shithub: libvpx

ref: e12ec3615c0a94ec03d62154bc5d8c2199e4e6ff
dir: /examples/vp9_spatial_svc_encoder.c/

View raw version
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * This is an example demonstrating how to implement a multi-layer
 * VP9 encoding scheme based on spatial scalability for video applications
 * that benefit from a scalable bitstream.
 */

#include <math.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>


#include "../args.h"
#include "../tools_common.h"
#include "../video_writer.h"

#include "../vpx_ports/vpx_timer.h"
#include "vpx/svc_context.h"
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#include "../vpxstats.h"
#define OUTPUT_RC_STATS 1

static const arg_def_t skip_frames_arg =
    ARG_DEF("s", "skip-frames", 1, "input frames to skip");
static const arg_def_t frames_arg =
    ARG_DEF("f", "frames", 1, "number of frames to encode");
static const arg_def_t threads_arg =
    ARG_DEF("th", "threads", 1, "number of threads to use");
#if OUTPUT_RC_STATS
static const arg_def_t output_rc_stats_arg =
    ARG_DEF("rcstat", "output_rc_stats", 1, "output rc stats");
#endif
static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width");
static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height");
static const arg_def_t timebase_arg =
    ARG_DEF("t", "timebase", 1, "timebase (num/den)");
static const arg_def_t bitrate_arg = ARG_DEF(
    "b", "target-bitrate", 1, "encoding bitrate, in kilobits per second");
static const arg_def_t spatial_layers_arg =
    ARG_DEF("sl", "spatial-layers", 1, "number of spatial SVC layers");
static const arg_def_t temporal_layers_arg =
    ARG_DEF("tl", "temporal-layers", 1, "number of temporal SVC layers");
static const arg_def_t temporal_layering_mode_arg =
    ARG_DEF("tlm", "temporal-layering-mode", 1, "temporal layering scheme."
        "VP9E_TEMPORAL_LAYERING_MODE");
static const arg_def_t kf_dist_arg =
    ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes");
static const arg_def_t scale_factors_arg =
    ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)");
static const arg_def_t passes_arg =
    ARG_DEF("p", "passes", 1, "Number of passes (1/2)");
static const arg_def_t pass_arg =
    ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)");
static const arg_def_t fpf_name_arg =
    ARG_DEF(NULL, "fpf", 1, "First pass statistics file name");
static const arg_def_t min_q_arg =
    ARG_DEF(NULL, "min-q", 1, "Minimum quantizer");
static const arg_def_t max_q_arg =
    ARG_DEF(NULL, "max-q", 1, "Maximum quantizer");
static const arg_def_t min_bitrate_arg =
    ARG_DEF(NULL, "min-bitrate", 1, "Minimum bitrate");
static const arg_def_t max_bitrate_arg =
    ARG_DEF(NULL, "max-bitrate", 1, "Maximum bitrate");
static const arg_def_t lag_in_frame_arg =
    ARG_DEF(NULL, "lag-in-frames", 1, "Number of frame to input before "
        "generating any outputs");
static const arg_def_t rc_end_usage_arg =
    ARG_DEF(NULL, "rc-end-usage", 1, "0 - 3: VBR, CBR, CQ, Q");
static const arg_def_t speed_arg =
    ARG_DEF("sp", "speed", 1, "speed configuration");
static const arg_def_t aqmode_arg =
    ARG_DEF("aq", "aqmode", 1, "aq-mode off/on");

#if CONFIG_VP9_HIGHBITDEPTH
static const struct arg_enum_list bitdepth_enum[] = {
  {"8",  VPX_BITS_8},
  {"10", VPX_BITS_10},
  {"12", VPX_BITS_12},
  {NULL, 0}
};

static const arg_def_t bitdepth_arg =
    ARG_DEF_ENUM("d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ",
                 bitdepth_enum);
#endif  // CONFIG_VP9_HIGHBITDEPTH


static const arg_def_t *svc_args[] = {
  &frames_arg,        &width_arg,         &height_arg,
  &timebase_arg,      &bitrate_arg,       &skip_frames_arg, &spatial_layers_arg,
  &kf_dist_arg,       &scale_factors_arg, &passes_arg,      &pass_arg,
  &fpf_name_arg,      &min_q_arg,         &max_q_arg,       &min_bitrate_arg,
  &max_bitrate_arg,   &temporal_layers_arg, &temporal_layering_mode_arg,
  &lag_in_frame_arg,  &threads_arg,       &aqmode_arg,
#if OUTPUT_RC_STATS
  &output_rc_stats_arg,
#endif

#if CONFIG_VP9_HIGHBITDEPTH
  &bitdepth_arg,
#endif
  &speed_arg,
  &rc_end_usage_arg,  NULL
};

static const uint32_t default_frames_to_skip = 0;
static const uint32_t default_frames_to_code = 60 * 60;
static const uint32_t default_width = 1920;
static const uint32_t default_height = 1080;
static const uint32_t default_timebase_num = 1;
static const uint32_t default_timebase_den = 60;
static const uint32_t default_bitrate = 1000;
static const uint32_t default_spatial_layers = 5;
static const uint32_t default_temporal_layers = 1;
static const uint32_t default_kf_dist = 100;
static const uint32_t default_temporal_layering_mode = 0;
static const uint32_t default_output_rc_stats = 0;
static const int32_t default_speed = -1;  // -1 means use library default.
static const uint32_t default_threads = 0;  // zero means use library default.

typedef struct {
  const char *input_filename;
  const char *output_filename;
  uint32_t frames_to_code;
  uint32_t frames_to_skip;
  struct VpxInputContext input_ctx;
  stats_io_t rc_stats;
  int passes;
  int pass;
} AppInput;

static const char *exec_name;

void usage_exit(void) {
  fprintf(stderr, "Usage: %s <options> input_filename output_filename\n",
          exec_name);
  fprintf(stderr, "Options:\n");
  arg_show_usage(stderr, svc_args);
  exit(EXIT_FAILURE);
}

static void parse_command_line(int argc, const char **argv_,
                               AppInput *app_input, SvcContext *svc_ctx,
                               vpx_codec_enc_cfg_t *enc_cfg) {
  struct arg arg = {0};
  char **argv = NULL;
  char **argi = NULL;
  char **argj = NULL;
  vpx_codec_err_t res;
  int passes = 0;
  int pass = 0;
  const char *fpf_file_name = NULL;
  unsigned int min_bitrate = 0;
  unsigned int max_bitrate = 0;
  char string_options[1024] = {0};

  // initialize SvcContext with parameters that will be passed to vpx_svc_init
  svc_ctx->log_level = SVC_LOG_DEBUG;
  svc_ctx->spatial_layers = default_spatial_layers;
  svc_ctx->temporal_layers = default_temporal_layers;
  svc_ctx->temporal_layering_mode = default_temporal_layering_mode;
#if OUTPUT_RC_STATS
  svc_ctx->output_rc_stat = default_output_rc_stats;
#endif
  svc_ctx->speed = default_speed;
  svc_ctx->threads = default_threads;

  // start with default encoder configuration
  res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0);
  if (res) {
    die("Failed to get config: %s\n", vpx_codec_err_to_string(res));
  }
  // update enc_cfg with app default values
  enc_cfg->g_w = default_width;
  enc_cfg->g_h = default_height;
  enc_cfg->g_timebase.num = default_timebase_num;
  enc_cfg->g_timebase.den = default_timebase_den;
  enc_cfg->rc_target_bitrate = default_bitrate;
  enc_cfg->kf_min_dist = default_kf_dist;
  enc_cfg->kf_max_dist = default_kf_dist;
  enc_cfg->rc_end_usage = VPX_CQ;

  // initialize AppInput with default values
  app_input->frames_to_code = default_frames_to_code;
  app_input->frames_to_skip = default_frames_to_skip;

  // process command line options
  argv = argv_dup(argc - 1, argv_ + 1);
  for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
    arg.argv_step = 1;

