ref: df1b0cafd66d9d10873f7dc5e567dececc45a37a
dir: /test/fdct8x8_test.cc/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_entropy.h" #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" const int kNumCoeffs = 64; const double kPi = 3.141592653589793238462643383279502884; void reference_8x8_dct_1d(const double in[8], double out[8], int stride) { const double kInvSqrt2 = 0.707106781186547524400844362104; for (int k = 0; k < 8; k++) { out[k] = 0.0; for (int n = 0; n < 8; n++) out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 16.0); if (k == 0) out[k] = out[k] * kInvSqrt2; } } void reference_8x8_dct_2d(const int16_t input[kNumCoeffs], double output[kNumCoeffs]) { // First transform columns for (int i = 0; i < 8; ++i) { double temp_in[8], temp_out[8]; for (int j = 0; j < 8; ++j) temp_in[j] = input[j*8 + i]; reference_8x8_dct_1d(temp_in, temp_out, 1); for (int j = 0; j < 8; ++j) output[j * 8 + i] = temp_out[j]; } // Then transform rows for (int i = 0; i < 8; ++i) { double temp_in[8], temp_out[8]; for (int j = 0; j < 8; ++j) temp_in[j] = output[j + i*8]; reference_8x8_dct_1d(temp_in, temp_out, 1); // Scale by some magic number for (int j = 0; j < 8; ++j) output[j + i * 8] = temp_out[j] * 2; } } using libvpx_test::ACMRandom; namespace { typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, int tx_type); typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, int tx_type); typedef std::tr1::tuple<FdctFunc, IdctFunc, int, vpx_bit_depth_t> Dct8x8Param; typedef std::tr1::tuple<FhtFunc, IhtFunc, int, vpx_bit_depth_t> Ht8x8Param; void fdct8x8_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { vp9_fdct8x8_c(in, out, stride); } void fht8x8_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { vp9_fht8x8_c(in, out, stride, tx_type); } #if CONFIG_VP9_HIGHBITDEPTH void idct8x8_10(const tran_low_t *in, uint8_t *out, int stride) { vp9_highbd_idct8x8_64_add_c(in, out, stride, 10); } void idct8x8_12(const tran_low_t *in, uint8_t *out, int stride) { vp9_highbd_idct8x8_64_add_c(in, out, stride, 12); } void iht8x8_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { vp9_highbd_iht8x8_64_add_c(in, out, stride, tx_type, 10); } void iht8x8_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { vp9_highbd_iht8x8_64_add_c(in, out, stride, tx_type, 12); } #endif class FwdTrans8x8TestBase { public: virtual ~FwdTrans8x8TestBase() {} protected: virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; void RunSignBiasCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64); DECLARE_ALIGNED_ARRAY(16, tran_low_t, test_output_block, 64); int count_sign_block[64][2]; const int count_test_block = 100000; memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 64; ++j) test_input_block[j] = ((rnd.Rand16() >> (16 - bit_depth_)) & mask_) - ((rnd.Rand16() >> (16 - bit_depth_)) & mask_); ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_output_block, pitch_)); for (int j = 0; j < 64; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 64; ++j) { const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); const int max_diff = 1125; EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) << "Error: 8x8 FDCT/FHT has a sign bias > " << 1. * max_diff / count_test_block * 100 << "%" << " for input range [-255, 255] at index " << j << " count0: " << count_sign_block[j][0] << " count1: " << count_sign_block[j][1] << " diff: " << diff; } memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-15, 15]. for (int j = 0; j < 64; ++j) test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4); ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_output_block, pitch_)); for (int j = 0; j < 64; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 64; ++j) { const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); const int max_diff = 10000; EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) << "Error: 4x4 FDCT/FHT has a sign bias > " << 1. * max_diff / count_test_block * 100 << "%" << " for input range [-15, 15] at index " << j << " count0: " << count_sign_block[j][0] << " count1: " << count_sign_block[j][1] << " diff: " << diff; } } void RunRoundTripErrorCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; const int count_test_block = 100000; DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64); DECLARE_ALIGNED_ARRAY(16, tran_low_t, test_temp_block, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, 64); DECLARE_ALIGNED_ARRAY(16, uint16_t, src16, 64); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 