ref: e378566060e2f962e03d727fd3f184b051d37f5c
dir: /test/dct16x16_test.cc/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "vpx_ports/mem.h" extern "C" { #include "vp9/common/vp9_entropy.h" #include "./vp9_rtcd.h" void vp9_short_idct16x16_add_c(int16_t *input, uint8_t *output, int pitch); } #include "test/acm_random.h" #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { #ifdef _MSC_VER static int round(double x) { if (x < 0) return static_cast<int>(ceil(x - 0.5)); else return static_cast<int>(floor(x + 0.5)); } #endif const double PI = 3.1415926535898; void reference2_16x16_idct_2d(double *input, double *output) { double x; for (int l = 0; l < 16; ++l) { for (int k = 0; k < 16; ++k) { double s = 0; for (int i = 0; i < 16; ++i) { for (int j = 0; j < 16; ++j) { x = cos(PI * j * (l + 0.5) / 16.0) * cos(PI * i * (k + 0.5) / 16.0) * input[i * 16 + j] / 256; if (i != 0) x *= sqrt(2.0); if (j != 0) x *= sqrt(2.0); s += x; } } output[k*16+l] = s; } } } static const double C1 = 0.995184726672197; static const double C2 = 0.98078528040323; static const double C3 = 0.956940335732209; static const double C4 = 0.923879532511287; static const double C5 = 0.881921264348355; static const double C6 = 0.831469612302545; static const double C7 = 0.773010453362737; static const double C8 = 0.707106781186548; static const double C9 = 0.634393284163646; static const double C10 = 0.555570233019602; static const double C11 = 0.471396736825998; static const double C12 = 0.38268343236509; static const double C13 = 0.290284677254462; static const double C14 = 0.195090322016128; static const double C15 = 0.098017140329561; void butterfly_16x16_dct_1d(double input[16], double output[16]) { double step[16]; double intermediate[16]; double temp1, temp2; // step 1 step[ 0] = input[0] + input[15]; step[ 1] = input[1] + input[14]; step[ 2] = input[2] + input[13]; step[ 3] = input[3] + input[12]; step[ 4] = input[4] + input[11]; step[ 5] = input[5] + input[10]; step[ 6] = input[6] + input[ 9]; step[ 7] = input[7] + input[ 8]; step[ 8] = input[7] - input[ 8]; step[ 9] = input[6] - input[ 9]; step[10] = input[5] - input[10]; step[11] = input[4] - input[11]; step[12] = input[3] - input[12]; step[13] = input[2] - input[13]; step[14] = input[1] - input[14]; step[15] = input[0] - input[15]; // step 2 output[0] = step[0] + step[7]; output[1] = step[1] + step[6]; output[2] = step[2] + step[5]; output[3] = step[3] + step[4]; output[4] = step[3] - step[4]; output[5] = step[2] - step[5]; output[6] = step[1] - step[6]; output[7] = step[0] - step[7]; temp1 = step[ 8]*C7; temp2 = step[15]*C9; output[ 8] = temp1 + temp2; temp1 = step[ 9]*C11; temp2 = step[14]*C5; output[ 9] = temp1 - temp2; temp1 = step[10]*C3; temp2 = step[13]*C13; output[10] = temp1 + temp2; temp1 = step[11]*C15; temp2 = step[12]*C1; output[11] = temp1 - temp2; temp1 = step[11]*C1; temp2 = step[12]*C15; output[12] = temp2 + temp1; temp1 = step[10]*C13; temp2 = step[13]*C3; output[13] = temp2 - temp1; temp1 = step[ 9]*C5; temp2 = step[14]*C11; output[14] = temp2 + temp1; temp1 = step[ 8]*C9; temp2 = step[15]*C7; output[15] = temp2 - temp1; // step 3 step[ 0] = output[0] + output[3]; step[ 1] = output[1] + output[2]; step[ 2] = output[1] - output[2]; step[ 3] = output[0] - output[3]; temp1 = output[4]*C14; temp2 = output[7]*C2; step[ 4] = temp1 + temp2; temp1 = output[5]*C10; temp2 = output[6]*C6; step[ 5] = temp1 + temp2; temp1 = output[5]*C6; temp2 = output[6]*C10; step[ 6] = temp2 - temp1; temp1 = output[4]*C2; temp2 = output[7]*C14; step[ 7] = temp2 - temp1; step[ 8] = output[ 8] + output[11]; step[ 9] = output[ 9] + output[10]; step[10] = output[ 9] - output[10]; step[11] = output[ 8] - output[11]; step[12] = output[12] + output[15]; step[13] = output[13] + output[14]; step[14] = output[13] - output[14]; step[15] = output[12] - output[15]; // step 4 output[ 0] = (step[ 0] + step[ 1]); output[ 8] = (step[ 0] - step[ 1]); temp1 = step[2]*C12; temp2 = step[3]*C4; temp1 = temp1 + temp2; output[ 4] = 2*(temp1*C8); temp1 = step[2]*C4; temp2 = step[3]*C12; temp1 = temp2 - temp1; output[12] = 2*(temp1*C8); output[ 2] = 2*((step[4] + step[ 5])*C8); output[14] = 2*((step[7] - step[ 6])*C8); temp1 = step[4] - step[5]; temp2 = step[6] + step[7]; output[ 6] = (temp1 + temp2); output[10] = (temp1 - temp2); intermediate[8] = step[8] + step[14]; intermediate[9] = step[9] + step[15]; temp1 = intermediate[8]*C12; temp2 = intermediate[9]*C4; temp1 = temp1 - temp2; output[3] = 2*(temp1*C8); temp1 = intermediate[8]*C4; temp2 = intermediate[9]*C12; temp1 = temp2 + temp1; output[13] = 2*(temp1*C8); output[ 9] = 2*((step[10] + step[11])*C8); intermediate[11] = step[10] - step[11]; intermediate[12] = step[12] + step[13]; intermediate[13] = step[12] - step[13]; intermediate[14] = step[ 8] - step[14]; intermediate[15] = step[ 9] - step[15]; output[15] = (intermediate[11] + intermediate[12]); output[ 1] = -(intermediate[11] - intermediate[12]); output[ 7] = 2*(intermediate[13]*C8); temp1 = intermediate[14]*C12; temp2 = intermediate[15]*C4; temp1 = temp1 - temp2; output[11] = -2*(temp1*C8); temp1 = intermediate[14]*C4; temp2 = intermediate[15]*C12; temp1 = temp2 + temp1; output[ 5] = 2*(temp1*C8); } static void reference_16x16_dct_1d(double in[16], double out[16]) { const double kPi = 3.141592653589793238462643383279502884; const double kInvSqrt2 = 0.707106781186547524400844362104; for (int k = 0; k < 16; k++) { out[k] = 0.0; for (int n = 0; n < 16; n++) out[k] += in[n]*cos(kPi*(2*n+1)*k/32.0); if (k == 0) out[k] = out[k]*kInvSqrt2; } } void reference_16x16_dct_2d(int16_t input[16*16], double output[16*16]) { // First transform columns for (int i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (int j = 0; j < 16; ++j) temp_in[j] = input[j*16 + i]; butterfly_16x16_dct_1d(temp_in, temp_out); for (int j = 0; j < 16; ++j) output[j*16 + i] = temp_out[j]; } // Then transform rows for (int i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i*16]; butterfly_16x16_dct_1d(temp_in, temp_out); // Scale by some magic number for (int j = 0; j < 16; ++j) output[j + i*16] = temp_out[j]/2; } } void fdct16x16(int16_t *in, int16_t *out, uint8_t* /*dst*/, int stride, int /*tx_type*/) { vp9_short_fdct16x16_c(in, out, stride); } void idct16x16_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, int stride, int /*tx_type*/) { vp9_short_idct16x16_add_c(out, dst, stride >> 1); } void fht16x16(int16_t *in, int16_t *out, uint8_t* /*dst*/, int stride, int tx_type) { // FIXME(jingning): need to test both SSE2 and c #if HAVE_SSE2 vp9_short_fht16x16_sse2(in, out, stride >> 1, tx_type); #else vp9_short_fht16x16_c(in, out, stride >> 1, tx_type); #endif } void iht16x16_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, int stride, int tx_type) { vp9_short_iht16x16_add_c(out, dst, stride >> 1, tx_type); } class Trans16x16Test : public ::testing::TestWithParam<int> { public: virtual ~Trans16x16Test() {} virtual void SetUp() { tx_type_ = GetParam(); if (tx_type_ == 0) { fwd_txfm_ = fdct16x16; inv_txfm_ = idct16x16_add; } else { fwd_txfm_ = fht16x16; inv_txfm_ = iht16x16_add; } } protected: void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) { (*fwd_txfm_)(in, out, dst, stride, tx_type); } void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) { (*inv_txfm_)(in, out, dst, stride, tx_type); } int tx_type_; void (*fwd_txfm_)(int16_t*, int16_t*, uint8_t*, int, int); void (*inv_txfm_)(int16_t*, int16_t*, uint8_t*, int, int); }; TEST_P(Trans16x16Test, AccuracyCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; const int count_test_block = 10000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 256); DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 256); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 256); for (int j = 0; j < 256; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); // Initialize a test block with input range [-255, 255]. test_input_block[j] = src[j] - dst[j]; } const int pitch = 32; RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_); RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_); for (int j = 0; j < 256; ++j) { const int diff = dst[j] - src[j]; const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1, max_error) << "Error: 16x16 FHT/IHT has an individual round trip error > 1"; EXPECT_GE(count_test_block , total_error) << "Error: 16x16 FHT/IHT has average round trip error > 1 per block"; } TEST_P(Trans16x16Test, CoeffSizeCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, 256); DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, 256); DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, 256); DECLARE_ALIGNED_ARRAY(16, int16_t, output_extreme_block, 256); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256); // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 256; ++j) { input_block[j] = rnd.Rand8() - rnd.Rand8(); input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; } if (i == 0) for (int j = 0; j < 256; ++j) input_extreme_block[j] = 255; const int pitch = 32; RunFwdTxfm(input_block, output_block, dst, pitch, tx_type_); RunFwdTxfm(input_extreme_block, output_extreme_block, dst, pitch, tx_type_); // The minimum quant value is 4. for (int j = 0; j < 256; ++j) { EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j])) << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_extreme_block[j])) << "Error: 16x16 FDCT extreme has coefficient larger " << "than 4*DCT_MAX_VALUE"; } } } TEST_P(Trans16x16Test, InvAccuracyCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; // TODO(jingning): is this unit test necessary? if so, need to add // check sets for inverse hybrid transforms too. if (tx_type_ != DCT_DCT) return; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, in, 256); DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, 256); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 256); double out_r[256]; for (int j = 0; j < 256; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); } // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 256; ++j) in[j] = src[j] - dst[j]; reference_16x16_dct_2d(in, out_r); for (int j = 0; j < 256; j++) coeff[j] = round(out_r[j]); const int pitch = 32; RunInvTxfm(coeff, coeff, dst, pitch, tx_type_); for (int j = 0; j < 256; ++j) { const int diff = dst[j] - src[j]; const int error = diff * diff; EXPECT_GE(1, error) << "Error: 16x16 IDCT has error " << error << " at index " << j; } } } INSTANTIATE_TEST_CASE_P(VP9, Trans16x16Test, ::testing::Range(0, 4)); } // namespace