    if (arg_match(&arg, &frames_arg, argi)) {
      app_input->frames_to_code = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &width_arg, argi)) {
      enc_cfg->g_w = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &height_arg, argi)) {
      enc_cfg->g_h = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &timebase_arg, argi)) {
      enc_cfg->g_timebase = arg_parse_rational(&arg);
    } else if (arg_match(&arg, &bitrate_arg, argi)) {
      enc_cfg->rc_target_bitrate = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &skip_frames_arg, argi)) {
      app_input->frames_to_skip = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &spatial_layers_arg, argi)) {
      svc_ctx->spatial_layers = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &temporal_layers_arg, argi)) {
      svc_ctx->temporal_layers = arg_parse_uint(&arg);
#if OUTPUT_RC_STATS
    } else if (arg_match(&arg, &output_rc_stats_arg, argi)) {
      svc_ctx->output_rc_stat = arg_parse_uint(&arg);
#endif
    } else if (arg_match(&arg, &speed_arg, argi)) {
      svc_ctx->speed = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &aqmode_arg, argi)) {
      svc_ctx->aqmode = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &threads_arg, argi)) {
      svc_ctx->threads = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &temporal_layering_mode_arg, argi)) {
      svc_ctx->temporal_layering_mode =
          enc_cfg->temporal_layering_mode = arg_parse_int(&arg);
      if (svc_ctx->temporal_layering_mode) {
        enc_cfg->g_error_resilient = 1;
      }
    } else if (arg_match(&arg, &kf_dist_arg, argi)) {
      enc_cfg->kf_min_dist = arg_parse_uint(&arg);
      enc_cfg->kf_max_dist = enc_cfg->kf_min_dist;
    } else if (arg_match(&arg, &scale_factors_arg, argi)) {
      snprintf(string_options, sizeof(string_options), "%s scale-factors=%s",
               string_options, arg.val);
    } else if (arg_match(&arg, &passes_arg, argi)) {
      passes = arg_parse_uint(&arg);
      if (passes < 1 || passes > 2) {
        die("Error: Invalid number of passes (%d)\n", passes);
      }
    } else if (arg_match(&arg, &pass_arg, argi)) {
      pass = arg_parse_uint(&arg);
      if (pass < 1 || pass > 2) {
        die("Error: Invalid pass selected (%d)\n", pass);
      }
    } else if (arg_match(&arg, &fpf_name_arg, argi)) {
      fpf_file_name = arg.val;
    } else if (arg_match(&arg, &min_q_arg, argi)) {
      snprintf(string_options, sizeof(string_options), "%s min-quantizers=%s",
               string_options, arg.val);
    } else if (arg_match(&arg, &max_q_arg, argi)) {
      snprintf(string_options, sizeof(string_options), "%s max-quantizers=%s",
               string_options, arg.val);
    } else if (arg_match(&arg, &min_bitrate_arg, argi)) {
      min_bitrate = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &max_bitrate_arg, argi)) {
      max_bitrate = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &lag_in_frame_arg, argi)) {
      enc_cfg->g_lag_in_frames = arg_parse_uint(&arg);
    } else if (arg_match(&arg, &rc_end_usage_arg, argi)) {
      enc_cfg->rc_end_usage = arg_parse_uint(&arg);
#if CONFIG_VP9_HIGHBITDEPTH
    } else if (arg_match(&arg, &bitdepth_arg, argi)) {
      enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg);
      switch (enc_cfg->g_bit_depth) {
        case VPX_BITS_8:
          enc_cfg->g_input_bit_depth = 8;
          enc_cfg->g_profile = 0;
          break;
        case VPX_BITS_10:
          enc_cfg->g_input_bit_depth = 10;
          enc_cfg->g_profile = 2;
          break;
         case VPX_BITS_12:
          enc_cfg->g_input_bit_depth = 12;
          enc_cfg->g_profile = 2;
          break;
        default:
          die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth);
          break;
      }
#endif  // CONFIG_VP9_HIGHBITDEPTH
    } else {
      ++argj;
    }
  }

  // There will be a space in front of the string options
  if (strlen(string_options) > 0)
    vpx_svc_set_options(svc_ctx, string_options + 1);

  if (passes == 0 || passes == 1) {
    if (pass) {
      fprintf(stderr, "pass is ignored since there's only one pass\n");
    }
    enc_cfg->g_pass = VPX_RC_ONE_PASS;
  } else {
    if (pass == 0) {
      die("pass must be specified when passes is 2\n");
    }

    if (fpf_file_name == NULL) {
      die("fpf must be specified when passes is 2\n");
    }

    if (pass == 1) {
      enc_cfg->g_pass = VPX_RC_FIRST_PASS;
      if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 0)) {
        fatal("Failed to open statistics store");
      }
    } else {
      enc_cfg->g_pass = VPX_RC_LAST_PASS;
      if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 1)) {
        fatal("Failed to open statistics store");
      }
      enc_cfg->rc_twopass_stats_in = stats_get(&app_input->rc_stats);
    }
    app_input->passes = passes;
    app_input->pass = pass;
  }

  if (enc_cfg->rc_target_bitrate > 0) {
    if (min_bitrate > 0) {
      enc_cfg->rc_2pass_vbr_minsection_pct =
          min_bitrate * 100 / enc_cfg->rc_target_bitrate;
    }
    if (max_bitrate > 0) {
      enc_cfg->rc_2pass_vbr_maxsection_pct =
          max_bitrate * 100 / enc_cfg->rc_target_bitrate;
    }
  }

  // Check for unrecognized options
  for (argi = argv; *argi; ++argi)
    if (argi[0][0] == '-' && strlen(argi[0]) > 1)
      die("Error: Unrecognized option %s\n", *argi);

  if (argv[0] == NULL || argv[1] == 0) {
    usage_exit();
  }
  app_input->input_filename = argv[0];
  app_input->output_filename = argv[1];
  free(argv);

  if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 ||
      enc_cfg->g_h % 2)
    die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h);

  printf(
      "Codec %s\nframes: %d, skip: %d\n"
      "layers: %d\n"
      "width %d, height: %d,\n"
      "num: %d, den: %d, bitrate: %d,\n"
      "gop size: %d\n",
      vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code,
      app_input->frames_to_skip,
      svc_ctx->spatial_layers, enc_cfg->g_w, enc_cfg->g_h,
      enc_cfg->g_timebase.num, enc_cfg->g_timebase.den,
      enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist);
}

#if OUTPUT_RC_STATS
// For rate control encoding stats.
struct RateControlStats {
  // Number of input frames per layer.
  int layer_input_frames[VPX_MAX_LAYERS];
  // Total (cumulative) number of encoded frames per layer.
  int layer_tot_enc_frames[VPX_MAX_LAYERS];
  // Number of encoded non-key frames per layer.
  int layer_enc_frames[VPX_MAX_LAYERS];
  // Framerate per layer (cumulative).
  double layer_framerate[VPX_MAX_LAYERS];
  // Target average frame size per layer (per-frame-bandwidth per layer).
  double layer_pfb[VPX_MAX_LAYERS];
  // Actual average frame size per layer.
  double layer_avg_frame_size[VPX_MAX_LAYERS];
  // Average rate mismatch per layer (|target - actual| / target).
  double layer_avg_rate_mismatch[VPX_MAX_LAYERS];
  // Actual encoding bitrate per layer (cumulative).
  double layer_encoding_bitrate[VPX_MAX_LAYERS];
  // Average of the short-time encoder actual bitrate.
  // TODO(marpan): Should we add these short-time stats for each layer?
  double avg_st_encoding_bitrate;
  // Variance of the short-time encoder actual bitrate.
  double variance_st_encoding_bitrate;
  // Window (number of frames) for computing short-time encoding bitrate.
  int window_size;
  // Number of window measurements.
  int window_count;
};

// Note: these rate control stats assume only 1 key frame in the
// sequence (i.e., first frame only).
static void set_rate_control_stats(struct RateControlStats *rc,
                                     vpx_codec_enc_cfg_t *cfg) {
  unsigned int sl, tl;
  // Set the layer (cumulative) framerate and the target layer (non-cumulative)
  // per-frame-bandwidth, for the rate control encoding stats below.
  const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;

  for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
    for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
      const int layer = sl * cfg->ts_number_layers + tl;
      const int tlayer0 = sl * cfg->ts_number_layers;
      rc->layer_framerate[layer] =
          framerate / cfg->ts_rate_decimator[tl];
      if (tl > 0) {
        rc->layer_pfb[layer] = 1000.0 *
            (cfg->layer_target_bitrate[layer] -
                cfg->layer_target_bitrate[layer - 1]) /
            (rc->layer_framerate[layer] -
                rc->layer_framerate[layer - 1]);
      } else {
        rc->layer_pfb[tlayer0] = 1000.0 *
            cfg->layer_target_bitrate[tlayer0] /
            rc->layer_framerate[tlayer0];
      }
      rc->layer_input_frames[layer] = 0;
      rc->layer_enc_frames[layer] = 0;
      rc->layer_tot_enc_frames[layer] = 0;
      rc->layer_encoding_bitrate[layer] = 0.0;
      rc->layer_avg_frame_size[layer] = 0.0;
      rc->layer_avg_rate_mismatch[layer] = 0.0;
    }
  }
  rc->window_count = 0;
  rc->window_size = 15;
  rc->avg_st_encoding_bitrate = 0.0;
  rc->variance_st_encoding_bitrate = 0.0;
}

static void printout_rate_control_summary(struct RateControlStats *rc,
                                          vpx_codec_enc_cfg_t *cfg,
                                          int frame_cnt) {
  unsigned int sl, tl;
  int tot_num_frames = 0;
  double perc_fluctuation = 0.0;
  printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
  printf("Rate control layer stats for sl%d tl%d layer(s):\n\n",
      cfg->ss_number_layers, cfg->ts_number_layers);
  for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
    for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
      const int layer = sl * cfg->ts_number_layers + tl;
      const int num_dropped = (tl > 0) ?
          (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer]) :
          (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer] - 1);
      if (!sl)
        tot_num_frames += rc->layer_input_frames[layer];
      rc->layer_encoding_bitrate[layer] = 0.001 * rc->layer_framerate[layer] *
          rc->layer_encoding_bitrate[layer] / tot_num_frames;
      rc->layer_avg_frame_size[layer] = rc->layer_avg_frame_size[layer] /
          rc->layer_enc_frames[layer];
      rc->layer_avg_rate_mismatch[layer] =
          100.0 * rc->layer_avg_rate_mismatch[layer] /
          rc->layer_enc_frames[layer];
      printf("For layer#: sl%d tl%d \n", sl, tl);
      printf("Bitrate (target vs actual): %d %f.0 kbps\n",
             cfg->layer_target_bitrate[layer],
             rc->layer_encoding_bitrate[layer]);
      printf("Average frame size (target vs actual): %f %f bits\n",
             rc->layer_pfb[layer], rc->layer_avg_frame_size[layer]);
      printf("Average rate_mismatch: %f\n",
             rc->layer_avg_rate_mismatch[layer]);
      printf("Number of input frames, encoded (non-key) frames, "
          "and percent dropped frames: %d %d %f.0 \n",
          rc->layer_input_frames[layer], rc->layer_enc_frames[layer],
          100.0 * num_dropped / rc->layer_input_frames[layer]);
      printf("\n");
    }
  }
  rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
  rc->variance_st_encoding_bitrate =
      rc->variance_st_encoding_bitrate / rc->window_count -
      (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
  perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
      rc->avg_st_encoding_bitrate;
  printf("Short-time stats, for window of %d frames: \n", rc->window_size);
  printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
         rc->avg_st_encoding_bitrate,
         sqrt(rc->variance_st_encoding_bitrate),
         perc_fluctuation);
  if (frame_cnt != tot_num_frames)
    die("Error: Number of input frames not equal to output encoded frames != "
        "%d tot_num_frames = %d\n", frame_cnt, tot_num_frames);
}

vpx_codec_err_t parse_superframe_index(const uint8_t *data,
                                       size_t data_sz,
                                       uint32_t sizes[8], int *count) {
  // A chunk ending with a byte matching 0xc0 is an invalid chunk unless
  // it is a super frame index. If the last byte of real video compression
  // data is 0xc0 the encoder must add a 0 byte. If we have the marker but
  // not the associated matching marker byte at the front of the index we have
  // an invalid bitstream and need to return an error.

  uint8_t marker;

  marker = *(data + data_sz - 1);
  *count = 0;


  if ((marker & 0xe0) == 0xc0) {
    const uint32_t frames = (marker & 0x7) + 1;
    const uint32_t mag = ((marker >> 3) & 0x3) + 1;
    const size_t index_sz = 2 + mag * frames;

    // This chunk is marked as having a superframe index but doesn't have
    // enough data for it, thus it's an invalid superframe index.
    if (data_sz < index_sz)
      return VPX_CODEC_CORRUPT_FRAME;

    {
      const uint8_t marker2 = *(data + data_sz - index_sz);

      // This chunk is marked as having a superframe index but doesn't have
      // the matching marker byte at the front of the index therefore it's an
      // invalid chunk.
      if (marker != marker2)
        return VPX_CODEC_CORRUPT_FRAME;
    }

    {
      // Found a valid superframe index.
      uint32_t i, j;
      const uint8_t *x = &data[data_sz - index_sz + 1];

      for (i = 0; i < frames; ++i) {
        uint32_t this_sz = 0;

        for (j = 0; j < mag; ++j)
          this_sz |= (*x++) << (j * 8);
        sizes[i] = this_sz;
      }
      *count = frames;
    }
  }
  return VPX_CODEC_OK;
}
#endif

// Example pattern for spatial layers and 2 temporal layers used in the
// bypass/flexible mode. The pattern corresponds to the pattern
// VP9E_TEMPORAL_LAYERING_MODE_0101 (temporal_layering_mode == 2) used in
// non-flexible mode.
void set_frame_flags_bypass_mode(int sl, int tl, int num_spatial_layers,
                                 int is_key_frame,
                                 vpx_svc_ref_frame_config_t *ref_frame_config) {
  for (sl = 0; sl < num_spatial_layers; ++sl) {
    if (!tl) {
      if (!sl) {
        ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_GF |
                                            VP8_EFLAG_NO_REF_ARF |
                                            VP8_EFLAG_NO_UPD_GF |
                                            VP8_EFLAG_NO_UPD_ARF;
      } else {
        if (is_key_frame) {
          ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_LAST |
                                              VP8_EFLAG_NO_REF_ARF |
                                              VP8_EFLAG_NO_UPD_GF |
                                              VP8_EFLAG_NO_UPD_ARF;
        } else {
        ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_ARF |
                                            VP8_EFLAG_NO_UPD_GF |
                                            VP8_EFLAG_NO_UPD_ARF;
        }
      }
    } else if (tl == 1) {
      if (!sl) {
        ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_GF |
                                            VP8_EFLAG_NO_REF_ARF |
                                            VP8_EFLAG_NO_UPD_LAST |
                                            VP8_EFLAG_NO_UPD_GF;
      } else {
        ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_ARF |
                                            VP8_EFLAG_NO_UPD_LAST |
                                            VP8_EFLAG_NO_UPD_GF;
      }
    }
    if (tl == 0) {
      ref_frame_config->lst_fb_idx[sl] = sl;
      if (sl)
        ref_frame_config->gld_fb_idx[sl] = sl - 1;
      else
        ref_frame_config->gld_fb_idx[sl] = 0;
      ref_frame_config->alt_fb_idx[sl] = 0;
    } else if (tl == 1) {
      ref_frame_config->lst_fb_idx[sl] = sl;
      ref_frame_config->gld_fb_idx[sl] = num_spatial_layers + sl - 1;
      ref_frame_config->alt_fb_idx[sl] = num_spatial_layers + sl;
    }
  }
}

int main(int argc, const char **argv) {
  AppInput app_input = {0};
  VpxVideoWriter *writer = NULL;
  VpxVideoInfo info = {0};
  vpx_codec_ctx_t codec;
  vpx_codec_enc_cfg_t enc_cfg;
  SvcContext svc_ctx;
  uint32_t i;
  uint32_t frame_cnt = 0;
  vpx_image_t raw;
  vpx_codec_err_t res;
  int pts = 0;            /* PTS starts at 0 */
  int frame_duration = 1; /* 1 timebase tick per frame */
  FILE *infile = NULL;
  int end_of_stream = 0;
  int frames_received = 0;
#if OUTPUT_RC_STATS
  VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = {NULL};
  struct RateControlStats rc;
  vpx_svc_layer_id_t layer_id;
  vpx_svc_ref_frame_config_t ref_frame_config;
  int sl, tl;
  double sum_bitrate = 0.0;
  double sum_bitrate2 = 0.0;
  double framerate  = 30.0;
#endif
  struct vpx_usec_timer timer;
  int64_t cx_time = 0;
  memset(&svc_ctx, 0, sizeof(svc_ctx));
  svc_ctx.log_print = 1;
  exec_name = argv[0];
  parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg);

  // Allocate image buffer
#if CONFIG_VP9_HIGHBITDEPTH
  if (!vpx_img_alloc(&raw, enc_cfg.g_input_bit_depth == 8 ?
                         VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016,
                     enc_cfg.g_w, enc_cfg.g_h, 32)) {
    die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
  }
#else
  if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) {
    die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
  }
#endif  // CONFIG_VP9_HIGHBITDEPTH

  if (!(infile = fopen(app_input.input_filename, "rb")))
    die("Failed to open %s for reading\n", app_input.input_filename);

  // Initialize codec
  if (vpx_svc_init(&svc_ctx, &codec, vpx_codec_vp9_cx(), &enc_cfg) !=
      VPX_CODEC_OK)
    die("Failed to initialize encoder\n");

#if OUTPUT_RC_STATS
  if (svc_ctx.output_rc_stat) {
    set_rate_control_stats(&rc, &enc_cfg);
    framerate = enc_cfg.g_timebase.den / enc_cfg.g_timebase.num;
  }
#endif

  info.codec_fourcc = VP9_FOURCC;
  info.time_base.numerator = enc_cfg.g_timebase.num;
  info.time_base.denominator = enc_cfg.g_timebase.den;

  if (!(app_input.passes == 2 && app_input.pass == 1)) {
    // We don't save the bitstream for the 1st pass on two pass rate control
    writer = vpx_video_writer_open(app_input.output_filename, kContainerIVF,
                                   &info);
    if (!writer)
      die("Failed to open %s for writing\n", app_input.output_filename);
  }
#if OUTPUT_RC_STATS
  // For now, just write temporal layer streams.
  // TODO(wonkap): do spatial by re-writing superframe.
  if (svc_ctx.output_rc_stat) {
    for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) {
      char file_name[PATH_MAX];

      snprintf(file_name, sizeof(file_name), "%s_t%d.ivf",
               app_input.output_filename, tl);
      outfile[tl] = vpx_video_writer_open(file_name, kContainerIVF, &info);
      if (!outfile[tl])
        die("Failed to open %s for writing", file_name);
    }
  }
#endif

  // skip initial frames
  for (i = 0; i < app_input.frames_to_skip; ++i)
    vpx_img_read(&raw, infile);

  if (svc_ctx.speed != -1)
    vpx_codec_control(&codec, VP8E_SET_CPUUSED, svc_ctx.speed);
  if (svc_ctx.threads)
    vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (svc_ctx.threads >> 1));
  if (svc_ctx.speed >= 5 && svc_ctx.aqmode == 1)
    vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3);


  // Encode frames
  while (!end_of_stream) {
    vpx_codec_iter_t iter = NULL;
    const vpx_codec_cx_pkt_t *cx_pkt;
    if (frame_cnt >= app_input.frames_to_code || !vpx_img_read(&raw, infile)) {
      // We need one extra vpx_svc_encode call at end of stream to flush
      // encoder and get remaining data
      end_of_stream = 1;
    }

    // For BYPASS/FLEXIBLE mode, set the frame flags (reference and updates)
    // and the buffer indices for each spatial layer of the current
    // (super)frame to be encoded. The temporal layer_id for the current frame
    // also needs to be set.
    // TODO(marpan): Should rename the "VP9E_TEMPORAL_LAYERING_MODE_BYPASS"
    // mode to "VP9E_LAYERING_MODE_BYPASS".
    if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
      // Example for 2 temporal layers.
      if (frame_cnt % 2 == 0)
        layer_id.temporal_layer_id = 0;
      else
        layer_id.temporal_layer_id = 1;
      // Note that we only set the temporal layer_id, since we are calling
      // the encode for the whole superframe. The encoder will internally loop
      // over all the spatial layers for the current superframe.
      vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
      set_frame_flags_bypass_mode(sl, layer_id.temporal_layer_id,
                                  svc_ctx.spatial_layers,
                                  frame_cnt == 0,
                                  &ref_frame_config);
      vpx_codec_control(&codec, VP9E_SET_SVC_REF_FRAME_CONFIG,
                        &ref_frame_config);
    }

    vpx_usec_timer_start(&timer);
    res = vpx_svc_encode(&svc_ctx, &codec, (end_of_stream ? NULL : &raw),
                         pts, frame_duration, svc_ctx.speed >= 5 ?
                         VPX_DL_REALTIME : VPX_DL_GOOD_QUALITY);
    vpx_usec_timer_mark(&timer);
    cx_time += vpx_usec_timer_elapsed(&timer);

    printf("%s", vpx_svc_get_message(&svc_ctx));
    if (res != VPX_CODEC_OK) {
      die_codec(&codec, "Failed to encode frame");
    }

    while ((cx_pkt = vpx_codec_get_cx_data(&codec, &iter)) != NULL) {
      switch (cx_pkt->kind) {
        case VPX_CODEC_CX_FRAME_PKT: {
          if (cx_pkt->data.frame.sz > 0) {
#if OUTPUT_RC_STATS
            uint32_t sizes[8];
            int count = 0;
#endif
            vpx_video_writer_write_frame(writer,
                                         cx_pkt->data.frame.buf,
                                         cx_pkt->data.frame.sz,
                                         cx_pkt->data.frame.pts);
#if OUTPUT_RC_STATS
            // TODO(marpan/wonkap): Put this (to line728) in separate function.
            if (svc_ctx.output_rc_stat) {
              vpx_codec_control(&codec, VP9E_GET_SVC_LAYER_ID, &layer_id);
              parse_superframe_index(cx_pkt->data.frame.buf,
                                     cx_pkt->data.frame.sz, sizes, &count);
              for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
                ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers +
                                        layer_id.temporal_layer_id];
              }
              for (tl = layer_id.temporal_layer_id;
                  tl < enc_cfg.ts_number_layers; ++tl) {
                vpx_video_writer_write_frame(outfile[tl],
                                             cx_pkt->data.frame.buf,
                                             cx_pkt->data.frame.sz,
                                             cx_pkt->data.frame.pts);
              }

