ref: db14911ccb7e278357e76bfb3f1e7536b99bc889
dir: /vp10/decoder/decodeframe.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <stdlib.h> // qsort() #include "./vp10_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vpx_dsp/bitreader_buffer.h" #include "vpx_dsp/bitreader.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/mem_ops.h" #include "vpx_scale/vpx_scale.h" #include "vpx_util/vpx_thread.h" #include "vp10/common/alloccommon.h" #include "vp10/common/common.h" #include "vp10/common/entropy.h" #include "vp10/common/entropymode.h" #include "vp10/common/idct.h" #include "vp10/common/thread_common.h" #include "vp10/common/pred_common.h" #include "vp10/common/quant_common.h" #include "vp10/common/reconintra.h" #include "vp10/common/reconinter.h" #include "vp10/common/seg_common.h" #include "vp10/common/tile_common.h" #include "vp10/decoder/decodeframe.h" #include "vp10/decoder/detokenize.h" #include "vp10/decoder/decodemv.h" #include "vp10/decoder/decoder.h" #include "vp10/decoder/dsubexp.h" #define MAX_VP9_HEADER_SIZE 80 static int is_compound_reference_allowed(const VP10_COMMON *cm) { int i; for (i = 1; i < REFS_PER_FRAME; ++i) if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; return 0; } static void setup_compound_reference_mode(VP10_COMMON *cm) { if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } } static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return len != 0 && len <= (size_t)(end - start); } static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) { const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(vpx_reader *r) { TX_MODE tx_mode = vpx_read_literal(r, 2); if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r); return tx_mode; } static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 3; ++j) vp10_diff_update_prob(r, &tx_probs->p8x8[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 2; ++j) vp10_diff_update_prob(r, &tx_probs->p16x16[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 1; ++j) vp10_diff_update_prob(r, &tx_probs->p32x32[i][j]); } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp10_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) vp10_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } static REFERENCE_MODE read_frame_reference_mode(const VP10_COMMON *cm, vpx_reader *r) { if (is_compound_reference_allowed(cm)) { return vpx_read_bit(r) ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE) : SINGLE_REFERENCE; } else { return SINGLE_REFERENCE; } } static void read_frame_reference_mode_probs(VP10_COMMON *cm, vpx_reader *r) { FRAME_CONTEXT *const fc = cm->fc; int i; if (cm->reference_mode == REFERENCE_MODE_SELECT) for (i = 0; i < COMP_INTER_CONTEXTS; ++i) vp10_diff_update_prob(r, &fc->comp_inter_prob[i]); if (cm->reference_mode != COMPOUND_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) { vp10_diff_update_prob(r, &fc->single_ref_prob[i][0]); vp10_diff_update_prob(r, &fc->single_ref_prob[i][1]); } if (cm->reference_mode != SINGLE_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) vp10_diff_update_prob(r, &fc->comp_ref_prob[i]); } static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) { int i; for (i = 0; i < n; ++i) if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1; } static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) { int i, j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); update_mv_probs(comp_ctx->fp, 3, r); } if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void inverse_transform_block_inter(MACROBLOCKD* xd, int plane, const TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; if (eob > 0) { tran_low_t *const dqcoeff = pd->dqcoeff; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { if (xd->lossless) { vp10_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd); } else { switch (tx_size) { case TX_4X4: vp10_highbd_idct4x4_add(dqcoeff, dst, stride, eob, xd->bd); break; case TX_8X8: vp10_highbd_idct8x8_add(dqcoeff, dst, stride, eob, xd->bd); break; case TX_16X16: vp10_highbd_idct16x16_add(dqcoeff, dst, stride, eob, xd->bd); break; case TX_32X32: vp10_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd); break; default: assert(0 && "Invalid transform size"); } } } else { if (xd->lossless) { vp10_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp10_idct4x4_add(dqcoeff, dst, stride, eob); break; case TX_8X8: vp10_idct8x8_add(dqcoeff, dst, stride, eob); break; case TX_16X16: vp10_idct16x16_add(dqcoeff, dst, stride, eob); break; case TX_32X32: vp10_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } } #else if (xd->lossless) { vp10_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp10_idct4x4_add(dqcoeff, dst, stride, eob); break; case TX_8X8: vp10_idct8x8_add(dqcoeff, dst, stride, eob); break; case TX_16X16: vp10_idct16x16_add(dqcoeff, dst, stride, eob); break; case TX_32X32: vp10_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } #endif // CONFIG_VP9_HIGHBITDEPTH if (eob == 1) { dqcoeff[0] = 0; } else { if (tx_size <= TX_16X16 && eob <= 10) memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } } } static void inverse_transform_block_intra(MACROBLOCKD* xd, int plane, const TX_TYPE tx_type, const TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; if (eob > 0) { tran_low_t *const dqcoeff = pd->dqcoeff; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { if (xd->lossless) { vp10_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd); } else { switch (tx_size) { case TX_4X4: vp10_highbd_iht4x4_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); break; case TX_8X8: vp10_highbd_iht8x8_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); break; case TX_16X16: vp10_highbd_iht16x16_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); break; case TX_32X32: vp10_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd); break; default: assert(0 && "Invalid transform size"); } } } else { if (xd->lossless) { vp10_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp10_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_8X8: vp10_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: vp10_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: vp10_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } } #else if (xd->lossless) { vp10_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp10_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_8X8: vp10_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: vp10_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: vp10_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } #endif // CONFIG_VP9_HIGHBITDEPTH if (eob == 1) { dqcoeff[0] = 0; } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } } } static void predict_and_reconstruct_intra_block(MACROBLOCKD *const xd, vpx_reader *r, MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) { struct macroblockd_plane *const pd = &xd->plane[plane]; PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode; uint8_t *dst; dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; if (mbmi->sb_type < BLOCK_8X8) if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; vp10_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride, col, row, plane); if (!mbmi->skip) { const TX_TYPE tx_type = (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode]; const scan_order *sc = (plane || xd->lossless) ? &vp10_default_scan_orders[tx_size] : &vp10_scan_orders[tx_size][tx_type]; const int eob = vp10_decode_block_tokens(xd, plane, sc, col, row, tx_size, r, mbmi->segment_id); inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst, pd->dst.stride, eob); } } static int reconstruct_inter_block(MACROBLOCKD *const xd, vpx_reader *r, MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) { struct macroblockd_plane *const pd = &xd->plane[plane]; const scan_order *sc = &vp10_default_scan_orders[tx_size]; const int eob = vp10_decode_block_tokens(xd, plane, sc, col, row, tx_size, r, mbmi->segment_id); inverse_transform_block_inter(xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col], pd->dst.stride, eob); return eob; } static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int x, int y, int b_w, int b_h, int w, int h) { // Get a pointer to the start of the real data for this row. const uint8_t *ref_row = src - x - y * src_stride; if (y >= h) ref_row += (h - 1) * src_stride; else if (y > 0) ref_row += y * src_stride; do { int right = 0, copy; int left = x < 0 ? -x : 0; if (left > b_w) left = b_w; if (x + b_w > w) right = x + b_w - w; if (right > b_w) right = b_w; copy = b_w - left - right; if (left) memset(dst, ref_row[0], left); if (copy) memcpy(dst + left, ref_row + x + left, copy); if (right) memset(dst + left + copy, ref_row[w - 1], right); dst += dst_stride; ++y; if (y > 0 && y < h) ref_row += src_stride; } while (--b_h); } #if CONFIG_VP9_HIGHBITDEPTH static void high_build_mc_border(const uint8_t *src8, int src_stride, uint16_t *dst, int dst_stride, int x, int y, int b_w, int b_h, int w, int h) { // Get a pointer to the start of the real data for this row. const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *ref_row = src - x - y * src_stride; if (y >= h) ref_row += (h - 1) * src_stride; else if (y > 0) ref_row += y * src_stride; do { int right = 0, copy; int left = x < 0 ? -x : 0; if (left > b_w) left = b_w; if (x + b_w > w) right = x + b_w - w; if (right > b_w) right = b_w; copy = b_w - left - right; if (left) vpx_memset16(dst, ref_row[0], left); if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right); dst += dst_stride; ++y; if (y > 0 && y < h) ref_row += src_stride; } while (--b_h); } #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_VP9_HIGHBITDEPTH static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride, int x0, int y0, int b_w, int b_h, int frame_width, int frame_height, int border_offset, uint8_t *const dst, int dst_buf_stride, int subpel_x, int subpel_y, const InterpKernel *kernel, const struct scale_factors *sf, MACROBLOCKD *xd, int w, int h, int ref, int xs, int ys) { DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]); const uint8_t *buf_ptr; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0, b_w, b_h, frame_width, frame_height); buf_ptr = CONVERT_TO_BYTEPTR(mc_buf_high) + border_offset; } else { build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0, y0, b_w, b_h, frame_width, frame_height); buf_ptr = ((uint8_t *)mc_buf_high) + border_offset; } if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { high_inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); } else { inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); } } #else static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride, int x0, int y0, int b_w, int b_h, int frame_width, int frame_height, int border_offset, uint8_t *const dst, int dst_buf_stride, int subpel_x, int subpel_y, const InterpKernel *kernel, const struct scale_factors *sf, int w, int h, int ref, int xs, int ys) { DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]); const uint8_t *buf_ptr; build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h, frame_width, frame_height); buf_ptr = mc_buf + border_offset; inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); } #endif // CONFIG_VP9_HIGHBITDEPTH static void dec_build_inter_predictors(VP10Decoder *const pbi, MACROBLOCKD *xd, int plane, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, const InterpKernel *kernel, const struct scale_factors *sf, struct buf_2d *pre_buf, struct buf_2d *dst_buf, const MV* mv, RefCntBuffer *ref_frame_buf, int is_scaled, int ref) { struct macroblockd_plane *const pd = &xd->plane[plane]; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; MV32 scaled_mv; int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride, subpel_x, subpel_y; uint8_t *ref_frame, *buf_ptr; // Get reference frame pointer, width and height. if (plane == 0) { frame_width = ref_frame_buf->buf.y_crop_width; frame_height = ref_frame_buf->buf.y_crop_height; ref_frame = ref_frame_buf->buf.y_buffer; } else { frame_width = ref_frame_buf->buf.uv_crop_width; frame_height = ref_frame_buf->buf.uv_crop_height; ref_frame = plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer; } if (is_scaled) { const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y); // Co-ordinate of containing block to pixel precision. int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); // Co-ordinate of the block to 1/16th pixel precision. x0_16 = (x_start + x) << SUBPEL_BITS; y0_16 = (y_start + y) << SUBPEL_BITS; // Co-ordinate of current block in reference frame // to 1/16th pixel precision. x0_16 = sf->scale_value_x(x0_16, sf); y0_16 = sf->scale_value_y(y0_16, sf); // Map the top left corner of the block into the reference frame. x0 = sf->scale_value_x(x_start + x, sf); y0 = sf->scale_value_y(y_start + y, sf); // Scale the MV and incorporate the sub-pixel offset of the block // in the reference frame. scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { // Co-ordinate of containing block to pixel precision. