ref: e9b8810b4d5c1db78ef07b6061b05d2d62d55eb6
dir: /vp9/encoder/x86/vp9_denoiser_sse2.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <emmintrin.h> #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vpx_ports/emmintrin_compat.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_context_tree.h" #include "vp9/encoder/vp9_denoiser.h" #include "vpx_mem/vpx_mem.h" // Compute the sum of all pixel differences of this MB. static INLINE int sum_diff_16x1(__m128i acc_diff) { const __m128i k_1 = _mm_set1_epi16(1); const __m128i acc_diff_lo = _mm_srai_epi16( _mm_unpacklo_epi8(acc_diff, acc_diff), 8); const __m128i acc_diff_hi = _mm_srai_epi16( _mm_unpackhi_epi8(acc_diff, acc_diff), 8); const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi); const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1); const __m128i hgfe_dcba = _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8)); const __m128i hgfedcba = _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4)); int sum_diff = _mm_cvtsi128_si32(hgfedcba); return sum_diff; } // Denoise a 16x1 vector. static INLINE __m128i vp9_denoiser_16x1_sse2(const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, const __m128i k_0, const __m128i k_4, const __m128i k_8, const __m128i k_16, const __m128i l3, const __m128i l32, const __m128i l21, __m128i acc_diff) { // Calculate differences const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0])); const __m128i v_mc_running_avg_y = _mm_loadu_si128( (__m128i *)(&mc_running_avg_y[0])); __m128i v_running_avg_y; const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); // Obtain the sign. FF if diff is negative. const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); // Clamp absolute difference to 16 to be used to get mask. Doing this // allows us to use _mm_cmpgt_epi8, which operates on signed byte. const __m128i clamped_absdiff = _mm_min_epu8( _mm_or_si128(pdiff, ndiff), k_16); // Get masks for l2 l1 and l0 adjustments. const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff); const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff); const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff); // Get adjustments for l2, l1, and l0. __m128i adj2 = _mm_and_si128(mask2, l32); const __m128i adj1 = _mm_and_si128(mask1, l21); const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff); __m128i adj, padj, nadj; // Combine the adjustments and get absolute adjustments. adj2 = _mm_add_epi8(adj2, adj1); adj = _mm_sub_epi8(l3, adj2); adj = _mm_andnot_si128(mask0, adj); adj = _mm_or_si128(adj, adj0); // Restore the sign and get positive and negative adjustments. padj = _mm_andnot_si128(diff_sign, adj); nadj = _mm_and_si128(diff_sign, adj); // Calculate filtered value. v_running_avg_y = _mm_adds_epu8(v_sig, padj); v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj); _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); // Adjustments <=7, and each element in acc_diff can fit in signed // char. acc_diff = _mm_adds_epi8(acc_diff, padj); acc_diff = _mm_subs_epi8(acc_diff, nadj); return acc_diff; } // Denoise a 16x1 vector with a weaker filter. static INLINE __m128i vp9_denoiser_adj_16x1_sse2(const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, const __m128i k_0, const __m128i k_delta, __m128i acc_diff) { __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0])); // Calculate differences. const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0])); const __m128i v_mc_running_avg_y = _mm_loadu_si128((__m128i *)(&mc_running_avg_y[0])); const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); // Obtain the sign. FF if diff is negative. const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); // Clamp absolute difference to delta to get the adjustment. const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta); // Restore the sign and get positive and negative adjustments. __m128i padj, nadj; padj = _mm_andnot_si128(diff_sign, adj); nadj = _mm_and_si128(diff_sign, adj); // Calculate filtered value. v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj); v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj); _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); // Accumulate