shithub: libvpx

ref: e2b52f6f0115911cb4d0f669763718b858bc3644
dir: /vp9/common/x86/vp9_subpixel_8t_intrin_ssse3.c/

View raw version
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

// Due to a header conflict between math.h and intrinsics includes with ceil()
// in certain configurations under vs9 this include needs to precede
// tmmintrin.h.
#include "./vp9_rtcd.h"

#include <tmmintrin.h>

#include "vp9/common/x86/convolve.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/emmintrin_compat.h"

// filters only for the 4_h8 convolution
DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = {
  0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6
};

DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = {
  4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10
};

// filters for 8_h8 and 16_h8
DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = {
  0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
};

DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = {
  2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
};

DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = {
  4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
};

DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = {
  6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};

// These are reused by the avx2 intrinsics.
filter8_1dfunction vp9_filter_block1d8_v8_intrin_ssse3;
filter8_1dfunction vp9_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction vp9_filter_block1d4_h8_intrin_ssse3;

void vp9_filter_block1d4_h8_intrin_ssse3(const uint8_t *src_ptr,
                                         ptrdiff_t src_pixels_per_line,
                                         uint8_t *output_ptr,
                                         ptrdiff_t output_pitch,
                                         uint32_t output_height,
                                         const int16_t *filter) {
  __m128i firstFilters, secondFilters, shuffle1, shuffle2;
  __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
  __m128i addFilterReg64, filtersReg, srcReg, minReg;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 =_mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits in the filter into the first lane
  firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
  // duplicate only the third 16 bit in the filter into the first lane
  secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
  // duplicate only the seconds 16 bits in the filter into the second lane
  // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
  firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
  // duplicate only the forth 16 bits in the filter into the second lane
  // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
  secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);

  // loading the local filters
  shuffle1 =_mm_load_si128((__m128i const *)filt1_4_h8);
  shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8);

  for (i = 0; i < output_height; i++) {
    srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));

    // filter the source buffer
    srcRegFilt1= _mm_shuffle_epi8(srcReg, shuffle1);
    srcRegFilt2= _mm_shuffle_epi8(srcReg, shuffle2);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

    // extract the higher half of the lane
    srcRegFilt3 =  _mm_srli_si128(srcRegFilt1, 8);
    srcRegFilt4 =  _mm_srli_si128(srcRegFilt2, 8);

    minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2);

    // add and saturate all the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
    srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

    // shift by 7 bit each 16 bits
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

    // shrink to 8 bit each 16 bits
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
    src_ptr+=src_pixels_per_line;

    // save only 4 bytes
    *((int*)&output_ptr[0])= _mm_cvtsi128_si32(srcRegFilt1);

    output_ptr+=output_pitch;
  }
}

void vp9_filter_block1d8_h8_intrin_ssse3(const uint8_t *src_ptr,
                                         ptrdiff_t src_pixels_per_line,
                                         uint8_t *output_ptr,
                                         ptrdiff_t output_pitch,
                                         uint32_t output_height,
                                         const int16_t *filter) {
  __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg;
  __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
  __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
  __m128i addFilterReg64, filtersReg, minReg;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits (first and second byte)
  // across 128 bit register
  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
  // duplicate only the second 16 bits (third and forth byte)
  // across 128 bit register
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 128 bit register
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
  // duplicate only the forth 16 bits (seventh and eighth byte)
  // across 128 bit register
  forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

  filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
  filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
  filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
  filt4Reg = _mm_load_si128((__m128i const *)filt4_global);

  for (i = 0; i < output_height; i++) {
    srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));

    // filter the source buffer
    srcRegFilt1= _mm_shuffle_epi8(srcReg, filt1Reg);
    srcRegFilt2= _mm_shuffle_epi8(srcReg, filt2Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

    // filter the source buffer
    srcRegFilt3= _mm_shuffle_epi8(srcReg, filt3Reg);
    srcRegFilt4= _mm_shuffle_epi8(srcReg, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters);
    srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters);

    // add and saturate all the results together
    minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);

    srcRegFilt2= _mm_max_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

    // shift by 7 bit each 16 bits
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

    // shrink to 8 bit each 16 bits
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

    src_ptr+=src_pixels_per_line;

    // save only 8 bytes
    _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1);

    output_ptr+=output_pitch;
  }
}

static void vp9_filter_block1d16_h8_intrin_ssse3(const uint8_t *src_ptr,
                                                 ptrdiff_t src_pixels_per_line,
                                                 uint8_t *output_ptr,
                                                 ptrdiff_t output_pitch,
                                                 uint32_t output_height,
                                                 const int16_t *filter) {
  __m128i addFilterReg64, filtersReg, srcReg1, srcReg2;
  __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
  __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
  __m128i srcRegFilt1_1, srcRegFilt2_1, srcRegFilt2, srcRegFilt3;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits (first and second byte)
  // across 128 bit register
  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
  // duplicate only the second 16 bits (third and forth byte)
  // across 128 bit register
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 128 bit register
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
  // duplicate only the forth 16 bits (seventh and eighth byte)
  // across 128 bit register
  forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

  filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
  filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
  filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
  filt4Reg = _mm_load_si128((__m128i const *)filt4_global);

  for (i = 0; i < output_height; i++) {
    srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3));

    // filter the source buffer
    srcRegFilt1_1= _mm_shuffle_epi8(srcReg1, filt1Reg);
    srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, firstFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters);

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);

    // filter the source buffer
    srcRegFilt3= _mm_shuffle_epi8(srcReg1, filt2Reg);
    srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                                   _mm_min_epi16(srcRegFilt3, srcRegFilt2));

    // reading the next 16 bytes.
    // (part of it was being read by earlier read)
    srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5));

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                                   _mm_max_epi16(srcRegFilt3, srcRegFilt2));

    // filter the source buffer
    srcRegFilt2_1= _mm_shuffle_epi8(srcReg2, filt1Reg);
    srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, firstFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters);

    // add and saturate the results together
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);

    // filter the source buffer
    srcRegFilt3= _mm_shuffle_epi8(srcReg2, filt2Reg);
    srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);

    // add and saturate the results together
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
    _mm_min_epi16(srcRegFilt3, srcRegFilt2));
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
    _mm_max_epi16(srcRegFilt3, srcRegFilt2));

    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, addFilterReg64);
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, addFilterReg64);

    // shift by 7 bit each 16 bit
    srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
    srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);

    src_ptr+=src_pixels_per_line;

    // save 16 bytes
    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);

    output_ptr+=output_pitch;
  }
}

void vp9_filter_block1d8_v8_intrin_ssse3(const uint8_t *src_ptr,
                                         ptrdiff_t src_pitch,
                                         uint8_t *output_ptr,
                                         ptrdiff_t out_pitch,
                                         uint32_t output_height,
                                         const int16_t *filter) {
  __m128i addFilterReg64, filtersReg, minReg;
  __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
  __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5;
  __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7;
  __m128i srcReg8;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits in the filter
  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
  // duplicate only the second 16 bits in the filter
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits in the filter
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
  // duplicate only the forth 16 bits in the filter
  forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

  // load the first 7 rows of 8 bytes
  srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr);
  srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
  srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
  srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
  srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));

  for (i = 0; i < output_height; i++) {
    // load the last 8 bytes
    srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));

    // merge the result together
    srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2);
    srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4);

    // merge the result together
    srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6);
    srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
    srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters);

    // add and saturate the results together
    minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5);
    srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

    // shift by 7 bit each 16 bit
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

    // shrink to 8 bit each 16 bits
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

    src_ptr+=src_pitch;

    // shift down a row
    srcReg1 = srcReg2;
    srcReg2 = srcReg3;
    srcReg3 = srcReg4;
    srcReg4 = srcReg5;
    srcReg5 = srcReg6;
    srcReg6 = srcReg7;
    srcReg7 = srcReg8;

