ref: e99779cfa2858fd4741d1e8296f678021baafe1c
dir: /vpx_dsp/arm/vpx_scaled_convolve8_neon.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <arm_neon.h> #include <assert.h> #include <string.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/arm/transpose_neon.h" #include "vpx_dsp/arm/vpx_convolve8_neon.h" #include "vpx_ports/mem.h" static INLINE void scaledconvolve_horiz_w4( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filters, const int x0_q4, const int x_step_q4, const int w, const int h) { DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; y = h; do { int x_q4 = x0_q4; x = 0; do { // process 4 src_x steps for (z = 0; z < 4; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; if (x_q4 & SUBPEL_MASK) { const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]); const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3); const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0); uint8x8_t s[8], d; int16x8_t ss[4]; int16x4_t t[8], tt; load_u8_8x4(src_x, src_stride, &s[0], &s[1], &s[2], &s[3]); transpose_u8_8x4(&s[0], &s[1], &s[2], &s[3]); ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0])); ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1])); ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2])); ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3])); t[0] = vget_low_s16(ss[0]); t[1] = vget_low_s16(ss[1]); t[2] = vget_low_s16(ss[2]); t[3] = vget_low_s16(ss[3]); t[4] = vget_high_s16(ss[0]); t[5] = vget_high_s16(ss[1]); t[6] = vget_high_s16(ss[2]); t[7] = vget_high_s16(ss[3]); tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters, filter3, filter4); d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7); vst1_lane_u32((uint32_t *)&temp[4 * z], vreinterpret_u32_u8(d), 0); } else { int i; for (i = 0; i < 4; ++i) { temp[z * 4 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 4x4 filters values back to dst { const uint8x8x4_t d4 = vld4_u8(temp); vst1_lane_u32((uint32_t *)&dst[x + 0 * dst_stride], vreinterpret_u32_u8(d4.val[0]), 0); vst1_lane_u32((uint32_t *)&dst[x + 1 * dst_stride], vreinterpret_u32_u8(d4.val[1]), 0); vst1_lane_u32((uint32_t *)&dst[x + 2 * dst_stride], vreinterpret_u32_u8(d4.val[2]), 0); vst1_lane_u32((uint32_t *)&dst[x + 3 * dst_stride], vreinterpret_u32_u8(d4.val[3]), 0); } x += 4; } while (x < w); src += src_stride * 4; dst += dst_stride * 4; y -= 4; } while (y > 0); } static INLINE void scaledconvolve_horiz_w8( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filters, const int x0_q4, const int x_step_q4, const int w, const int h) { DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; // This function processes 8x8 areas. The intermediate height is not always // a multiple of 8, so force it to be a multiple of 8 here. y = (h + 7) & ~7; do { int x_q4 = x0_q4; x = 0; do { uint8x8_t d[8]; // process 8 src_x steps for (z = 0; z < 8; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; if (x_q4 & SUBPEL_MASK) { const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]); uint8x8_t s[8]; load_u8_8x8(src_x, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); d[0] = scale_filter_8(s, filters); vst1_u8(&temp[8 * z], d[0]); } else { int i; for (i = 0; i < 8; ++i) { temp[z * 8 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 8x8 filters values back to dst load_u8_8x8(temp, 8, &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); transpose_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); vst1_u8(&dst[x + 0 * dst_stride], d[0]); vst1_u8(&dst[x + 1 * dst_stride], d[1]); vst1_u8(&dst[x + 2 * dst_stride], d[2]); vst1_u8(&dst[x + 3 * dst_stride], d[3]); vst1_u8(&dst[x + 4 * dst_stride], d[4]); vst1_u8(&dst[x + 5 * dst_stride], d[5]); vst1_u8(&dst[x + 6 * dst_stride], d[6]); vst1_u8(&dst[x + 7 * dst_stride], d[7]); x += 8; } while (x < w); src += src_stride * 8; dst += dst_stride * 8; } while (y -= 8); } static INLINE void scaledconvolve_vert_w4( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); y = h; do { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; if (y_q4 & SUBPEL_MASK) { const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3); const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0); uint8x8_t s[8], d; int16x4_t t[8], tt; load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); t[0] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[0]))); t[1] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[1]))); t[2] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[2]))); t[3] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[3]))); t[4] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[4]))); t[5] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[5]))); t[6] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[6]))); t[7] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[7]))); tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters, filter3, filter4); d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7); vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0); } else { memcpy(dst, &src_y[3 * src_stride], w); } dst += dst_stride; y_q4 += y_step_q4; } while (--y); } static INLINE void scaledconvolve_vert_w8( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); y = h; do { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; if (y_q4 & SUBPEL_MASK) { const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); uint8x8_t s[8], d; load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); d = scale_filter_8(s, filters); vst1_u8(dst, d); } else { memcpy(dst, &src_y[3 * src_stride], w); } dst += dst_stride; y_q4 += y_step_q4; } while (--y); } static INLINE void scaledconvolve_vert_w16( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int x, y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); y = h; do { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; if (y_q4 & SUBPEL_MASK) { x = 0; do { const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); uint8x16_t ss[8]; uint8x8_t s[8], d[2]; load_u8_16x8(src_y, src_stride, &ss[0], &ss[1], &ss[2], &ss[3], &ss[4], &ss[5], &ss[6], &ss[7]); s[0] = vget_low_u8(ss[0]); s[1] = vget_low_u8(ss[1]); s[2] = vget_low_u8(ss[2]); s[3] = vget_low_u8(ss[3]); s[4] = vget_low_u8(ss[4]); s[5] = vget_low_u8(ss[5]); s[6] = vget_low_u8(ss[6]); s[7] = vget_low_u8(ss[7]); d[0] = scale_filter_8(s, filters); s[0] = vget_high_u8(ss[0]); s[1] = vget_high_u8(ss[1]); s[2] = vget_high_u8(ss[2]); s[3] = vget_high_u8(ss[3]); s[4] = vget_high_u8(ss[4]); s[5] = vget_high_u8(ss[5]); s[6] = vget_high_u8(ss[6]); s[7] = vget_high_u8(ss[7]); d[1] = scale_filter_8(s, filters); vst1q_u8(&dst[x], vcombine_u8(d[0], d[1])); src_y += 16; x += 16; } while (x < w); } else { memcpy(dst, &src_y[3 * src_stride], w); } dst += dst_stride; y_q4 += y_step_q4; } while (--y); } void vpx_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { // Note: Fixed size intermediate buffer, temp, places limits on parameters. // 2d filtering proceeds in 2 steps: // (1) Interpolate horizontally into an intermediate buffer, temp. // (2) Interpolate temp vertically to derive the sub-pixel result. // Deriving the maximum number of rows in the temp buffer (135): // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). // --Largest block size is 64x64 pixels. // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the // original frame (in 1/16th pixel units). // --Must round-up because block may be located at sub-pixel position. // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. // --Require an additional 8 rows for the horiz_w8 transpose tail. // When calling in frame scaling function, the smallest scaling factor is x1/4 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still // big enough. DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); const int intermediate_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; assert(w <= 64); assert(h <= 64); assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); assert(x_step_q4 <= 64); if (w >= 8) { scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } else { scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } if (w >= 16) { scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else if (w == 8) { scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else { scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } }