shithub: libvpx

ref: d3ff009d841805fc39c2f8962b413bb2dd0a7618
dir: /vp9/encoder/vp9_pickmode.c/

View raw version
/*
 *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>

#include "./vp9_rtcd.h"

#include "vpx_mem/vpx_mem.h"

#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"

#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"

static void full_pixel_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
                                    BLOCK_SIZE bsize, int mi_row, int mi_col,
                                    int_mv *tmp_mv, int *rate_mv) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
  struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
  int step_param;
  int sadpb = x->sadperbit16;
  MV mvp_full;
  int ref = mbmi->ref_frame[0];
  const MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
  int i;

  int tmp_col_min = x->mv_col_min;
  int tmp_col_max = x->mv_col_max;
  int tmp_row_min = x->mv_row_min;
  int tmp_row_max = x->mv_row_max;

  const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
                                                                        ref);
  if (scaled_ref_frame) {
    int i;
    // Swap out the reference frame for a version that's been scaled to
    // match the resolution of the current frame, allowing the existing
    // motion search code to be used without additional modifications.
    for (i = 0; i < MAX_MB_PLANE; i++)
      backup_yv12[i] = xd->plane[i].pre[0];

    vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
  }

  vp9_set_mv_search_range(x, &ref_mv);

  // TODO(jingning) exploiting adaptive motion search control in non-RD
  // mode decision too.
  step_param = 6;

  for (i = LAST_FRAME; i <= LAST_FRAME && cpi->common.show_frame; ++i) {
    if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
      tmp_mv->as_int = INVALID_MV;

      if (scaled_ref_frame) {
        int i;
        for (i = 0; i < MAX_MB_PLANE; i++)
          xd->plane[i].pre[0] = backup_yv12[i];
      }
      return;
    }
  }
  assert(x->mv_best_ref_index[ref] <= 2);
  if (x->mv_best_ref_index[ref] < 2)
    mvp_full = mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
  else
    mvp_full = x->pred_mv[ref];

  mvp_full.col >>= 3;
  mvp_full.row >>= 3;

  full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb, &ref_mv,
                    &tmp_mv->as_mv, INT_MAX, 0);

  x->mv_col_min = tmp_col_min;
  x->mv_col_max = tmp_col_max;
  x->mv_row_min = tmp_row_min;
  x->mv_row_max = tmp_row_max;

  if (scaled_ref_frame) {
    int i;
    for (i = 0; i < MAX_MB_PLANE; i++)
      xd->plane[i].pre[0] = backup_yv12[i];
  }

  // calculate the bit cost on motion vector
  mvp_full.row = tmp_mv->as_mv.row * 8;
  mvp_full.col = tmp_mv->as_mv.col * 8;
  *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
                             x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
}

static void sub_pixel_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
                                    BLOCK_SIZE bsize, int mi_row, int mi_col,
                                    MV *tmp_mv) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
  struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
  int ref = mbmi->ref_frame[0];
  MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
  int dis;

  const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
                                                                        ref);
  if (scaled_ref_frame) {
    int i;
    // Swap out the reference frame for a version that's been scaled to
    // match the resolution of the current frame, allowing the existing
    // motion search code to be used without additional modifications.
    for (i = 0; i < MAX_MB_PLANE; i++)
      backup_yv12[i] = xd->plane[i].pre[0];

    vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
  }

  cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv,
                               cpi->common.allow_high_precision_mv,
                               x->errorperbit,
                               &cpi->fn_ptr[bsize],
                               cpi->sf.subpel_force_stop,
                               cpi->sf.subpel_iters_per_step,
                               x->nmvjointcost, x->mvcost,
                               &dis, &x->pred_sse[ref]);

  if (scaled_ref_frame) {
    int i;
    for (i = 0; i < MAX_MB_PLANE; i++)
      xd->plane[i].pre[0] = backup_yv12[i];
  }

  x->pred_mv[ref] = *tmp_mv;
}

static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
                              MACROBLOCK *x, MACROBLOCKD *xd,
                              int *out_rate_sum, int64_t *out_dist_sum,
                              unsigned int *var_y, unsigned int *sse_y) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  unsigned int sse;
  int rate;
  int64_t dist;

  struct macroblock_plane *const p = &x->plane[0];
  struct macroblockd_plane *const pd = &xd->plane[0];

  unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
                                           pd->dst.buf, pd->dst.stride, &sse);