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // Co-ordinate of the block to 1/16th pixel precision. x0_16 = x0 << SUBPEL_BITS; y0_16 = y0 << SUBPEL_BITS; scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y)); scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x)); xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; // Calculate the top left corner of the best matching block in the // reference frame. x0 += scaled_mv.col >> SUBPEL_BITS; y0 += scaled_mv.row >> SUBPEL_BITS; x0_16 += scaled_mv.col; y0_16 += scaled_mv.row; // Get reference block pointer. buf_ptr = ref_frame + y0 * pre_buf->stride + x0; buf_stride = pre_buf->stride; // Do border extension if there is motion or the // width/height is not a multiple of 8 pixels. if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) || (frame_height & 0x7)) { int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1; // Get reference block bottom right horizontal coordinate. int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1; int x_pad = 0, y_pad = 0; if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) { x0 -= VP9_INTERP_EXTEND - 1; x1 += VP9_INTERP_EXTEND; x_pad = 1; } if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) { y0 -= VP9_INTERP_EXTEND - 1; y1 += VP9_INTERP_EXTEND; y_pad = 1; } // Wait until reference block is ready. Pad 7 more pixels as last 7 // pixels of each superblock row can be changed by next superblock row. if (pbi->frame_parallel_decode) vp10_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf, MAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1)); // Skip border extension if block is inside the frame. if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 || y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) { // Extend the border. const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0; const int b_w = x1 - x0 + 1; const int b_h = y1 - y0 + 1; const int border_offset = y_pad * 3 * b_w + x_pad * 3; extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h, frame_width, frame_height, border_offset, dst, dst_buf->stride, subpel_x, subpel_y, kernel, sf, #if CONFIG_VP9_HIGHBITDEPTH xd, #endif w, h, ref, xs, ys); return; } } else { // Wait until reference block is ready. Pad 7 more pixels as last 7 // pixels of each superblock row can be changed by next superblock row. if (pbi->frame_parallel_decode) { const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS; vp10_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf, MAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1)); } } #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { high_inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); } else { inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); } #else inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); #endif // CONFIG_VP9_HIGHBITDEPTH } static void dec_build_inter_predictors_sb(VP10Decoder *const pbi, MACROBLOCKD *xd, int mi_row, int mi_col) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const MODE_INFO *mi = xd->mi[0]; const InterpKernel *kernel = vp10_filter_kernels[mi->mbmi.interp_filter]; const BLOCK_SIZE sb_type = mi->mbmi.sb_type; const int is_compound = has_second_ref(&mi->mbmi); for (plane = 0; plane < MAX_MB_PLANE; ++plane) { struct macroblockd_plane *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int n4w_x4 = 4 * num_4x4_w; const int n4h_x4 = 4 * num_4x4_h; int ref; for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; const int idx = xd->block_refs[ref]->idx; BufferPool *const pool = pbi->common.buffer_pool; RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx]; const int is_scaled = vp10_is_scaled(sf); if (sb_type < BLOCK_8X8) { int i = 0, x, y; for (y = 0; y < num_4x4_h; ++y) { for (x = 0; x < num_4x4_w; ++x) { const MV mv = average_split_mvs(pd, mi, ref, i++); dec_build_inter_predictors(pbi, xd, plane, n4w_x4, n4h_x4, 4 * x, 4 * y, 4, 4, mi_x, mi_y, kernel, sf, pre_buf, dst_buf, &mv, ref_frame_buf, is_scaled, ref); } } } else { const MV mv = mi->mbmi.mv[ref].as_mv; dec_build_inter_predictors(pbi, xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4, n4h_x4, mi_x, mi_y, kernel, sf, pre_buf, dst_buf, &mv, ref_frame_buf, is_scaled, ref); } } } } static INLINE TX_SIZE dec_get_uv_tx_size(const MB_MODE_INFO *mbmi, int n4_wl, int n4_hl) { // get minimum log2 num4x4s dimension const int x = MIN(n4_wl, n4_hl); return MIN(mbmi->tx_size, x); } static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { struct macroblockd_plane *const pd = &xd->plane[i]; memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w); memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h); } } static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl, int bhl) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x; xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y; } } static MB_MODE_INFO *set_offsets(VP10_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, int bh, int x_mis, int y_mis, int bwl, int bhl) { const int offset = mi_row * cm->mi_stride + mi_col; int x, y; const TileInfo *const tile = &xd->tile; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = &cm->mi[offset]; // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of // passing bsize from decode_partition(). xd->mi[0]->mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) { xd->mi[y * cm->mi_stride + x] = xd->mi[0]; } set_plane_n4(xd, bw, bh, bwl, bhl); set_skip_context(xd, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); vp10_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); return &xd->mi[0]->mbmi; } static void decode_block(VP10Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, vpx_reader *r, BLOCK_SIZE bsize, int bwl, int bhl) { VP10_COMMON *const cm = &pbi->common; const int less8x8 = bsize < BLOCK_8X8; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); const int x_mis = MIN(bw, cm->mi_cols - mi_col); const int y_mis = MIN(bh, cm->mi_rows - mi_row); MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, bhl); if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { const BLOCK_SIZE uv_subsize = ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; if (uv_subsize == BLOCK_INVALID) vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME, "Invalid block size."); } vp10_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); if (mbmi->skip) { dec_reset_skip_context(xd); } if (!is_inter_block(mbmi)) { int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) : mbmi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = (1 << tx_size); int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) predict_and_reconstruct_intra_block(xd, r, mbmi, plane, row, col, tx_size); } } else { // Prediction dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col); // Reconstruction if (!mbmi->skip) { int eobtotal = 0; int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) : mbmi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = (1 << tx_size); int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) eobtotal += reconstruct_inter_block(xd, r, mbmi, plane, row, col, tx_size); } if (!less8x8 && eobtotal == 0) mbmi->skip = 1; // skip loopfilter } } xd->corrupted |= vpx_reader_has_error(r); } static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, int