ref: d20f086be5ed4b8c6d452ed4f17104f56679d972
dir: /vp10/decoder/detokenize.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vp10/common/blockd.h" #include "vp10/common/common.h" #include "vp10/common/entropy.h" #if CONFIG_COEFFICIENT_RANGE_CHECKING #include "vp10/common/idct.h" #endif #include "vp10/decoder/detokenize.h" #define EOB_CONTEXT_NODE 0 #define ZERO_CONTEXT_NODE 1 #define ONE_CONTEXT_NODE 2 #define LOW_VAL_CONTEXT_NODE 0 #define TWO_CONTEXT_NODE 1 #define THREE_CONTEXT_NODE 2 #define HIGH_LOW_CONTEXT_NODE 3 #define CAT_ONE_CONTEXT_NODE 4 #define CAT_THREEFOUR_CONTEXT_NODE 5 #define CAT_THREE_CONTEXT_NODE 6 #define CAT_FIVE_CONTEXT_NODE 7 #define INCREMENT_COUNT(token) \ do { \ if (counts) \ ++coef_counts[band][ctx][token]; \ } while (0) static INLINE int read_coeff(const vpx_prob *probs, int n, vpx_reader *r) { int i, val = 0; for (i = 0; i < n; ++i) val = (val << 1) | vpx_read(r, probs[i]); return val; } static int decode_coefs(const MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff, TX_SIZE tx_size, const int16_t *dq, int ctx, const int16_t *scan, const int16_t *nb, vpx_reader *r) { FRAME_COUNTS *counts = xd->counts; const int max_eob = 16 << (tx_size << 1); const FRAME_CONTEXT *const fc = xd->fc; const int ref = is_inter_block(&xd->mi[0]->mbmi); int band, c = 0; const vpx_prob (*coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] = fc->coef_probs[tx_size][type][ref]; const vpx_prob *prob; unsigned int (*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1]; unsigned int (*eob_branch_count)[COEFF_CONTEXTS]; uint8_t token_cache[32 * 32]; const uint8_t *band_translate = get_band_translate(tx_size); const int dq_shift = (tx_size == TX_32X32); int v, token; int16_t dqv = dq[0]; const uint8_t *cat1_prob; const uint8_t *cat2_prob; const uint8_t *cat3_prob; const uint8_t *cat4_prob; const uint8_t *cat5_prob; const uint8_t *cat6_prob; if (counts) { coef_counts = counts->coef[tx_size][type][ref]; eob_branch_count = counts->eob_branch[tx_size][type][ref]; } #if CONFIG_VP9_HIGHBITDEPTH if (xd->bd > VPX_BITS_8) { if (xd->bd == VPX_BITS_10) { cat1_prob = vp10_cat1_prob_high10; cat2_prob = vp10_cat2_prob_high10; cat3_prob = vp10_cat3_prob_high10; cat4_prob = vp10_cat4_prob_high10; cat5_prob = vp10_cat5_prob_high10; cat6_prob = vp10_cat6_prob_high10; } else { cat1_prob = vp10_cat1_prob_high12; cat2_prob = vp10_cat2_prob_high12; cat3_prob = vp10_cat3_prob_high12; cat4_prob = vp10_cat4_prob_high12; cat5_prob = vp10_cat5_prob_high12; cat6_prob = vp10_cat6_prob_high12; } } else { cat1_prob = vp10_cat1_prob; cat2_prob = vp10_cat2_prob; cat3_prob = vp10_cat3_prob; cat4_prob = vp10_cat4_prob; cat5_prob = vp10_cat5_prob; cat6_prob = vp10_cat6_prob; } #else cat1_prob = vp10_cat1_prob; cat2_prob = vp10_cat2_prob; cat3_prob = vp10_cat3_prob; cat4_prob = vp10_cat4_prob; cat5_prob = vp10_cat5_prob; cat6_prob = vp10_cat6_prob; #endif while (c < max_eob) { int val = -1; band = *band_translate++; prob = coef_probs[band][ctx]; if (counts) ++eob_branch_count[band][ctx]; if (!vpx_read(r, prob[EOB_CONTEXT_NODE])) { INCREMENT_COUNT(EOB_MODEL_TOKEN); break; } while (!vpx_read(r, prob[ZERO_CONTEXT_NODE])) { INCREMENT_COUNT(ZERO_TOKEN); dqv = dq[1]; token_cache[scan[c]] = 0; ++c; if (c >= max_eob) return c; // zero tokens at the end (no eob token) ctx = get_coef_context(nb, token_cache, c); band = *band_translate++; prob = coef_probs[band][ctx]; } if (!vpx_read(r, prob[ONE_CONTEXT_NODE])) { INCREMENT_COUNT(ONE_TOKEN); token = ONE_TOKEN; val = 1; } else { INCREMENT_COUNT(TWO_TOKEN); token = vpx_read_tree(r, vp10_coef_con_tree, vp10_pareto8_full[prob[PIVOT_NODE] - 1]); switch (token) { case TWO_TOKEN: case THREE_TOKEN: case FOUR_TOKEN: val = token; break; case CATEGORY1_TOKEN: val = CAT1_MIN_VAL + read_coeff(cat1_prob, 1, r); break; case CATEGORY2_TOKEN: val = CAT2_MIN_VAL + read_coeff(cat2_prob, 2, r); break; case CATEGORY3_TOKEN: val = CAT3_MIN_VAL + read_coeff(cat3_prob, 3, r); break; case CATEGORY4_TOKEN: val = CAT4_MIN_VAL + read_coeff(cat4_prob, 4, r); break; case CATEGORY5_TOKEN: val = CAT5_MIN_VAL + read_coeff(cat5_prob, 5, r); break; case CATEGORY6_TOKEN: #if CONFIG_VP9_HIGHBITDEPTH switch (xd->bd) { case VPX_BITS_8: val = CAT6_MIN_VAL + read_coeff(cat6_prob, 14, r); break; case VPX_BITS_10: val = CAT6_MIN_VAL + read_coeff(cat6_prob, 16, r); break; case VPX_BITS_12: val = CAT6_MIN_VAL + read_coeff(cat6_prob, 18, r); break; default: assert(0); return -1; } #else val = CAT6_MIN_VAL + read_coeff(cat6_prob, 14, r); #endif break; } } v = (val * dqv) >> dq_shift; #if CONFIG_COEFFICIENT_RANGE_CHECKING #if CONFIG_VP9_HIGHBITDEPTH dqcoeff[scan[c]] = highbd_check_range((vpx_read_bit(r) ? -v : v), xd->bd); #else dqcoeff[scan[c]] = check_range(vpx_read_bit(r) ? -v : v); #endif // CONFIG_VP9_HIGHBITDEPTH #else dqcoeff[scan[c]] = vpx_read_bit(r) ? -v : v; #endif // CONFIG_COEFFICIENT_RANGE_CHECKING token_cache[scan[c]] = vp10_pt_energy_class[token]; ++c; ctx = get_coef_context(nb, token_cache, c); dqv = dq[1]; } return c; } // TODO(slavarnway): Decode version of vp10_set_context. Modify vp10_set_context // after testing is complete, then delete this version. static void dec_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, TX_SIZE tx_size, int has_eob, int aoff, int loff) { ENTROPY_CONTEXT *const a = pd->above_context + aoff; ENTROPY_CONTEXT *const l = pd->left_context + loff; const int tx_size_in_blocks = 1 << tx_size; // above if (has_eob && xd->mb_to_right_edge < 0) { int i; const int blocks_wide = pd->n4_w + (xd->mb_to_right_edge >> (5 + pd->subsampling_x)); int above_contexts = tx_size_in_blocks; if (above_contexts + aoff > blocks_wide) above_contexts = blocks_wide - aoff; for (i = 0; i < above_contexts; ++i) a[i] = has_eob; for (i = above_contexts; i < tx_size_in_blocks; ++i) a[i] = 0; } else { memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); } // left if (has_eob && xd->mb_to_bottom_edge < 0) { int i; const int blocks_high = pd->n4_h + (xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); int left_contexts = tx_size_in_blocks; if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff; for (i = 0; i < left_contexts; ++i) l[i] = has_eob; for (i = left_contexts; i < tx_size_in_blocks; ++i) l[i] = 0; } else { memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); } } int vp10_decode_block_tokens(MACROBLOCKD *xd, int plane, const scan_order *sc, int x, int y, TX_SIZE tx_size, vpx_reader *r, int seg_id) { struct macroblockd_plane *const pd = &xd->plane[plane]; const int16_t *const dequant = pd->seg_dequant[seg_id]; const int ctx = get_entropy_context(tx_size, pd->above_context + x, pd->left_context + y); const int eob = decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, dequant, ctx, sc->scan, sc->neighbors, r); dec_set_contexts(xd, pd, tx_size, eob > 0, x, y); return eob; }