  *var_y = var;
  *sse_y = sse;

  // TODO(jingning) This is a temporary solution to account for frames with
  // light changes. Need to customize the rate-distortion modeling for non-RD
  // mode decision.
  if ((sse >> 3) > var)
    sse = var;

  vp9_model_rd_from_var_lapndz(var + sse, 1 << num_pels_log2_lookup[bsize],
                               pd->dequant[1] >> 3, &rate, &dist);
  *out_rate_sum = rate;
  *out_dist_sum = dist << 3;
}

// TODO(jingning) placeholder for inter-frame non-RD mode decision.
// this needs various further optimizations. to be continued..
int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
                            const TileInfo *const tile,
                            int mi_row, int mi_col,
                            int *returnrate,
                            int64_t *returndistortion,
                            BLOCK_SIZE bsize) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
  struct macroblock_plane *const p = &x->plane[0];
  struct macroblockd_plane *const pd = &xd->plane[0];
  PREDICTION_MODE this_mode, best_mode = ZEROMV;
  MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
  INTERP_FILTER best_pred_filter = EIGHTTAP;
  int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
  struct buf_2d yv12_mb[4][MAX_MB_PLANE];
  static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
                                    VP9_ALT_FLAG };
  int64_t best_rd = INT64_MAX;
  int64_t this_rd = INT64_MAX;

  int rate = INT_MAX;
  int64_t dist = INT64_MAX;
  // var_y and sse_y are saved to be used in skipping checking
  unsigned int var_y = UINT_MAX;
  unsigned int sse_y = UINT_MAX;

  VP9_COMMON *cm = &cpi->common;
  int intra_cost_penalty = 20 * vp9_dc_quant(cm->base_qindex, cm->y_dc_delta_q);

  const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
                                           intra_cost_penalty, 0);
  const int64_t intra_mode_cost = 50;

  unsigned char segment_id = mbmi->segment_id;
  const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
  const int *const rd_thresh_freq_fact = cpi->rd.thresh_freq_fact[bsize];
  // Mode index conversion form THR_MODES to PREDICTION_MODE for a ref frame.
  int mode_idx[MB_MODE_COUNT] = {0};
  INTERP_FILTER filter_ref = SWITCHABLE;
  int bsl = mi_width_log2_lookup[bsize];
  int pred_filter_search = (((mi_row + mi_col) >> bsl) +
                            cpi->sf.chessboard_index) & 0x01;

  x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;

  x->skip = 0;

  // initialize mode decisions
  *returnrate = INT_MAX;
  *returndistortion = INT64_MAX;
  vpx_memset(mbmi, 0, sizeof(MB_MODE_INFO));
  mbmi->sb_type = bsize;
  mbmi->ref_frame[0] = NONE;
  mbmi->ref_frame[1] = NONE;
  mbmi->tx_size = MIN(max_txsize_lookup[bsize],
                      tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
  mbmi->interp_filter = cpi->common.interp_filter == SWITCHABLE ?
                        EIGHTTAP : cpi->common.interp_filter;
  mbmi->skip = 0;
  mbmi->segment_id = segment_id;

  for (ref_frame = LAST_FRAME; ref_frame <= LAST_FRAME ; ++ref_frame) {
    x->pred_mv_sad[ref_frame] = INT_MAX;
    if (cpi->ref_frame_flags & flag_list[ref_frame]) {
      vp9_setup_buffer_inter(cpi, x, tile,
                             ref_frame, bsize, mi_row, mi_col,
                             frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
    }
    frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
    frame_mv[ZEROMV][ref_frame].as_int = 0;
  }

  if (xd->up_available)
    filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
  else if (xd->left_available)
    filter_ref = xd->mi[-1]->mbmi.interp_filter;

  for (ref_frame = LAST_FRAME; ref_frame <= LAST_FRAME ; ++ref_frame) {
    if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
      continue;