mi_row, int mi_col, int bsl) { const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK); int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1; // assert(bsl >= 0); return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } static INLINE void dec_update_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, int bw) { PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK); // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. memset(above_ctx, partition_context_lookup[subsize].above, bw); memset(left_ctx, partition_context_lookup[subsize].left, bw); } static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col, vpx_reader *r, int has_rows, int has_cols, int bsl) { const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl); const vpx_prob *const probs = get_partition_probs(xd, ctx); FRAME_COUNTS *counts = xd->counts; PARTITION_TYPE p; if (has_rows && has_cols) p = (PARTITION_TYPE)vpx_read_tree(r, vp10_partition_tree, probs); else if (!has_rows && has_cols) p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; else if (has_rows && !has_cols) p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; else p = PARTITION_SPLIT; if (counts) ++counts->partition[ctx][p]; return p; } // TODO(slavarnway): eliminate bsize and subsize in future commits static void decode_partition(VP10Decoder *const pbi, MACROBLOCKD *const xd, int mi_row, int mi_col, vpx_reader* r, BLOCK_SIZE bsize, int n4x4_l2) { VP10_COMMON *const cm = &pbi->common; const int n8x8_l2 = n4x4_l2 - 1; const int num_8x8_wh = 1 << n8x8_l2; const int hbs = num_8x8_wh >> 1; PARTITION_TYPE partition; BLOCK_SIZE subsize; const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = read_partition(xd, mi_row, mi_col, r, has_rows, has_cols, n8x8_l2); subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); if (!hbs) { // calculate bmode block dimensions (log 2) xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); decode_block(pbi, xd, mi_row, mi_col, r, subsize, 1, 1); } else { switch (partition) { case PARTITION_NONE: decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n4x4_l2); break; case PARTITION_HORZ: decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n8x8_l2); if (has_rows) decode_block(pbi, xd, mi_row + hbs, mi_col, r, subsize, n4x4_l2, n8x8_l2); break; case PARTITION_VERT: decode_block(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2, n4x4_l2); if (has_cols) decode_block(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2, n4x4_l2); break; case PARTITION_SPLIT: decode_partition(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2); decode_partition(pbi, xd, mi_row + hbs, mi_col, r, subsize, n8x8_l2); decode_partition(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2); break; default: assert(0 && "Invalid partition type"); } } // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh); } static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, size_t read_size, struct vpx_internal_error_info *error_info, vpx_reader *r, vpx_decrypt_cb decrypt_cb, void *decrypt_state) { // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void read_coef_probs_common(vp10_coeff_probs_model *coef_probs, vpx_reader *r) { int i, j, k, l, m; if (vpx_read_bit(r)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) for (m = 0; m < UNCONSTRAINED_NODES; ++m) vp10_diff_update_prob(r, &coef_probs[i][j][k][l][m]); } static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); } static void setup_segmentation(struct segmentation *seg, struct vpx_read_bit_buffer *rb) { int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = vpx_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update seg->update_map = vpx_rb_read_bit(rb); if (seg->update_map) { for (i = 0; i < SEG_TREE_PROBS; i++) seg->tree_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB; seg->temporal_update = vpx_rb_read_bit(rb); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB; } } // Segmentation data update seg->update_data = vpx_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = vpx_rb_read_bit(rb); vp10_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = vpx_rb_read_bit(rb); if (feature_enabled) { vp10_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, vp10_seg_feature_data_max(j)); if (vp10_is_segfeature_signed(j)) data = vpx_rb_read_bit(rb) ? -data : data; } vp10_set_segdata(seg, i, j, data); } } } } static void setup_loopfilter(struct loopfilter *lf, struct vpx_read_bit_buffer *rb) { lf->filter_level = vpx_rb_read_literal(rb, 6); lf->sharpness_level = vpx_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = vpx_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < MAX_REF_LF_DELTAS; i++) if (vpx_rb_read_bit(rb)) lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (vpx_rb_read_bit(rb)) lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6); } } } static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) { return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0; } static void setup_quantization(VP10_COMMON *const cm, MACROBLOCKD *const xd, struct vpx_read_bit_buffer *rb) { cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS); cm->y_dc_delta_q = read_delta_q(rb); cm->uv_dc_delta_q = read_delta_q(rb); cm->uv_ac_delta_q = read_delta_q(rb); cm->dequant_bit_depth = cm->bit_depth; xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; #if CONFIG_VP9_HIGHBITDEPTH xd->bd = (int)cm->bit_depth; #endif } static void setup_segmentation_dequant(VP10_COMMON *const cm) { // Build y/uv dequant values based on segmentation. if (cm->seg.enabled) { int i; for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = vp10_get_qindex(&cm->seg, i, cm->base_qindex); cm->y_dequant[i][0] = vp10_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[i][1] = vp10_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[i][0] = vp10_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[i][1] = vp10_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); } } else { const int qindex = cm->base_qindex; // When segmentation is disabled, only the first value is used. The // remaining are don't cares. cm->y_dequant[0][0] = vp10_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[0][1] = vp10_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[0][0] = vp10_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[0][1] = vp10_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); } } static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) { const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR }; return vpx_rb_read_bit(rb) ? SWITCHABLE : literal_to_filter[vpx_rb_read_literal(rb, 2)]; } static void setup_display_size(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) { cm->display_width = cm->width; cm->display_height = cm->height; if (vpx_rb_read_bit(rb)) vp10_read_frame_size(rb, &cm->display_width, &cm->display_height); } static void resize_mv_buffer(VP10_COMMON *cm) { vpx_free(cm->cur_frame->mvs); cm->cur_frame->mi_rows = cm->mi_rows; cm->cur_frame->mi_cols = cm->mi_cols; cm->cur_frame->mvs = (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cm->cur_frame->mvs)); } static void resize_context_buffers(VP10_COMMON *cm, int width, int height) { #if CONFIG_SIZE_LIMIT if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Dimensions of %dx%d beyond allowed size of %dx%d.", width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); #endif if (cm->width != width || cm->height != height) { const int new_mi_rows = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; const int new_mi_cols = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; // Allocations in vp10_alloc_context_buffers() depend on individual // dimensions as well as the overall size. if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { if (vp10_alloc_context_buffers(cm, width, height)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } else { vp10_set_mb_mi(cm, width, height); } vp10_init_context_buffers(cm); cm->width = width; cm->height = height; } if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || cm->mi_cols > cm->cur_frame->mi_cols) { resize_mv_buffer(cm); } } static void setup_frame_size(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) { int width, height; BufferPool *const pool = cm->buffer_pool; vp10_read_frame_size(rb, &width, &height); resize_context_buffers(cm, width, height); setup_display_size(cm, rb); lock_buffer_pool(pool); if (vpx_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth, #endif VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; } static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth, int ref_xss, int ref_yss, vpx_bit_depth_t this_bit_depth, int this_xss, int this_yss) { return ref_bit_depth == this_bit_depth && ref_xss == this_xss && ref_yss == this_yss; } static void setup_frame_size_with_refs(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) { int width, height; int found = 0, i; int has_valid_ref_frame = 0; BufferPool *const pool = cm->buffer_pool; for (i = 0; i < REFS_PER_FRAME; ++i) { if (vpx_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; width = buf->y_crop_width; height = buf->y_crop_height; found = 1; break; } } if (!found) vp10_read_frame_size(rb, &width, &height); if (width <= 0 || height <= 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame size"); // Check to make sure at least one of frames that this frame references // has valid dimensions. for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width, ref_frame->buf->y_crop_height, width, height); } if (!has_valid_ref_frame) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame has invalid size"); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; if (!valid_ref_frame_img_fmt( ref_frame->buf->bit_depth, ref_frame->buf->subsampling_x, ref_frame->buf->subsampling_y, cm->bit_depth, cm->subsampling_x, cm->subsampling_y)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame has incompatible color format"); } resize_context_buffers(cm, width, height); setup_display_size(cm, rb); lock_buffer_pool(pool); if (vpx_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth, #endif VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { unlock_buffer_pool(pool); vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } unlock_buffer_pool(pool); pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; } static void setup_tile_info(VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) { int min_log2_tile_cols, max_log2_tile_cols, max_ones; vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns max_ones = max_log2_tile_cols - min_log2_tile_cols; cm->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++; if (cm->log2_tile_cols > 6) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid number of tile columns"); // rows cm->log2_tile_rows = vpx_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb); } typedef struct TileBuffer { const uint8_t *data; size_t size; int col; // only used with multi-threaded decoding } TileBuffer; // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, int is_last, struct vpx_internal_error_info *error_info, const uint8_t **data, vpx_decrypt_cb decrypt_cb, void *decrypt_state, TileBuffer *buf) { size_t size; if (!is_last) { if (!read_is_valid(*data, 4, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, 4); size = mem_get_be32(be_data); } else { size = mem_get_be32(*data); } *data += 4; if (size > (size_t)(data_end - *data)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); } else { size = data_end - *data; } buf->data = *data; buf->size = size; *data += size; } static void get_tile_buffers(VP10Decoder *pbi, const uint8_t *data, const uint8_t *data_end, int tile_cols, int tile_rows, TileBuffer (*tile_buffers)[1 << 6]) { int r, c; for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c) { const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); TileBuffer *const buf = &tile_buffers[r][c]; buf->col = c; get_tile_buffer(data_end, is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); } } } static const uint8_t *decode_tiles(VP10Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP10_COMMON *const cm = &pbi->common; const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; TileBuffer tile_buffers[4][1 << 6]; int tile_row, tile_col; int mi_row, mi_col; TileData *tile_data = NULL; if (cm->lf.filter_level && !cm->skip_loop_filter && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, vpx_memalign(32, sizeof(LFWorkerData))); pbi->lf_worker.hook = (VPxWorkerHook)vp10_loop_filter_worker; if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Loop filter thread creation failed"); } } if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; // Be sure to sync as we might be resuming after a failed frame decode. winterface->sync(&pbi->lf_worker); vp10_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, pbi->mb.plane); } assert(tile_rows <= 4); assert(tile_cols <= (1 << 6)); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_cols); get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); if (pbi->tile_data == NULL || (tile_cols * tile_rows) != pbi->total_tiles) { vpx_free(pbi->tile_data); CHECK_MEM_ERROR( cm, pbi->tile_data, vpx_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data)))); pbi->total_tiles = tile_rows * tile_cols; } // Load all tile information into tile_data. for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; tile_data = pbi->tile_data + tile_cols * tile_row + tile_col; tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; tile_data->xd.counts = cm->frame_parallel_decoding_mode ? NULL : &cm->counts; vp10_zero(tile_data->dqcoeff); vp10_tile_init(&tile_data->xd.tile, tile_data->cm, tile_row, tile_col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); vp10_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); } } for (tile_row = 0; tile_row < tile_rows; ++tile_row) { TileInfo tile; vp10_tile_set_row(&tile, cm, tile_row); for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const int col = pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col; tile_data = pbi->tile_data + tile_cols * tile_row + col; vp10_tile_set_col(&tile, tile_data->cm, col); vp10_zero(tile_data->xd.left_context); vp10_zero(tile_data->xd.left_seg_context); for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_partition(pbi, &tile_data->xd, mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64, 4); } pbi->mb.corrupted |= tile_data->xd.corrupted; if (pbi->mb.corrupted) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Failed to decode tile data"); } // Loopfilter one row. if (cm->lf.filter_level && !cm->skip_loop_filter) { const int lf_start = mi_row - MI_BLOCK_SIZE; LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; // delay the loopfilter by 1 macroblock row. if (lf_start < 0) continue; // decoding has completed: finish up the loop filter in this thread. if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue; winterface->sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = mi_row; if (pbi->max_threads > 1) { winterface->launch(&pbi->lf_worker); } else { winterface->execute(&pbi->lf_worker); } } // After loopfiltering, the last 7 row pixels in each superblock row may // still be changed by the longest loopfilter of the next superblock // row. if (pbi->frame_parallel_decode) vp10_frameworker_broadcast(pbi->cur_buf, mi_row << MI_BLOCK_SIZE_LOG2); } } // Loopfilter remaining rows in the frame. if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } // Get last tile data. tile_data = pbi->tile_data + tile_cols * tile_rows - 1; if (pbi->frame_parallel_decode) vp10_frameworker_broadcast(pbi->cur_buf, INT_MAX); return vpx_reader_find_end(&tile_data->bit_reader); } static int tile_worker_hook(TileWorkerData *const tile_data, const TileInfo *const tile) { int mi_row, mi_col; if (setjmp(tile_data->error_info.jmp)) { tile_data->error_info.setjmp = 0; tile_data->xd.corrupted = 1; return 0; } tile_data->error_info.setjmp = 1; tile_data->xd.error_info = &tile_data->error_info; for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { vp10_zero(tile_data->xd.left_context); vp10_zero(tile_data->xd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_partition(tile_data->pbi, &tile_data->xd, mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64, 4); } } return !tile_data->xd.corrupted; } // sorts in descending order static int compare_tile_buffers(const void *a, const void *b) { const TileBuffer *const buf1 = (const TileBuffer*)a; const TileBuffer *const buf2 = (const TileBuffer*)b; return (int)(buf2->size - buf1->size); } static const uint8_t *decode_tiles_mt(VP10Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP10_COMMON *const cm = &pbi->common; const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); const uint8_t *bit_reader_end = NULL; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; const int num_workers = MIN(pbi->max_threads & ~1, tile_cols); TileBuffer tile_buffers[1][1 << 6]; int n; int final_worker = -1; assert(tile_cols <= (1 << 6)); assert(tile_rows == 1); (void)tile_rows; // TODO(jzern): See if we can remove the restriction of passing in max // threads to the decoder. if (pbi->num_tile_workers == 0) { const int num_threads = pbi->max_threads & ~1; int i; CHECK_MEM_ERROR(cm, pbi->tile_workers, vpx_malloc(num_threads * sizeof(*pbi->tile_workers))); // Ensure tile data offsets will be properly aligned. This may fail on // platforms without DECLARE_ALIGNED(). assert((sizeof(*pbi->tile_worker_data) % 16) == 0); CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, num_threads * sizeof(*pbi->tile_worker_data))); CHECK_MEM_ERROR(cm, pbi->tile_worker_info, vpx_malloc(num_threads * sizeof(*pbi->tile_worker_info))); for (i = 0; i < num_threads; ++i) { VPxWorker *const worker = &pbi->tile_workers[i]; ++pbi->num_tile_workers; winterface->init(worker); if (i < num_threads - 1 && !winterface->reset(worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Reset tile decoding hook for (n = 0; n < num_workers; ++n) { VPxWorker *const worker = &pbi->tile_workers[n]; winterface->sync(worker); worker->hook = (VPxWorkerHook)tile_worker_hook; worker->data1 = &pbi->tile_worker_data[n]; worker->data2 = &pbi->tile_worker_info[n]; } // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols); memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_mi_cols); // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); // Sort the buffers based on size in descending order. qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]), compare_tile_buffers); // Rearrange the tile buffers such that per-tile group the largest, and // presumably the most difficult, tile will be decoded in the main thread. // This should help minimize the number of instances where the main thread is // waiting for a worker to complete. { int group_start = 0; while (group_start < tile_cols) { const TileBuffer largest = tile_buffers[0][group_start]; const int group_end = MIN(group_start + num_workers, tile_cols) - 1; memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1, (group_end - group_start) * sizeof(tile_buffers[0][0])); tile_buffers[0][group_end] = largest; group_start = group_end + 1; } } // Initialize thread frame counts. if (!cm->frame_parallel_decoding_mode) { int i; for (i = 0; i < num_workers; ++i) { TileWorkerData *const tile_data = (TileWorkerData*)pbi->tile_workers[i].data1; vp10_zero(tile_data->counts); } } n = 0; while (n < tile_cols) { int i; for (i = 0; i < num_workers && n < tile_cols; ++i) { VPxWorker *const worker = &pbi->tile_workers[i]; TileWorkerData *const tile_data = (TileWorkerData*)worker->data1; TileInfo *const tile = (TileInfo*)worker->data2; TileBuffer *const buf = &tile_buffers[0][n]; tile_data->pbi = pbi; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; tile_data->xd.counts = cm->frame_parallel_decoding_mode ? 