    // save only 8 bytes convolve result
    _mm_storel_epi64((__m128i*)&output_ptr[0], srcRegFilt1);

    output_ptr+=out_pitch;
  }
}

static void vp9_filter_block1d16_v8_intrin_ssse3(const uint8_t *src_ptr,
                                                 ptrdiff_t src_pitch,
                                                 uint8_t *output_ptr,
                                                 ptrdiff_t out_pitch,
                                                 uint32_t output_height,
                                                 const int16_t *filter) {
  __m128i addFilterReg64, filtersReg, srcRegFilt1, srcRegFilt3;
  __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
  __m128i srcRegFilt5, srcRegFilt6, srcRegFilt7, srcRegFilt8;
  __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7;
  __m128i srcReg8;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits in the filter
  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
  // duplicate only the second 16 bits in the filter
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits in the filter
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
  // duplicate only the forth 16 bits in the filter
  forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

  // load the first 7 rows of 16 bytes
  srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
  srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch));
  srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));
  srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));
  srcReg7 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));

  for (i = 0; i < output_height; i++) {
    // load the last 16 bytes
    srcReg8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));

    // merge the result together
    srcRegFilt5 = _mm_unpacklo_epi8(srcReg1, srcReg2);
    srcRegFilt6 = _mm_unpacklo_epi8(srcReg7, srcReg8);
    srcRegFilt1 = _mm_unpackhi_epi8(srcReg1, srcReg2);
    srcRegFilt3 = _mm_unpackhi_epi8(srcReg7, srcReg8);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, firstFilters);
    srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, forthFilters);
    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, forthFilters);

    // add and saturate the results together
    srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, srcRegFilt6);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);

    // merge the result together
    srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4);
    srcRegFilt6 = _mm_unpackhi_epi8(srcReg3, srcReg4);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
    srcRegFilt6 = _mm_maddubs_epi16(srcRegFilt6, secondFilters);

    // merge the result together
    srcRegFilt7 = _mm_unpacklo_epi8(srcReg5, srcReg6);
    srcRegFilt8 = _mm_unpackhi_epi8(srcReg5, srcReg6);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, thirdFilters);
    srcRegFilt8 = _mm_maddubs_epi16(srcRegFilt8, thirdFilters);

    // add and saturate the results together
    srcRegFilt5 = _mm_adds_epi16(srcRegFilt5,
                                 _mm_min_epi16(srcRegFilt3, srcRegFilt7));
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                                 _mm_min_epi16(srcRegFilt6, srcRegFilt8));

    // add and saturate the results together
    srcRegFilt5 = _mm_adds_epi16(srcRegFilt5,
                                 _mm_max_epi16(srcRegFilt3, srcRegFilt7));
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                                 _mm_max_epi16(srcRegFilt6, srcRegFilt8));
    srcRegFilt5 = _mm_adds_epi16(srcRegFilt5, addFilterReg64);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

    // shift by 7 bit each 16 bit
    srcRegFilt5 = _mm_srai_epi16(srcRegFilt5, 7);
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt5, srcRegFilt1);

    src_ptr+=src_pitch;

    // shift down a row
    srcReg1 = srcReg2;
    srcReg2 = srcReg3;
    srcReg3 = srcReg4;
    srcReg4 = srcReg5;
    srcReg5 = srcReg6;
    srcReg6 = srcReg7;
    srcReg7 = srcReg8;

    // save 16 bytes convolve result
    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1);