    // Select prediction reference frames.
    xd->plane[0].pre[0] = yv12_mb[ref_frame][0];

    clamp_mv2(&frame_mv[NEARESTMV][ref_frame].as_mv, xd);
    clamp_mv2(&frame_mv[NEARMV][ref_frame].as_mv, xd);

    mbmi->ref_frame[0] = ref_frame;

    // Set conversion index for LAST_FRAME.
    if (ref_frame == LAST_FRAME) {
      mode_idx[NEARESTMV] = THR_NEARESTMV;   // LAST_FRAME, NEARESTMV
      mode_idx[NEARMV] = THR_NEARMV;         // LAST_FRAME, NEARMV
      mode_idx[ZEROMV] = THR_ZEROMV;         // LAST_FRAME, ZEROMV
      mode_idx[NEWMV] = THR_NEWMV;           // LAST_FRAME, NEWMV
    }

    for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
      int rate_mv = 0;

      if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
        continue;

      if (rd_less_than_thresh(best_rd, rd_threshes[mode_idx[this_mode]],
                              rd_thresh_freq_fact[this_mode]))
        continue;

      if (this_mode == NEWMV) {
        int rate_mode = 0;
        if (this_rd < (int64_t)(1 << num_pels_log2_lookup[bsize]))
          continue;

        full_pixel_motion_search(cpi, x, bsize, mi_row, mi_col,
                                 &frame_mv[NEWMV][ref_frame], &rate_mv);

        if (frame_mv[NEWMV][ref_frame].as_int == INVALID_MV)
          continue;

        rate_mode = cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
                                        [INTER_OFFSET(this_mode)];
        if (RDCOST(x->rdmult, x->rddiv, rate_mv + rate_mode, 0) > best_rd)
          continue;

        sub_pixel_motion_search(cpi, x, bsize, mi_row, mi_col,
                                &frame_mv[NEWMV][ref_frame].as_mv);
      }

      if (this_mode != NEARESTMV)
        if (frame_mv[this_mode][ref_frame].as_int ==
            frame_mv[NEARESTMV][ref_frame].as_int)
          continue;

      mbmi->mode = this_mode;
      mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;

      // Search for the best prediction filter type, when the resulting
      // motion vector is at sub-pixel accuracy level for luma component, i.e.,
      // the last three bits are all zeros.
      if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
          pred_filter_search &&
          ((mbmi->mv[0].as_mv.row & 0x07) != 0 ||
           (mbmi->mv[0].as_mv.col & 0x07) != 0)) {
        int pf_rate[3];
        int64_t pf_dist[3];
        unsigned int pf_var[3];
        unsigned int pf_sse[3];
        int64_t best_cost = INT64_MAX;
        INTERP_FILTER best_filter = SWITCHABLE, filter;

        for (filter = EIGHTTAP; filter <= EIGHTTAP_SHARP; ++filter) {
          int64_t cost;
          mbmi->interp_filter = filter;
          vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
          model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter],
                            &pf_dist[filter], &pf_var[filter], &pf_sse[filter]);
          cost = RDCOST(x->rdmult, x->rddiv,
                        vp9_get_switchable_rate(cpi) + pf_rate[filter],
                        pf_dist[filter]);
          if (cost < best_cost) {
              best_filter = filter;
              best_cost = cost;
          }
        }

        mbmi->interp_filter = best_filter;
        rate = pf_rate[mbmi->interp_filter];
        dist = pf_dist[mbmi->interp_filter];
        var_y = pf_var[mbmi->interp_filter];
        sse_y = pf_sse[mbmi->interp_filter];
      } else {
        mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP: filter_ref;
        vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
        model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y);
      }

      rate += rate_mv;
      rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
                                [INTER_OFFSET(this_mode)];
      this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);

