ref: d19ea3861df82df09c51fb9ef0783dd3c761ed0d
dir: /vp9/common/vp9_loopfilter.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "vp9/common/vp9_loopfilter.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/common/vp9_reconinter.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_seg_common.h" static void lf_init_lut(loop_filter_info_n *lfi) { lfi->mode_lf_lut[DC_PRED] = 0; lfi->mode_lf_lut[D45_PRED] = 0; lfi->mode_lf_lut[D135_PRED] = 0; lfi->mode_lf_lut[D117_PRED] = 0; lfi->mode_lf_lut[D153_PRED] = 0; lfi->mode_lf_lut[D27_PRED] = 0; lfi->mode_lf_lut[D63_PRED] = 0; lfi->mode_lf_lut[V_PRED] = 0; lfi->mode_lf_lut[H_PRED] = 0; lfi->mode_lf_lut[TM_PRED] = 0; lfi->mode_lf_lut[ZEROMV] = 0; lfi->mode_lf_lut[NEARESTMV] = 1; lfi->mode_lf_lut[NEARMV] = 1; lfi->mode_lf_lut[NEWMV] = 1; } void vp9_loop_filter_update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { int i; /* For each possible value for the loop filter fill out limits */ for (i = 0; i <= MAX_LOOP_FILTER; i++) { int filt_lvl = i; int block_inside_limit = 0; /* Set loop filter paramaeters that control sharpness. */ block_inside_limit = filt_lvl >> (sharpness_lvl > 0); block_inside_limit = block_inside_limit >> (sharpness_lvl > 4); if (sharpness_lvl > 0) { if (block_inside_limit > (9 - sharpness_lvl)) block_inside_limit = (9 - sharpness_lvl); } if (block_inside_limit < 1) block_inside_limit = 1; vpx_memset(lfi->lim[i], block_inside_limit, SIMD_WIDTH); vpx_memset(lfi->blim[i], (2 * filt_lvl + block_inside_limit), SIMD_WIDTH); vpx_memset(lfi->mblim[i], (2 * (filt_lvl + 2) + block_inside_limit), SIMD_WIDTH); } } void vp9_loop_filter_init(VP9_COMMON *cm) { loop_filter_info_n *lfi = &cm->lf_info; int i; // init limits for given sharpness vp9_loop_filter_update_sharpness(lfi, cm->sharpness_level); cm->last_sharpness_level = cm->sharpness_level; // init LUT for lvl and hev thr picking lf_init_lut(lfi); // init hev threshold const vectors for (i = 0; i < 4; i++) vpx_memset(lfi->hev_thr[i], i, SIMD_WIDTH); } void vp9_loop_filter_frame_init(VP9_COMMON *cm, MACROBLOCKD *xd, int default_filt_lvl) { int seg, // segment number ref, // index in ref_lf_deltas mode; // index in mode_lf_deltas // n_shift is the a multiplier for lf_deltas // the multiplier is 1 for when filter_lvl is between 0 and 31; // 2 when filter_lvl is between 32 and 63 int n_shift = default_filt_lvl >> 5; loop_filter_info_n *lfi = &cm->lf_info; /* update limits if sharpness has changed */ // printf("vp9_loop_filter_frame_init %d\n", default_filt_lvl); // printf("sharpness level: %d [%d]\n", // cm->sharpness_level, cm->last_sharpness_level); if (cm->last_sharpness_level != cm->sharpness_level) { vp9_loop_filter_update_sharpness(lfi, cm->sharpness_level); cm->last_sharpness_level = cm->sharpness_level; } for (seg = 0; seg < MAX_MB_SEGMENTS; seg++) { int lvl_seg = default_filt_lvl; int lvl_ref, lvl_mode; // Set the baseline filter values for each segment if (vp9_segfeature_active(xd, seg, SEG_LVL_ALT_LF)) { /* Abs value */ if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA) { lvl_seg = vp9_get_segdata(xd, seg, SEG_LVL_ALT_LF); } else { /* Delta Value */ lvl_seg += vp9_get_segdata(xd, seg, SEG_LVL_ALT_LF); lvl_seg = clamp(lvl_seg, 0, 63); } } if (!xd->mode_ref_lf_delta_enabled) { /* we could get rid of this if we assume that deltas are set to * zero when not in use; encoder always uses deltas */ vpx_memset(lfi->lvl[seg][0], lvl_seg, 4 * 4); continue; } lvl_ref = lvl_seg; /* INTRA_FRAME */ ref = INTRA_FRAME; /* Apply delta for reference frame */ lvl_ref += xd->ref_lf_deltas[ref] << n_shift; mode = 0; /* all the rest of Intra modes */ lvl_mode = lvl_ref; lfi->lvl[seg][ref][mode] = clamp(lvl_mode, 0, 63); /* LAST, GOLDEN, ALT */ for (ref = 1; ref < MAX_REF_FRAMES; ref++) { int lvl_ref = lvl_seg; /* Apply delta for reference frame */ lvl_ref += xd->ref_lf_deltas[ref] << n_shift; /* Apply delta for Inter modes */ for (mode = 0; mode < MAX_MODE_LF_DELTAS; mode++) { lvl_mode = lvl_ref + (xd->mode_lf_deltas[mode] << n_shift); lfi->lvl[seg][ref][mode] = clamp(lvl_mode, 0, 63); } } } } static int build_lfi(const VP9_COMMON *cm, const MB_MODE_INFO *mbmi, struct loop_filter_info *lfi) { const loop_filter_info_n *lfi_n = &cm->lf_info; int mode = mbmi->mode; int mode_index = lfi_n->mode_lf_lut[mode]; int seg = mbmi->segment_id; int ref_frame = mbmi->ref_frame[0]; int filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; if (filter_level) { const int hev_index = filter_level >> 4; lfi->mblim = lfi_n->mblim[filter_level]; lfi->blim = lfi_n->blim[filter_level]; lfi->lim = lfi_n->lim[filter_level]; lfi->hev_thr = lfi_n->hev_thr[hev_index]; return 1; } return 0; } static void filter_selectively_vert(uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, const struct loop_filter_info *lfi) { unsigned int mask; for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= 1) { if (mask & 1) { if (mask_16x16 & 1) { vp9_mb_lpf_vertical_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); assert(!(mask_8x8 & 1)); assert(!(mask_4x4 & 1)); assert(!(mask_4x4_int & 1)); } else if (mask_8x8 & 1) { vp9_mbloop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_4x4 & 1)); } else if (mask_4x4 & 1) { vp9_loop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_8x8 & 1)); } else { assert(0); } } if (mask_4x4_int & 1) vp9_loop_filter_vertical_edge(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); s += 8; lfi++; mask_16x16 >>= 1; mask_8x8 >>= 1; mask_4x4 >>= 1; mask_4x4_int >>= 1; } } static void filter_selectively_horiz(uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, int only_4x4_1, const struct loop_filter_info *lfi) { unsigned int mask; for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= 1) { if (mask & 1) { if (!only_4x4_1) { if (mask_16x16 & 1) { vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); assert(!(mask_8x8 & 1)); assert(!(mask_4x4 & 1)); assert(!(mask_4x4_int & 1)); } else if (mask_8x8 & 1) { vp9_mbloop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_4x4 & 1)); } else if (mask_4x4 & 1) { vp9_loop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_8x8 & 1)); } else { assert(0); } } if (mask_4x4_int & 1) vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); } s += 8; lfi++; mask_16x16 >>= 1; mask_8x8 >>= 1; mask_4x4 >>= 1; mask_4x4_int >>= 1; } } static void filter_block_plane(VP9_COMMON *cm, MACROBLOCKD *xd, int plane, int mi_row, int mi_col) { const int ss_x = xd->plane[plane].subsampling_x; const int ss_y = xd->plane[plane].subsampling_y; const int row_step = 1 << xd->plane[plane].subsampling_y; const int col_step = 1 << xd->plane[plane].subsampling_x; struct buf_2d * const dst = &xd->plane[plane].dst; uint8_t* const dst0 = dst->buf; unsigned int mask_16x16[64 / MI_SIZE] = {0}; unsigned int mask_8x8[64 / MI_SIZE] = {0}; unsigned int mask_4x4[64 / MI_SIZE] = {0}; unsigned int mask_4x4_int[64 / MI_SIZE] = {0}; struct loop_filter_info lfi[64 / MI_SIZE][64 / MI_SIZE]; int r, c; MODE_INFO *mi = xd->mode_info_context; int row_step_stride = cm->mode_info_stride * row_step; for (r = 0; r < 64 / MI_SIZE && mi_row + r < cm->mi_rows; r += row_step) { unsigned int mask_16x16_c = 0; unsigned int mask_8x8_c = 0; unsigned int mask_4x4_c = 0; unsigned int border_mask; // Determine the vertical edges that need filtering for (c = 0; c < 64 / MI_SIZE && mi_col + c < cm->mi_cols; c += col_step) { const int skip_this = mi[c].mbmi.mb_skip_coeff && mi[c].mbmi.ref_frame[0] != INTRA_FRAME; // left edge of current unit is block/partition edge -> no skip const int block_edge_left = b_width_log2(mi[c].mbmi.sb_type) ? !