    output_ptr+=out_pitch;
  }
}

#if ARCH_X86_64
filter8_1dfunction vp9_filter_block1d16_v8_intrin_ssse3;
filter8_1dfunction vp9_filter_block1d16_h8_intrin_ssse3;
filter8_1dfunction vp9_filter_block1d8_v8_intrin_ssse3;
filter8_1dfunction vp9_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction vp9_filter_block1d4_v8_ssse3;
filter8_1dfunction vp9_filter_block1d4_h8_intrin_ssse3;
#define vp9_filter_block1d16_v8_ssse3 vp9_filter_block1d16_v8_intrin_ssse3
#define vp9_filter_block1d16_h8_ssse3 vp9_filter_block1d16_h8_intrin_ssse3
#define vp9_filter_block1d8_v8_ssse3 vp9_filter_block1d8_v8_intrin_ssse3
#define vp9_filter_block1d8_h8_ssse3 vp9_filter_block1d8_h8_intrin_ssse3
#define vp9_filter_block1d4_h8_ssse3 vp9_filter_block1d4_h8_intrin_ssse3
#else  // ARCH_X86
filter8_1dfunction vp9_filter_block1d16_v8_ssse3;
filter8_1dfunction vp9_filter_block1d16_h8_ssse3;
filter8_1dfunction vp9_filter_block1d8_v8_ssse3;
filter8_1dfunction vp9_filter_block1d8_h8_ssse3;
filter8_1dfunction vp9_filter_block1d4_v8_ssse3;
filter8_1dfunction vp9_filter_block1d4_h8_ssse3;
#endif  // ARCH_X86_64
filter8_1dfunction vp9_filter_block1d16_v8_avg_ssse3;
filter8_1dfunction vp9_filter_block1d16_h8_avg_ssse3;
filter8_1dfunction vp9_filter_block1d8_v8_avg_ssse3;
filter8_1dfunction vp9_filter_block1d8_h8_avg_ssse3;
filter8_1dfunction vp9_filter_block1d4_v8_avg_ssse3;
filter8_1dfunction vp9_filter_block1d4_h8_avg_ssse3;

filter8_1dfunction vp9_filter_block1d16_v2_ssse3;
filter8_1dfunction vp9_filter_block1d16_h2_ssse3;
filter8_1dfunction vp9_filter_block1d8_v2_ssse3;
filter8_1dfunction vp9_filter_block1d8_h2_ssse3;
filter8_1dfunction vp9_filter_block1d4_v2_ssse3;
filter8_1dfunction vp9_filter_block1d4_h2_ssse3;
filter8_1dfunction vp9_filter_block1d16_v2_avg_ssse3;
filter8_1dfunction vp9_filter_block1d16_h2_avg_ssse3;
filter8_1dfunction vp9_filter_block1d8_v2_avg_ssse3;
filter8_1dfunction vp9_filter_block1d8_h2_avg_ssse3;
filter8_1dfunction vp9_filter_block1d4_v2_avg_ssse3;
filter8_1dfunction vp9_filter_block1d4_h2_avg_ssse3;

// void vp9_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                                uint8_t *dst, ptrdiff_t dst_stride,
//                                const int16_t *filter_x, int x_step_q4,
//                                const int16_t *filter_y, int y_step_q4,
//                                int w, int h);
// void vp9_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                               uint8_t *dst, ptrdiff_t dst_stride,
//                               const int16_t *filter_x, int x_step_q4,
//                               const int16_t *filter_y, int y_step_q4,
//                               int w, int h);
// void vp9_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                                    uint8_t *dst, ptrdiff_t dst_stride,
//                                    const int16_t *filter_x, int x_step_q4,
//                                    const int16_t *filter_y, int y_step_q4,
//                                    int w, int h);
// void vp9_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                                   uint8_t *dst, ptrdiff_t dst_stride,
//                                   const int16_t *filter_x, int x_step_q4,
//                                   const int16_t *filter_y, int y_step_q4,
//                                   int w, int h);
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3);
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3);
FUN_CONV_1D(avg_horiz, x_step_q4, filter_x, h, src, avg_, ssse3);
FUN_CONV_1D(avg_vert, y_step_q4, filter_y, v, src - src_stride * 3, avg_,
            ssse3);

// void vp9_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                          uint8_t *dst, ptrdiff_t dst_stride,
//                          const int16_t *filter_x, int x_step_q4,
//                          const int16_t *filter_y, int y_step_q4,
//                          int w, int h);
// void vp9_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                              uint8_t *dst, ptrdiff_t dst_stride,
//                              const int16_t *filter_x, int x_step_q4,
//                              const int16_t *filter_y, int y_step_q4,
//                              int w, int h);
FUN_CONV_2D(, ssse3);
FUN_CONV_2D(avg_ , ssse3);