ref: d5f6ca82556239f5c2c53daf8f9d4ce281d3c5d0
dir: /vp9/encoder/vp9_encodemb.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vp9_rtcd.h" #include "./vpx_config.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/encoder/vp9_dct.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/encoder/vp9_tokenize.h" void vp9_setup_interp_filters(MACROBLOCKD *xd, INTERPOLATION_TYPE mcomp_filter_type, VP9_COMMON *cm) { if (xd->mi_8x8 && xd->mi_8x8[0]) { MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; set_scale_factors(xd, mbmi->ref_frame[0] - LAST_FRAME, mbmi->ref_frame[1] - LAST_FRAME, cm->active_ref_scale); } else { set_scale_factors(xd, -1, -1, cm->active_ref_scale); } xd->subpix.filter_x = xd->subpix.filter_y = vp9_get_filter_kernel(mcomp_filter_type == SWITCHABLE ? EIGHTTAP : mcomp_filter_type); assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); } void vp9_subtract_block_c(int rows, int cols, int16_t *diff_ptr, ptrdiff_t diff_stride, const uint8_t *src_ptr, ptrdiff_t src_stride, const uint8_t *pred_ptr, ptrdiff_t pred_stride) { int r, c; for (r = 0; r < rows; r++) { for (c = 0; c < cols; c++) diff_ptr[c] = src_ptr[c] - pred_ptr[c]; diff_ptr += diff_stride; pred_ptr += pred_stride; src_ptr += src_stride; } } static void subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; vp9_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } void vp9_subtract_sby(MACROBLOCK *x, BLOCK_SIZE bsize) { subtract_plane(x, bsize, 0); } void vp9_subtract_sbuv(MACROBLOCK *x, BLOCK_SIZE bsize) { int i; for (i = 1; i < MAX_MB_PLANE; i++) subtract_plane(x, bsize, i); } void vp9_subtract_sb(MACROBLOCK *x, BLOCK_SIZE bsize) { vp9_subtract_sby(x, bsize); vp9_subtract_sbuv(x, bsize); } #define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF) typedef struct vp9_token_state vp9_token_state; struct vp9_token_state { int rate; int error; int next; signed char token; short qc; }; // TODO(jimbankoski): experiment to find optimal RD numbers. #define Y1_RD_MULT 4 #define UV_RD_MULT 2 static const int plane_rd_mult[4] = { Y1_RD_MULT, UV_RD_MULT, }; #define UPDATE_RD_COST()\ {\ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ if (rd_cost0 == rd_cost1) {\ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ }\ } // This function is a place holder for now but may ultimately need // to scan previous tokens to work out the correct context. static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb, int idx, int token, uint8_t *token_cache) { int bak = token_cache[scan[idx]], pt; token_cache[scan[idx]] = vp9_pt_energy_class[token]; pt = get_coef_context(nb, token_cache, idx + 1); token_cache[scan[idx]] = bak; return pt; } static void optimize_b(MACROBLOCK *mb, int plane, int block, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, TX_SIZE tx_size) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblockd_plane *pd = &xd->plane[plane]; const int ref = is_inter_block(&xd->mi_8x8[0]->mbmi); vp9_token_state tokens[1025][2]; unsigned best_index[1025][2]; const int16_t *coeff_ptr = BLOCK_OFFSET(mb->plane[plane].coeff, block); int16_t *qcoeff_ptr; int16_t *dqcoeff_ptr; int eob = pd->eobs[block], final_eob, sz = 0; const int i0 = 0; int rc, x, next, i; int64_t rdmult, rddiv, rd_cost0, rd_cost1; int rate0, rate1, error0, error1, t0, t1; int best, band, pt; PLANE_TYPE type = pd->plane_type; int err_mult = plane_rd_mult[type]; const int default_eob = 16 << (tx_size << 1); const int mul = 1 + (tx_size == TX_32X32); uint8_t token_cache[1024]; const int16_t *dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); const scan_order *so = get_scan(xd, tx_size, type, block); const int16_t *scan = so->scan; const int16_t *nb = so->neighbors; assert((!type && !plane) || (type && plane)); dqcoeff_ptr = BLOCK_OFFSET(pd->dqcoeff, block); qcoeff_ptr = BLOCK_OFFSET(pd->qcoeff, block); assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if (!is_inter_block(&mb->e_mbd.mi_8x8[0]->mbmi)) rdmult = (rdmult * 9) >> 4; rddiv = mb->rddiv; /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = 0; i < eob; i++) token_cache[scan[i]] = vp9_pt_energy_class[vp9_dct_value_tokens_ptr[ qcoeff_ptr[scan[i]]].token]; for (i = eob; i-- > i0;) { int base_bits, d2, dx; rc = scan[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp9_dct_value_tokens_ptr + x)->token; /* Consider both possible successor states. */ if (next < default_eob) { band = band_translate[i + 1]; pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][band][0][pt] [tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][ref][band][0][pt] [tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]); d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) && (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul + dequant_ptr[rc != 0])) shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; } else { t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token; } if (next < default_eob) { band = band_translate[i + 1]; if (t0 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt] [tokens[next][0].token]; } if (t1 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache); rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt] [tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); if (shortcut) { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } else { /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ band = band_translate[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][ref][band][1][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][ref][band][1][0][t1]; tokens[next][1].token = ZERO_TOKEN; } best_index[i][0] = best_index[i][1] = 0; /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = band_translate[i + 1]; pt = combine_entropy_contexts(*a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][ref][band][0][pt][t0]; rate1 += mb->token_costs[tx_size][type][ref][band][0][pt][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = i0 - 1; vpx_memset(qcoeff_ptr, 0, sizeof(*qcoeff_ptr) * (16 << (tx_size * 2))); vpx_memset(dqcoeff_ptr, 0, sizeof(*dqcoeff_ptr) * (16 << (tx_size * 2))); for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) { final_eob = i; } rc = scan[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul; next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; xd->plane[plane].eobs[block] = final_eob; *a = *l = (final_eob > 0); } void vp9_optimize_b(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, MACROBLOCK *mb, struct optimize_ctx *ctx) { int x, y; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); optimize_b(mb, plane, block, plane_bsize, &ctx->ta[plane][x], &ctx->tl[plane][y], tx_size); } static void optimize_init_b(int plane, BLOCK_SIZE bsize, struct encode_b_args *args) { const MACROBLOCKD *xd = &args->x->e_mbd; const struct macroblockd_plane* const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi; const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->tx_size; vp9_get_entropy_contexts(tx_size, args->ctx->ta[plane], args->ctx->tl[plane], pd->above_context, pd->left_context, num_4x4_w, num_4x4_h); } void vp9_xform_quant(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args* const args = arg; MACROBLOCK* const x = args->x; MACROBLOCKD* const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t *coeff = BLOCK_OFFSET(p->coeff, block); int16_t *qcoeff = BLOCK_OFFSET(pd->qcoeff, block); int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const scan_order *so; uint16_t *eob = &pd->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; int i, j; int16_t *src_diff; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j); src_diff = &p->src_diff[4 * (j * diff_stride + i)]; switch (tx_size) { case TX_32X32: so = &vp9_default_scan_orders[TX_32X32]; if (x->use_lp32x32fdct) vp9_fdct32x32_rd(src_diff, coeff, diff_stride); else vp9_fdct32x32(src_diff, coeff, diff_stride); vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); break; case TX_16X16: so = &vp9_default_scan_orders[TX_16X16]; vp9_fdct16x16(src_diff, coeff, diff_stride); vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); break; case TX_8X8: so = &vp9_default_scan_orders[TX_8X8]; vp9_fdct8x8(src_diff, coeff, diff_stride); vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); break; case TX_4X4: so = &vp9_default_scan_orders[TX_4X4]; x->fwd_txm4x4(src_diff, coeff, diff_stride); vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); break; default: assert(0); } } static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx *const ctx = args->ctx; struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); int i, j; uint8_t *dst; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j); dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i]; // TODO(jingning): per transformed block zero forcing only enabled for // luma component. will integrate chroma components as well. if (x->zcoeff_blk[tx_size][block] && plane == 0) { pd->eobs[block] = 0; ctx->ta[plane][i] = 0; ctx->tl[plane][j] = 0; return; } if (!x->skip_recode) vp9_xform_quant(plane, block, plane_bsize, tx_size, arg); if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { vp9_optimize_b(plane, block, plane_bsize, tx_size, x, ctx); } else { ctx->ta[plane][i] = pd->eobs[block] > 0; ctx->tl[plane][j] = pd->eobs[block] > 0; } if (x->skip_encode || pd->eobs[block] == 0) return; switch (tx_size) { case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]); break; case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]); break; case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]); break; case TX_4X4: // this is like vp9_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. xd->itxm_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]); break; default: assert(!"Invalid transform size"); } } static void encode_block_pass1(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); int i, j; uint8_t *dst; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j); dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i]; vp9_xform_quant(plane, block, plane_bsize, tx_size, arg); if (pd->eobs[block] == 0) return; xd->itxm_add(dqcoeff, dst, pd->dst.stride, pd->eobs[block]); } void