(c & ((1 << (b_width_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1; const int skip_this_c = skip_this && !block_edge_left; // top edge of current unit is block/partition edge -> no skip const int block_edge_above = b_height_log2(mi[c].mbmi.sb_type) ? !(r & ((1 << (b_height_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1; const int skip_this_r = skip_this && !block_edge_above; const TX_SIZE tx_size = plane ? get_uv_tx_size(&mi[c].mbmi) : mi[c].mbmi.txfm_size; const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1; const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; // Filter level can vary per MI if (!build_lfi(cm, &mi[c].mbmi, lfi[r] + (c >> xd->plane[plane].subsampling_x))) continue; // Build masks based on the transform size of each block if (tx_size == TX_32X32) { if (!skip_this_c && ((c >> ss_x) & 3) == 0) { if (!skip_border_4x4_c) mask_16x16_c |= 1 << (c >> ss_x); else mask_8x8_c |= 1 << (c >> ss_x); } if (!skip_this_r && ((r >> ss_y) & 3) == 0) { if (!skip_border_4x4_r) mask_16x16[r] |= 1 << (c >> ss_x); else mask_8x8[r] |= 1 << (c >> ss_x); } } else if (tx_size == TX_16X16) { if (!skip_this_c && ((c >> ss_x) & 1) == 0) { if (!skip_border_4x4_c) mask_16x16_c |= 1 << (c >> ss_x); else mask_8x8_c |= 1 << (c >> ss_x); } if (!skip_this_r && ((r >> ss_y) & 1) == 0) { if (!skip_border_4x4_r) mask_16x16[r] |= 1 << (c >> ss_x); else mask_8x8[r] |= 1 << (c >> ss_x); } } else { // force 8x8 filtering on 32x32 boundaries if (!skip_this_c) { if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0) mask_8x8_c |= 1 << (c >> ss_x); else mask_4x4_c |= 1 << (c >> ss_x); } if (!skip_this_r) { if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0) mask_8x8[r] |= 1 << (c >> ss_x); else mask_4x4[r] |= 1 << (c >> ss_x); } if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c) mask_4x4_int[r] |= 1 << (c >> ss_x); } } // Disable filtering on the leftmost column border_mask = ~(mi_col == 0); filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask, mask_8x8_c & border_mask, mask_4x4_c & border_mask, mask_4x4_int[r], lfi[r]); dst->buf += 8 * dst->stride; mi += row_step_stride; } // Now do horizontal pass dst->buf = dst0; for (r = 0; r < 64 / MI_SIZE && mi_row + r < cm->mi_rows; r += row_step) { const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; filter_selectively_horiz(dst->buf, dst->stride, mask_16x16[r], mask_8x8[r], mask_4x4[r], mask_4x4_int_r, mi_row + r == 0, lfi[r]); dst->buf += 8 * dst->stride; } } void vp9_loop_filter_frame(VP9_COMMON *cm, MACROBLOCKD *xd, int frame_filter_level, int y_only) { int mi_row, mi_col; // Initialize the loop filter for this frame. vp9_loop_filter_frame_init(cm, xd, frame_filter_level); for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 64 / MI_SIZE) { MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 64 / MI_SIZE) { int plane; setup_dst_planes(xd, cm->frame_to_show, mi_row, mi_col); for (plane = 0; plane < (y_only ? 1 : MAX_MB_PLANE); plane++) { xd->mode_info_context = mi + mi_col; filter_block_plane(cm, xd, plane, mi_row, mi_col); } } } }