0 : &tile_data->counts; vp10_zero(tile_data->dqcoeff); vp10_tile_init(tile, cm, 0, buf->col); vp10_tile_init(&tile_data->xd.tile, cm, 0, buf->col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); vp10_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); worker->had_error = 0; if (i == num_workers - 1 || n == tile_cols - 1) { winterface->execute(worker); } else { winterface->launch(worker); } if (buf->col == tile_cols - 1) { final_worker = i; } ++n; } for (; i > 0; --i) { VPxWorker *const worker = &pbi->tile_workers[i - 1]; // TODO(jzern): The tile may have specific error data associated with // its vpx_internal_error_info which could be propagated to the main info // in cm. Additionally once the threads have been synced and an error is // detected, there's no point in continuing to decode tiles. pbi->mb.corrupted |= !winterface->sync(worker); } if (final_worker > -1) { TileWorkerData *const tile_data = (TileWorkerData*)pbi->tile_workers[final_worker].data1; bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader); final_worker = -1; } // Accumulate thread frame counts. if (n >= tile_cols && !cm->frame_parallel_decoding_mode) { for (i = 0; i < num_workers; ++i) { TileWorkerData *const tile_data = (TileWorkerData*)pbi->tile_workers[i].data1; vp10_accumulate_frame_counts(cm, &tile_data->counts, 1); } } } return bit_reader_end; } static void error_handler(void *data) { VP10_COMMON *const cm = (VP10_COMMON *)data; vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } static void read_bitdepth_colorspace_sampling( VP10_COMMON *cm, struct vpx_read_bit_buffer *rb) { if (cm->profile >= PROFILE_2) { cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 1; #endif } else { cm->bit_depth = VPX_BITS_8; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } cm->color_space = vpx_rb_read_literal(rb, 3); if (cm->color_space != VPX_CS_SRGB) { vpx_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { cm->subsampling_x = vpx_rb_read_bit(rb); cm->subsampling_y = vpx_rb_read_bit(rb); if (cm->subsampling_x == 1 && cm->subsampling_y == 1) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:2:0 color not supported in profile 1 or 3"); if (vpx_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. // 4:2:2 or 4:4:0 chroma sampling is not allowed. cm->subsampling_y = cm->subsampling_x = 0; if (vpx_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:4:4 color not supported in profile 0 or 2"); } } } static size_t read_uncompressed_header(VP10Decoder *pbi, struct vpx_read_bit_buffer *rb) { VP10_COMMON *const cm = &pbi->common; BufferPool *const pool = cm->buffer_pool; RefCntBuffer *const frame_bufs = pool->frame_bufs; int i, mask, ref_index = 0; size_t sz; cm->last_frame_type = cm->frame_type; cm->last_intra_only = cm->intra_only; if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->profile = vp10_read_profile(rb); #if CONFIG_VP9_HIGHBITDEPTH if (cm->profile >= MAX_PROFILES) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #else if (cm->profile >= PROFILE_2) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #endif cm->show_existing_frame = vpx_rb_read_bit(rb); if (cm->show_existing_frame) { // Show an existing frame directly. const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)]; lock_buffer_pool(pool); if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { unlock_buffer_pool(pool); vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Buffer %d does not contain a decoded frame", frame_to_show); } ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); unlock_buffer_pool(pool); pbi->refresh_frame_flags = 0; cm->lf.filter_level = 0; cm->show_frame = 1; if (pbi->frame_parallel_decode) { for (i = 0; i < REF_FRAMES; ++i) cm->next_ref_frame_map[i] = cm->ref_frame_map[i]; } return 0; } cm->frame_type = (FRAME_TYPE) vpx_rb_read_bit(rb); cm->show_frame = vpx_rb_read_bit(rb); cm->error_resilient_mode = vpx_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { if (!vp10_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; for (i = 0; i < REFS_PER_FRAME; ++i) { cm->frame_refs[i].idx = INVALID_IDX; cm->frame_refs[i].buf = NULL; } setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } } else { cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb); cm->reset_frame_context = cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2); if (cm->intra_only) { if (!vp10_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); if (cm->profile > PROFILE_0) { read_bitdepth_colorspace_sampling(cm, rb); } else { // NOTE: The intra-only frame header does not include the specification // of either the color format or color sub-sampling in profile 0. VP9 // specifies that the default color format should be YUV 4:2:0 in this // case (normative). cm->color_space = VPX_CS_BT_601; cm->subsampling_y = cm->subsampling_x = 1; cm->bit_depth = VPX_BITS_8; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } } else if (pbi->need_resync != 1) { /* Skip if need resync */ pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); for (i = 0; i < REFS_PER_FRAME; ++i) { const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb); } setup_frame_size_with_refs(cm, rb); cm->allow_high_precision_mv = vpx_rb_read_bit(rb); cm->interp_filter = read_interp_filter(rb); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; #if CONFIG_VP9_HIGHBITDEPTH vp10_setup_scale_factors_for_frame(&ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height, cm->use_highbitdepth); #else vp10_setup_scale_factors_for_frame(&ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); #endif } } } #if CONFIG_VP9_HIGHBITDEPTH get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; #endif get_frame_new_buffer(cm)->color_space = cm->color_space; if (pbi->need_resync) { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Keyframe / intra-only frame required to reset decoder" " state"); } if (!cm->error_resilient_mode) { cm->refresh_frame_context = vpx_rb_read_bit(rb); cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb); } else { cm->refresh_frame_context = 0; cm->frame_parallel_decoding_mode = 1; } // This flag will be overridden by the call to vp10_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); // Generate next_ref_frame_map. lock_buffer_pool(pool); for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { if (mask & 1) { cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; ++frame_bufs[cm->new_fb_idx].ref_count; } else { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; } // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; ++ref_index; } for (; ref_index < REF_FRAMES; ++ref_index) { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; } unlock_buffer_pool(pool); pbi->hold_ref_buf = 1; if (frame_is_intra_only(cm) || cm->error_resilient_mode) vp10_setup_past_independence(cm); setup_loopfilter(&cm->lf, rb); setup_quantization(cm, &pbi->mb, rb); setup_segmentation(&cm->seg, rb); setup_segmentation_dequant(cm); setup_tile_info(cm, rb); sz = vpx_rb_read_literal(rb, 16); if (sz == 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } static int read_compressed_header(VP10Decoder *pbi, const uint8_t *data, size_t partition_size) { VP10_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; FRAME_CONTEXT *const fc = cm->fc; vpx_reader r; int k; if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb, pbi->decrypt_state)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r); read_coef_probs(fc, cm->tx_mode, &r); for (k = 0; k < SKIP_CONTEXTS; ++k) vp10_diff_update_prob(&r, &fc->skip_probs[k]); if (!frame_is_intra_only(cm)) { nmv_context *const nmvc = &fc->nmvc; int i, j; read_inter_mode_probs(fc, &r); if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp10_diff_update_prob(&r, &fc->intra_inter_prob[i]); cm->reference_mode = read_frame_reference_mode(cm, &r); if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm); read_frame_reference_mode_probs(cm, &r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) vp10_diff_update_prob(&r, &fc->y_mode_prob[j][i]); for (j = 0; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) vp10_diff_update_prob(&r, &fc->partition_prob[j][i]); read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); } return vpx_reader_has_error(&r); } #ifdef NDEBUG #define debug_check_frame_counts(cm) (void)0 #else // !NDEBUG // Counts should only be incremented when frame_parallel_decoding_mode and // error_resilient_mode are disabled. static void debug_check_frame_counts(const VP10_COMMON *const cm) { FRAME_COUNTS zero_counts; vp10_zero(zero_counts); assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode); assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, sizeof(cm->counts.y_mode))); assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, sizeof(cm->counts.uv_mode))); assert(!memcmp(cm->counts.partition, zero_counts.partition, sizeof(cm->counts.partition))); assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, sizeof(cm->counts.eob_branch))); assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, sizeof(cm->counts.switchable_interp))); assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, sizeof(cm->counts.inter_mode))); assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, sizeof(cm->counts.intra_inter))); assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, sizeof(cm->counts.comp_inter))); assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, sizeof(cm->counts.single_ref))); assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, sizeof(cm->counts.comp_ref))); assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx))); assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); } #endif // NDEBUG static struct vpx_read_bit_buffer *init_read_bit_buffer( VP10Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) { rb->bit_offset = 0; rb->error_handler = error_handler; rb->error_handler_data = &pbi->common; if (pbi->decrypt_cb) { const int n = (int)MIN(MAX_VP9_HEADER_SIZE, data_end - data); pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); rb->bit_buffer = clear_data; rb->bit_buffer_end = clear_data + n; } else { rb->bit_buffer = data; rb->bit_buffer_end = data_end; } return rb; } //------------------------------------------------------------------------------ int vp10_read_sync_code(struct vpx_read_bit_buffer *const rb) { return vpx_rb_read_literal(rb, 8) == VP10_SYNC_CODE_0 && vpx_rb_read_literal(rb, 8) == VP10_SYNC_CODE_1 && vpx_rb_read_literal(rb, 8) == VP10_SYNC_CODE_2; } void vp10_read_frame_size(struct vpx_read_bit_buffer *rb, int *width, int *height) { *width = vpx_rb_read_literal(rb, 16) + 1; *height = vpx_rb_read_literal(rb, 16) + 1; } BITSTREAM_PROFILE vp10_read_profile(struct vpx_read_bit_buffer *rb) { int profile = vpx_rb_read_bit(rb); profile |= vpx_rb_read_bit(rb) << 1; if (profile > 2) profile += vpx_rb_read_bit(rb); return (BITSTREAM_PROFILE) profile; } void vp10_decode_frame(VP10Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { VP10_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct vpx_read_bit_buffer rb; int context_updated = 0; uint8_t clear_data[MAX_VP9_HEADER_SIZE]; const size_t first_partition_size = read_uncompressed_header(pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); const int tile_rows = 1 << cm->log2_tile_rows; const int tile_cols = 1 << cm->log2_tile_cols; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); xd->cur_buf = new_fb; if (!first_partition_size) { // showing a frame directly *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); return; } data += vpx_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->width == cm->last_width && cm->height == cm->last_height && !cm->last_intra_only && cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); vp10_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); *cm->fc = cm->frame_contexts[cm->frame_context_idx]; if (!cm->fc->initialized) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Uninitialized entropy context."); vp10_zero(cm->counts); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); if (new_fb->corrupted) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data header is corrupted."); if (cm->lf.filter_level && !cm->skip_loop_filter) { vp10_loop_filter_frame_init(cm, cm->lf.filter_level); } // If encoded in frame parallel mode, frame context is ready after decoding // the frame header. if (pbi->frame_parallel_decode && cm->frame_parallel_decoding_mode) { VPxWorker *const worker = pbi->frame_worker_owner; FrameWorkerData *const frame_worker_data = worker->data1; if (cm->refresh_frame_context) { context_updated = 1; cm->frame_contexts[cm->frame_context_idx] = *cm->fc; } vp10_frameworker_lock_stats(worker); pbi->cur_buf->row = -1; pbi->cur_buf->col = -1; frame_worker_data->frame_context_ready = 1; // Signal the main thread that context is ready. vp10_frameworker_signal_stats(worker); vp10_frameworker_unlock_stats(worker); } if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) { // Multi-threaded tile decoder *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); if (!xd->corrupted) { if (!cm->skip_loop_filter) { // If multiple threads are used to decode tiles, then we use those // threads to do parallel loopfiltering. vp10_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level, 0, 0, pbi->tile_workers, pbi->num_tile_workers, &pbi->lf_row_sync); } } else { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } } else { *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); } if (!xd->corrupted) { if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { vp10_adapt_coef_probs(cm); if (!frame_is_intra_only(cm)) { vp10_adapt_mode_probs(cm); vp10_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } else { debug_check_frame_counts(cm); } } else { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } // Non frame parallel update frame context here. if (cm->refresh_frame_context && !context_updated) cm->frame_contexts[cm->frame_context_idx] = *cm->fc; }