      // Skipping checking: test to see if this block can be reconstructed by
      // prediction only.
      if (!x->in_active_map) {
        x->skip = 1;
      } else if (cpi->allow_encode_breakout && x->encode_breakout) {
        const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
        unsigned int var = var_y, sse = sse_y;
        // Skipping threshold for ac.
        unsigned int thresh_ac;
        // Skipping threshold for dc.
        unsigned int thresh_dc;
        // Set a maximum for threshold to avoid big PSNR loss in low bit rate
        // case. Use extreme low threshold for static frames to limit skipping.
        const unsigned int max_thresh = 36000;
        // The encode_breakout input
        const unsigned int min_thresh =
            MIN(((unsigned int)x->encode_breakout << 4), max_thresh);

        // Calculate threshold according to dequant value.
        thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9;
        thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);

        // Adjust ac threshold according to partition size.
        thresh_ac >>= 8 - (b_width_log2_lookup[bsize] +
            b_height_log2_lookup[bsize]);

        thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);

        // Y skipping condition checking for ac and dc.
        if (var <= thresh_ac && (sse - var) <= thresh_dc) {
          unsigned int sse_u, sse_v;
          unsigned int var_u, var_v;

          // Skip u v prediction for less calculation, that won't affect
          // result much.
          var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
                                          x->plane[1].src.stride,
                                          xd->plane[1].dst.buf,
                                          xd->plane[1].dst.stride, &sse_u);

          // U skipping condition checking
          if ((var_u * 4 <= thresh_ac) && (sse_u - var_u <= thresh_dc)) {
            var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
                                            x->plane[2].src.stride,
                                            xd->plane[2].dst.buf,
                                            xd->plane[2].dst.stride, &sse_v);

            // V skipping condition checking
            if ((var_v * 4 <= thresh_ac) && (sse_v - var_v <= thresh_dc)) {
              x->skip = 1;

              // The cost of skip bit needs to be added.
              rate = rate_mv;
              rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
                                           [INTER_OFFSET(this_mode)];

              // More on this part of rate
              // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);

              // Scaling factor for SSE from spatial domain to frequency
              // domain is 16. Adjust distortion accordingly.
              // TODO(yunqingwang): In this function, only y-plane dist is
              // calculated.
              dist = (sse << 4);  // + ((sse_u + sse_v) << 4);
              this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
              // *disable_skip = 1;
            }
          }
        }
      }

      if (this_rd < best_rd || x->skip) {
        best_rd = this_rd;
        *returnrate = rate;
        *returndistortion = dist;
        best_mode = this_mode;
        best_pred_filter = mbmi->interp_filter;
        best_ref_frame = ref_frame;
      }

      if (x->skip)
        break;
    }
  }

  mbmi->mode = best_mode;
  mbmi->interp_filter = best_pred_filter;
  mbmi->ref_frame[0] = best_ref_frame;
  mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
  xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;

  // Perform intra prediction search, if the best SAD is above a certain
  // threshold.
  if (!x->skip && best_rd > inter_mode_thresh &&
      bsize < cpi->sf.max_intra_bsize) {
    for (this_mode = DC_PRED; this_mode <= DC_PRED; ++this_mode) {
      vp9_predict_intra_block(xd, 0, b_width_log2(bsize),
                              mbmi->tx_size, this_mode,
                              &p->src.buf[0], p->src.stride,
                              &pd->dst.buf[0], pd->dst.stride, 0, 0, 0);

      model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y);
      rate += cpi->mbmode_cost[this_mode];
      rate += intra_cost_penalty;
      this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);

      if (this_rd + intra_mode_cost < best_rd) {
        best_rd = this_rd;
        *returnrate = rate;
        *returndistortion = dist;
        mbmi->mode = this_mode;
        mbmi->ref_frame[0] = INTRA_FRAME;
        mbmi->uv_mode = this_mode;
        mbmi->mv[0].as_int = INVALID_MV;
      }
    }
  }

  return INT64_MAX;
}