              for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
                for (tl = layer_id.temporal_layer_id;
                    tl < enc_cfg.ts_number_layers; ++tl) {
                  const int layer = sl * enc_cfg.ts_number_layers + tl;
                  ++rc.layer_tot_enc_frames[layer];
                  rc.layer_encoding_bitrate[layer] += 8.0 * sizes[sl];
                  // Keep count of rate control stats per layer, for non-key
                  // frames.
                  if (tl == layer_id.temporal_layer_id &&
                      !(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
                    rc.layer_avg_frame_size[layer] += 8.0 * sizes[sl];
                    rc.layer_avg_rate_mismatch[layer] +=
                        fabs(8.0 * sizes[sl] - rc.layer_pfb[layer]) /
                        rc.layer_pfb[layer];
                    ++rc.layer_enc_frames[layer];
                  }
                }
              }

              // Update for short-time encoding bitrate states, for moving
              // window of size rc->window, shifted by rc->window / 2.
              // Ignore first window segment, due to key frame.
              if (frame_cnt > rc.window_size) {
                tl = layer_id.temporal_layer_id;
                for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
                  sum_bitrate += 0.001 * 8.0 * sizes[sl] * framerate;
                }
                if (frame_cnt % rc.window_size == 0) {
                  rc.window_count += 1;
                  rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
                  rc.variance_st_encoding_bitrate +=
                      (sum_bitrate / rc.window_size) *
                      (sum_bitrate / rc.window_size);
                  sum_bitrate = 0.0;
                }
              }

              // Second shifted window.
              if (frame_cnt > rc.window_size + rc.window_size / 2) {
               tl = layer_id.temporal_layer_id;
               for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
                 sum_bitrate2 += 0.001 * 8.0 * sizes[sl] * framerate;
               }

               if (frame_cnt > 2 * rc.window_size &&
                  frame_cnt % rc.window_size == 0) {
                 rc.window_count += 1;
                 rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
                 rc.variance_st_encoding_bitrate +=
                    (sum_bitrate2 / rc.window_size) *
                    (sum_bitrate2 / rc.window_size);
                 sum_bitrate2 = 0.0;
               }
              }
            }
#endif
          }

          printf("SVC frame: %d, kf: %d, size: %d, pts: %d\n", frames_received,
                 !!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY),
                 (int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts);
          ++frames_received;
          break;
        }
        case VPX_CODEC_STATS_PKT: {
          stats_write(&app_input.rc_stats,
                      cx_pkt->data.twopass_stats.buf,
                      cx_pkt->data.twopass_stats.sz);
          break;
        }
        default: {
          break;
        }
      }
    }

    if (!end_of_stream) {
      ++frame_cnt;
      pts += frame_duration;
    }
  }
  printf("Processed %d frames\n", frame_cnt);
  fclose(infile);
#if OUTPUT_RC_STATS
  if (svc_ctx.output_rc_stat) {
    printout_rate_control_summary(&rc, &enc_cfg, frame_cnt);
    printf("\n");
  }
#endif
  if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
  if (app_input.passes == 2)
    stats_close(&app_input.rc_stats, 1);
  if (writer) {
    vpx_video_writer_close(writer);
  }
#if OUTPUT_RC_STATS
  if (svc_ctx.output_rc_stat) {
    for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) {
      vpx_video_writer_close(outfile[tl]);
    }
  }
#endif
  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
         frame_cnt,
         1000 * (float)cx_time / (double)(frame_cnt * 1000000),
         1000000 * (double)frame_cnt / (double)cx_time);
  vpx_img_free(&raw);
  // display average size, psnr
  printf("%s", vpx_svc_dump_statistics(&svc_ctx));
  vpx_svc_release(&svc_ctx);
  return EXIT_SUCCESS;
}