64; ++j) { if (bit_depth_ == VPX_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; #if CONFIG_VP9_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, pitch_)); for (int j = 0; j < 64; ++j) { if (test_temp_block[j] > 0) { test_temp_block[j] += 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } else { test_temp_block[j] -= 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } } if (bit_depth_ == VPX_BITS_8) { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, dst, pitch_)); #if CONFIG_VP9_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < 64; ++j) { #if CONFIG_VP9_HIGHBITDEPTH const int diff = bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) << "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual" << " roundtrip error > 1"; EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8))/5, total_error) << "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip " << "error > 1/5 per block"; } void RunExtremalCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; int total_coeff_error = 0; const int count_test_block = 100000; DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64); DECLARE_ALIGNED_ARRAY(16, tran_low_t, test_temp_block, 64); DECLARE_ALIGNED_ARRAY(16, tran_low_t, ref_temp_block, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, 64); DECLARE_ALIGNED_ARRAY(16, uint16_t, src16, 64); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < 64; ++j) { if (bit_depth_ == VPX_BITS_8) { if (i == 0) { src[j] = 255; dst[j] = 0; } else if (i == 1) { src[j] = 0; dst[j] = 255; } else { src[j] = rnd.Rand8() % 2 ? 255 : 0; dst[j] = rnd.Rand8() % 2 ? 255 : 0; } test_input_block[j] = src[j] - dst[j]; #if CONFIG_VP9_HIGHBITDEPTH } else { if (i == 0) { src16[j] = mask_; dst16[j] = 0; } else if (i == 1) { src16[j] = 0; dst16[j] = mask_; } else { src16[j] = rnd.Rand8() % 2 ? mask_ : 0; dst16[j] = rnd.Rand8() % 2 ? mask_ : 0; } test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK( RunFwdTxfm(test_input_block, test_temp_block, pitch_)); ASM_REGISTER_STATE_CHECK( fwd_txfm_ref(test_input_block, ref_temp_block, pitch_, tx_type_)); if (bit_depth_ == VPX_BITS_8) { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, dst, pitch_)); #if CONFIG_VP9_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < 64; ++j) { #if CONFIG_VP9_HIGHBITDEPTH const int diff = bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; const int coeff_diff = test_temp_block[j] - ref_temp_block[j]; total_coeff_error += abs(coeff_diff); } EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has" << "an individual roundtrip error > 1"; EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8))/5, total_error) << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average" << " roundtrip error > 1/5 per block"; EXPECT_EQ(0, total_coeff_error) << "Error: Extremal 8x8 FDCT/FHT has" << "overflow issues in the intermediate steps > 1"; } } void RunInvAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, coeff, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED_ARRAY(16, uint16_t, src16, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, dst16, kNumCoeffs); #endif for (int i = 0; i < count_test_block; ++i) { double out_r[kNumCoeffs]; // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == VPX_BITS_8) { src[j] = rnd.Rand8() % 2 ? 255 : 0; dst[j] = src[j] > 0 ? 0 : 255; in[j] = src[j] - dst[j]; #if CONFIG_VP9_HIGHBITDEPTH } else { src16[j] = rnd.Rand8() % 2 ? mask_ : 0; dst16[j] = src16[j] > 0 ? 0 : mask_; in[j] = src16[j] - dst16[j]; #endif } } reference_8x8_dct_2d(in, out_r); for (int j = 0; j < kNumCoeffs; ++j) coeff[j] = static_cast<tran_low_t>(round(out_r[j])); if (bit_depth_ == VPX_BITS_8) { ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); #if CONFIG_VP9_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_VP9_HIGHBITDEPTH const uint32_t diff = bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const uint32_t diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; EXPECT_GE(1u << 2 * (bit_depth_ - 8), error) << "Error: 8x8 IDCT has error " << error << " at index " << j; } } } void RunFwdAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, coeff_r, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, tran_low_t, coeff, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { double out_r[kNumCoeffs]; // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) in[j] = rnd.Rand8() % 2 == 0 ? mask_ : -mask_; RunFwdTxfm(in, coeff, pitch_); reference_8x8_dct_2d(in, out_r); for (int j = 0; j < kNumCoeffs; ++j) coeff_r[j] = static_cast<tran_low_t>(round(out_r[j])); for (int j = 0; j < kNumCoeffs; ++j) { const uint32_t diff = coeff[j] - coeff_r[j]; const uint32_t error = diff * diff; EXPECT_GE(9u << 2 * (bit_depth_ - 8), error) << "Error: 8x8 DCT has error " << error << " at index " << j; } } } int pitch_; int tx_type_; FhtFunc fwd_txfm_ref; vpx_bit_depth_t bit_depth_; int mask_; }; class FwdTrans8x8DCT : public FwdTrans8x8TestBase, public ::testing::TestWithParam<Dct8x8Param> { public: virtual ~FwdTrans8x8DCT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 8; fwd_txfm_ref = fdct8x8_ref; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride); } void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride); } FdctFunc fwd_txfm_; IdctFunc inv_txfm_; }; TEST_P(FwdTrans8x8DCT, SignBiasCheck) { RunSignBiasCheck(); } TEST_P(FwdTrans8x8DCT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } TEST_P(FwdTrans8x8DCT, ExtremalCheck) { RunExtremalCheck(); } TEST_P(FwdTrans8x8DCT, FwdAccuracyCheck) { RunFwdAccuracyCheck(); } TEST_P(FwdTrans8x8DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } class FwdTrans8x8HT : public FwdTrans8x8TestBase, public ::testing::TestWithParam<Ht8x8Param> { public: virtual ~FwdTrans8x8HT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 8; fwd_txfm_ref = fht8x8_ref; bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { fwd_txfm_(in, out, stride, tx_type_); } void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride, tx_type_); } FhtFunc fwd_txfm_; IhtFunc inv_txfm_; }; TEST_P(FwdTrans8x8HT, SignBiasCheck) { RunSignBiasCheck(); } TEST_P(FwdTrans8x8HT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } TEST_P(FwdTrans8x8HT, ExtremalCheck) { RunExtremalCheck(); } using std::tr1::make_tuple; #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, FwdTrans8x8DCT, ::testing::Values( make_tuple(&vp9_highbd_fdct8x8_c, &idct8x8_10, 0, VPX_BITS_10), make_tuple(&vp9_highbd_fdct8x8_c, &idct8x8_12, 0, VPX_BITS_12), make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, 0, VPX_BITS_8))); #else INSTANTIATE_TEST_CASE_P( C, FwdTrans8x8DCT, ::testing::Values( make_tuple(&vp9_fdct8x8_c, &vp9_idct8x8_64_add_c, 0, VPX_BITS_8))); #endif #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, FwdTrans8x8HT, ::testing::Values( make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 0, VPX_BITS_10), make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 1, VPX_BITS_10), make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 2, VPX_BITS_10), make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 3, VPX_BITS_10), make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 0, VPX_BITS_12), make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 1, VPX_BITS_12), make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 2, VPX_BITS_12), make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 3, VPX_BITS_12), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8))); #else INSTANTIATE_TEST_CASE_P( C, FwdTrans8x8HT, ::testing::Values( make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8))); #endif #if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( NEON, FwdTrans8x8DCT, ::testing::Values( make_tuple(&vp9_fdct8x8_neon, &vp9_idct8x8_64_add_neon, 0, VPX_BITS_8))); INSTANTIATE_TEST_CASE_P( DISABLED_NEON, FwdTrans8x8HT, ::testing::Values( make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 0, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 1, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 2, VPX_BITS_8), make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 3, VPX_BITS_8))); #endif #if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( SSE2, FwdTrans8x8DCT, ::testing::Values( make_tuple(&vp9_fdct8x8_sse2, &vp9_idct8x8_64_add_sse2, 0, VPX_BITS_8))); INSTANTIATE_TEST_CASE_P( SSE2, FwdTrans8x8HT, ::testing::Values( make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 0, VPX_BITS_8), make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 1, VPX_BITS_8), make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 2, VPX_BITS_8), make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 3, VPX_BITS_8))); #endif #if HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH && \ !CONFIG_EMULATE_HARDWARE INSTANTIATE_TEST_CASE_P( SSSE3, FwdTrans8x8DCT, ::testing::Values( make_tuple(&vp9_fdct8x8_ssse3, &vp9_idct8x8_64_add_ssse3, 0, VPX_BITS_8))); #endif } // namespace