS_HAMMINGDISTANCE_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { HammingDistance = HammingDistance_SSSE3; } #endif #if defined(HAS_HAMMINGDISTANCE_SSE42) if (TestCpuFlag(kCpuHasSSE42)) { HammingDistance = HammingDistance_SSE42; } #endif #if defined(HAS_HAMMINGDISTANCE_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { HammingDistance = HammingDistance_AVX2; } #endif #if defined(HAS_HAMMINGDISTANCE_MSA) if (TestCpuFlag(kCpuHasMSA)) { HammingDistance = HammingDistance_MSA; } #endif #ifdef _OPENMP #pragma omp parallel for reduction(+ : diff) #endif for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { diff += HammingDistance(src_a + i, src_b + i, kBlockSize); } src_a += count & ~(kBlockSize - 1); src_b += count & ~(kBlockSize - 1); if (remainder) { diff += HammingDistance(src_a, src_b, remainder); src_a += remainder; src_b += remainder; } remainder = count & (kSimdSize - 1); if (remainder) { diff += HammingDistance_C(src_a, src_b, remainder); } return diff; } // TODO(fbarchard): Refactor into row function. LIBYUV_API uint64_t ComputeSumSquareError(const uint8_t* src_a, const uint8_t* src_b, int count) { // SumSquareError returns values 0 to 65535 for each squared difference. // Up to 65536 of those can be summed and remain within a uint32_t. // After each block of 65536 pixels, accumulate into a uint64_t. const int kBlockSize = 65536; int remainder = count & (kBlockSize - 1) & ~31; uint64_t sse = 0; int i; uint32_t (*SumSquareError)(const uint8_t* src_a, const uint8_t* src_b, int count) = SumSquareError_C; #if defined(HAS_SUMSQUAREERROR_NEON) if (TestCpuFlag(kCpuHasNEON)) { SumSquareError = SumSquareError_NEON; } #endif #if defined(HAS_SUMSQUAREERROR_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { // Note only used for multiples of 16 so count is not checked. SumSquareError = SumSquareError_SSE2; } #endif #if defined(HAS_SUMSQUAREERROR_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { // Note only used for multiples of 32 so count is not checked. SumSquareError = SumSquareError_AVX2; } #endif #if defined(HAS_SUMSQUAREERROR_MSA) if (TestCpuFlag(kCpuHasMSA)) { SumSquareError = SumSquareError_MSA; } #endif #ifdef _OPENMP #pragma omp parallel for reduction(+ : sse) #endif for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { sse += SumSquareError(src_a + i, src_b + i, kBlockSize); } src_a += count & ~(kBlockSize - 1); src_b += count & ~(kBlockSize - 1); if (remainder) { sse += SumSquareError(src_a, src_b, remainder); src_a += remainder; src_b += remainder; } remainder = count & 31; if (remainder) { sse += SumSquareError_C(src_a, src_b, remainder); } return sse; } LIBYUV_API uint64_t ComputeSumSquareErrorPlane(const uint8_t* src_a, int stride_a, const uint8_t* src_b, int stride_b, int width, int height) { uint64_t sse = 0; int h; // Coalesce rows. if (stride_a == width && stride_b == width) { width *= height; height = 1; stride_a = stride_b = 0; } for (h = 0; h < height; ++h) { sse += ComputeSumSquareError(src_a, src_b, width); src_a += stride_a; src_b += stride_b; } return sse; } LIBYUV_API double SumSquareErrorToPsnr(uint64_t sse, uint64_t count) { double psnr; if (sse > 0) { double mse = (double)count / (double)sse; psnr = 10.0 * log10(255.0 * 255.0 * mse); } else { psnr = kMaxPsnr; // Limit to prevent divide by 0 } if (psnr > kMaxPsnr) { psnr = kMaxPsnr; } return psnr; } LIBYUV_API double CalcFramePsnr(const uint8_t* src_a, int stride_a, const uint8_t* src_b, int stride_b, int width, int height) { const uint64_t samples = (uint64_t)width * (uint64_t)height; const uint64_t sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b, stride_b, width, height); return SumSquareErrorToPsnr(sse, samples); } LIBYUV_API double I420Psnr(const uint8_t* src_y_a, int stride_y_a, const uint8_t* src_u_a, int stride_u_a, const uint8_t* src_v_a, int stride_v_a, const uint8_t* src_y_b, int stride_y_b, const uint8_t* src_u_b, int stride_u_b, const uint8_t* src_v_b, int stride_v_b, int width, int height) { const uint64_t sse_y = ComputeSumSquareErrorPlane( src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); const int width_uv = (width + 1) >> 1; const int height_uv = (height + 1) >> 1; const uint64_t sse_u = ComputeSumSquareErrorPlane( src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv); const uint64_t sse_v = ComputeSumSquareErrorPlane( src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv); const uint64_t samples = (uint64_t)width * (uint64_t)height + 2 * ((uint64_t)width_uv * (uint64_t)height_uv); const uint64_t sse = sse_y + sse_u + sse_v; return SumSquareErrorToPsnr(sse, samples); } static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 static double Ssim8x8_C(const uint8_t* src_a, int stride_a, const uint8_t* src_b, int stride_b) { int64_t sum_a = 0; int64_t sum_b = 0; int64_t sum_sq_a = 0; int64_t sum_sq_b = 0; int64_t sum_axb = 0; int i; for (i = 0; i < 8; ++i) { int j; for (j = 0; j < 8; ++j) { sum_a += src_a[j]; sum_b += src_b[j]; sum_sq_a += src_a[j] * src_a[j]; sum_sq_b += src_b[j] * src_b[j]; sum_axb += src_a[j] * src_b[j]; } src_a += stride_a; src_b += stride_b; } { const int64_t count = 64; // scale the constants by number of pixels const int64_t c1 = (cc1 * count * count) >> 12; const int64_t c2 = (cc2 * count * count) >> 12; const int64_t sum_a_x_sum_b = sum_a * sum_b; const int64_t ssim_n = (2 * sum_a_x_sum_b + c1) * (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2); const int64_t sum_a_sq = sum_a * sum_a; const int64_t sum_b_sq = sum_b * sum_b; const int64_t ssim_d = (sum_a_sq + sum_b_sq + c1) * (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2); if (ssim_d == 0.0) { return DBL_MAX; } return ssim_n * 1.0 / ssim_d; } } // We are using a 8x8 moving window with starting location of each 8x8 window // on the 4x4 pixel grid. Such arrangement allows the windows to overlap // block boundaries to penalize blocking artifacts. LIBYUV_API double CalcFrameSsim(const uint8_t* src_a, int stride_a, const uint8_t* src_b, int stride_b, int width, int height) { int samples = 0; double ssim_total = 0; double (*Ssim8x8)(const uint8_t* src_a, int stride_a, const uint8_t* src_b, int stride_b) = Ssim8x8_C; // sample point start with each 4x4 location int i; for (i = 0; i < height - 8; i += 4) { int j; for (j = 0; j < width - 8; j += 4) { ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b); samples++; } src_a += stride_a * 4; src_b += stride_b * 4; } ssim_total /= samples; return ssim_total; } LIBYUV_API double I420Ssim(const uint8_t* src_y_a, int stride_y_a, const uint8_t* src_u_a, int stride_u_a, const uint8_t* src_v_a, int stride_v_a, const uint8_t* src_y_b, int stride_y_b, const uint8_t* src_u_b, int stride_u_b, const uint8_t* src_v_b, int stride_v_b, int width, int height) { const double ssim_y = CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); const int width_uv = (width + 1) >> 1; const int height_uv = (height + 1) >> 1; const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv); const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv); return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v); } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif