ref: de5cb8b1406d03deed65dddeeb6f30e1aa5d1c37
dir: /third_party/googletest/src/samples/sample1_unittest.cc/
// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. // // Author: [email protected] (Zhanyong Wan) // This sample shows how to write a simple unit test for a function, // using Google C++ testing framework. // // Writing a unit test using Google C++ testing framework is easy as 1-2-3: // Step 1. Include necessary header files such that the stuff your // test logic needs is declared. // // Don't forget gtest.h, which declares the testing framework. #include <limits.h> #include "sample1.h" #include "gtest/gtest.h" // Step 2. Use the TEST macro to define your tests. // // TEST has two parameters: the test case name and the test name. // After using the macro, you should define your test logic between a // pair of braces. You can use a bunch of macros to indicate the // success or failure of a test. EXPECT_TRUE and EXPECT_EQ are // examples of such macros. For a complete list, see gtest.h. // // <TechnicalDetails> // // In Google Test, tests are grouped into test cases. This is how we // keep test code organized. You should put logically related tests // into the same test case. // // The test case name and the test name should both be valid C++ // identifiers. And you should not use underscore (_) in the names. // // Google Test guarantees that each test you define is run exactly // once, but it makes no guarantee on the order the tests are // executed. Therefore, you should write your tests in such a way // that their results don't depend on their order. // // </TechnicalDetails> // Tests Factorial(). // Tests factorial of negative numbers. TEST(FactorialTest, Negative) { // This test is named "Negative", and belongs to the "FactorialTest" // test case. EXPECT_EQ(1, Factorial(-5)); EXPECT_EQ(1, Factorial(-1)); EXPECT_TRUE(Factorial(-10) > 0); // <TechnicalDetails> // // EXPECT_EQ(expected, actual) is the same as // // EXPECT_TRUE((expected) == (actual)) // // except that it will print both the expected value and the actual // value when the assertion fails. This is very helpful for // debugging. Therefore in this case EXPECT_EQ is preferred. // // On the other hand, EXPECT_TRUE accepts any Boolean expression, // and is thus more general. // // </TechnicalDetails> } // Tests factorial of 0. TEST(FactorialTest, Zero) { EXPECT_EQ(1, Factorial(0)); } // Tests factorial of positive numbers. TEST(FactorialTest, Positive) { EXPECT_EQ(1, Factorial(1)); EXPECT_EQ(2, Factorial(2)); EXPECT_EQ(6, Factorial(3)); EXPECT_EQ(40320, Factorial(8)); } // Tests IsPrime() // Tests negative input. TEST(IsPrimeTest, Negative) { // This test belongs to the IsPrimeTest test case. EXPECT_FALSE(IsPrime(-1)); EXPECT_FALSE(IsPrime(-2)); EXPECT_FALSE(IsPrime(INT_MIN)); } // Tests some trivial cases. TEST(IsPrimeTest, Trivial) { EXPECT_FALSE(IsPrime(0)); EXPECT_FALSE(IsPrime(1)); EXPECT_TRUE(IsPrime(2)); EXPECT_TRUE(IsPrime(3)); } // Tests positive input. TEST(IsPrimeTest, Positive) { EXPECT_FALSE(IsPrime(4)); EXPECT_TRUE(IsPrime(5)); EXPECT_FALSE(IsPrime(6)); EXPECT_TRUE(IsPrime(23)); } // Step 3. Call RUN_ALL_TESTS() in main(). // // We do this by linking in src/gtest_main.cc file, which consists of // a main() function which calls RUN_ALL_TESTS() for us. // // This runs all the tests you've defined, prints the result, and // returns 0 if successful, or 1 otherwise. // // Did you notice that we didn't register the tests? The // RUN_ALL_TESTS() macro magically knows about all the tests we // defined. Isn't this convenient?