vp9_encode_sby(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {x, &ctx}; vp9_subtract_sby(x, bsize); if (x->optimize) optimize_init_b(0, bsize, &arg); foreach_transformed_block_in_plane(xd, bsize, 0, encode_block_pass1, &arg); } void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {x, &ctx}; if (!x->skip_recode) vp9_subtract_sb(x, bsize); if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) optimize_init_b(i, bsize, &arg); } foreach_transformed_block(xd, bsize, encode_block, &arg); } void vp9_encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args* const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t *coeff = BLOCK_OFFSET(p->coeff, block); int16_t *qcoeff = BLOCK_OFFSET(pd->qcoeff, block); int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const scan_order *so; TX_TYPE tx_type; MB_PREDICTION_MODE mode; const int bwl = b_width_log2(plane_bsize); const int diff_stride = 4 * (1 << bwl); uint8_t *src, *dst; int16_t *src_diff; uint16_t *eob = &pd->eobs[block]; int i, j; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j); dst = &pd->dst.buf[4 * (j * pd->dst.stride + i)]; src = &p->src.buf[4 * (j * p->src.stride + i)]; src_diff = &p->src_diff[4 * (j * diff_stride + i)]; if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) extend_for_intra(xd, plane_bsize, plane, i, j); // if (x->optimize) // vp9_optimize_b(plane, block, plane_bsize, tx_size, x, args->ctx); switch (tx_size) { case TX_32X32: so = &vp9_default_scan_orders[TX_32X32]; mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; block >>= 6; vp9_predict_intra_block(xd, block, bwl, TX_32X32, mode, dst, pd->dst.stride, dst, pd->dst.stride); if (!x->skip_recode) { vp9_subtract_block(32, 32, src_diff, diff_stride, src, p->src.stride, dst, pd->dst.stride); if (x->use_lp32x32fdct) vp9_fdct32x32_rd(src_diff, coeff, diff_stride); else vp9_fdct32x32(src_diff, coeff, diff_stride); vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); } if (!x->skip_encode && *eob) vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, *eob); break; case TX_16X16: tx_type = get_tx_type_16x16(pd->plane_type, xd); so = &vp9_scan_orders[TX_16X16][tx_type]; mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; block >>= 4; vp9_predict_intra_block(xd, block, bwl, TX_16X16, mode, dst, pd->dst.stride, dst, pd->dst.stride); if (!x->skip_recode) { vp9_subtract_block(16, 16, src_diff, diff_stride, src, p->src.stride, dst, pd->dst.stride); vp9_fht16x16(tx_type, src_diff, coeff, diff_stride); vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); } if (!x->skip_encode && *eob) vp9_iht16x16_add(tx_type, dqcoeff, dst, pd->dst.stride, *eob); break; case TX_8X8: tx_type = get_tx_type_8x8(pd->plane_type, xd); so = &vp9_scan_orders[TX_8X8][tx_type]; mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; block >>= 2; vp9_predict_intra_block(xd, block, bwl, TX_8X8, mode, dst, pd->dst.stride, dst, pd->dst.stride); if (!x->skip_recode) { vp9_subtract_block(8, 8, src_diff, diff_stride, src, p->src.stride, dst, pd->dst.stride); vp9_fht8x8(tx_type, src_diff, coeff, diff_stride); vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); } if (!x->skip_encode && *eob) vp9_iht8x8_add(tx_type, dqcoeff, dst, pd->dst.stride, *eob); break; case TX_4X4: tx_type = get_tx_type_4x4(pd->plane_type, xd, block); so = &vp9_scan_orders[TX_4X4][tx_type]; if (mbmi->sb_type < BLOCK_8X8 && plane == 0) mode = xd->mi_8x8[0]->bmi[block].as_mode; else mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode, dst, pd->dst.stride, dst, pd->dst.stride); if (!x->skip_recode) { vp9_subtract_block(4, 4, src_diff, diff_stride, src, p->src.stride, dst, pd->dst.stride); if (tx_type != DCT_DCT) vp9_short_fht4x4(src_diff, coeff, diff_stride, tx_type); else x->fwd_txm4x4(src_diff, coeff, diff_stride); vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, so->scan, so->iscan); } if (!x->skip_encode && *eob) { if (tx_type == DCT_DCT) // this is like vp9_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. xd->itxm_add(dqcoeff, dst, pd->dst.stride, *eob); else vp9_iht4x4_16_add(dqcoeff, dst, pd->dst.stride, tx_type); } break; default: assert(0); } } void vp9_encode_intra_block_y(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD* const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {x, &ctx}; foreach_transformed_block_in_plane(xd, bsize, 0, vp9_encode_block_intra, &arg); } void vp9_encode_intra_block_uv(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD* const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {x, &ctx}; foreach_transformed_block_uv(xd, bsize, vp9_encode_block_intra, &arg); } int vp9_encode_intra(MACROBLOCK *x, int use_16x16_pred) { MB_MODE_INFO * mbmi = &x->e_mbd.mi_8x8[0]->mbmi; x->skip_encode = 0; mbmi->mode = DC_PRED; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->tx_size = use_16x16_pred ? (mbmi->sb_type >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; vp9_encode_intra_block_y(x, mbmi->sb_type); return vp9_get_mb_ss(x->plane[0].src_diff); }