the adjustments. acc_diff = _mm_subs_epi8(acc_diff, padj); acc_diff = _mm_adds_epi8(acc_diff, nadj); return acc_diff; } static int vp9_denoiser_4xM_sse2(const uint8_t *sig, int sig_stride, const uint8_t *mc_running_avg_y, int mc_avg_y_stride, uint8_t *running_avg_y, int avg_y_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { int sum_diff_thresh; int r; int shift_inc = (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 1 : 0; unsigned char sig_buffer[2][16], mc_running_buffer[2][16], running_buffer[2][16]; __m128i acc_diff = _mm_setzero_si128(); const __m128i k_0 = _mm_setzero_si128(); const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); const __m128i k_8 = _mm_set1_epi8(8); const __m128i k_16 = _mm_set1_epi8(16); // Modify each level's adjustment according to motion_magnitude. const __m128i l3 = _mm_set1_epi8( (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6); // Difference between level 3 and level 2 is 2. const __m128i l32 = _mm_set1_epi8(2); // Difference between level 2 and level 1 is 1. const __m128i l21 = _mm_set1_epi8(1); int sum_diff = 0; for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> 2); ++r) { vpx_memcpy(sig_buffer[r], sig, 4); vpx_memcpy(sig_buffer[r] + 4, sig + sig_stride, 4); vpx_memcpy(sig_buffer[r] + 8, sig + sig_stride * 2, 4); vpx_memcpy(sig_buffer[r] + 12, sig + sig_stride * 3, 4); vpx_memcpy(mc_running_buffer[r], mc_running_avg_y, 4); vpx_memcpy(mc_running_buffer[r] + 4, mc_running_avg_y + mc_avg_y_stride, 4); vpx_memcpy(mc_running_buffer[r] + 8, mc_running_avg_y + mc_avg_y_stride * 2, 4); vpx_memcpy(mc_running_buffer[r] + 12, mc_running_avg_y + mc_avg_y_stride * 3, 4); vpx_memcpy(running_buffer[r], running_avg_y, 4); vpx_memcpy(running_buffer[r] + 4, running_avg_y + avg_y_stride, 4); vpx_memcpy(running_buffer[r] + 8, running_avg_y + avg_y_stride * 2, 4); vpx_memcpy(running_buffer[r] + 12, running_avg_y + avg_y_stride * 3, 4); acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0, k_4, k_8, k_16, l3, l32, l21, acc_diff); vpx_memcpy(running_avg_y, running_buffer[r], 4); vpx_memcpy(running_avg_y + avg_y_stride, running_buffer[r] + 4, 4); vpx_memcpy(running_avg_y + avg_y_stride * 2, running_buffer[r] + 8, 4); vpx_memcpy(running_avg_y + avg_y_stride * 3, running_buffer[r] + 12, 4); // Update pointers for next iteration. sig += (sig_stride << 2); mc_running_avg_y += (mc_avg_y_stride << 2); running_avg_y += (avg_y_stride << 2); } { sum_diff = sum_diff_16x1(acc_diff); sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); if (abs(sum_diff) > sum_diff_thresh) { // Before returning to copy the block (i.e., apply no denoising), // checK if we can still apply some (weaker) temporal filtering to // this block, that would otherwise not be denoised at all. Simplest // is to apply an additional adjustment to running_avg_y to bring it // closer to sig. The adjustment is capped by a maximum delta, and // chosen such that in most cases the resulting sum_diff will be // within the accceptable range given by sum_diff_thresh. // The delta is set by the excess of absolute pixel diff over the // threshold. int delta = ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; // Only apply the adjustment for max delta up to 3. if (delta < 4) { const __m128i k_delta = _mm_set1_epi8(delta); running_avg_y -= avg_y_stride * (4 << b_height_log2_lookup[bs]); sum_diff = 0; for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> 2); ++r) { acc_diff = vp9_denoiser_adj_16x1_sse2( sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0, k_delta, acc_diff); vpx_memcpy(running_avg_y, running_buffer[r], 4); vpx_memcpy(running_avg_y + avg_y_stride, running_buffer[r] + 4, 4); vpx_memcpy(running_avg_y + avg_y_stride * 2, running_buffer[r] + 8, 4); vpx_memcpy(running_avg_y + avg_y_stride * 3, running_buffer[r] + 12, 4); // Update pointers for next iteration. running_avg_y += (avg_y_stride << 2); } sum_diff = sum_diff_16x1(acc_diff); if (abs(sum_diff) > sum_diff_thresh) { return COPY_BLOCK; } } else { return COPY_BLOCK; } } } return FILTER_BLOCK; } static int vp9_denoiser_8xM_sse2(const uint8_t *sig, int sig_stride, const uint8_t *mc_running_avg_y, int mc_avg_y_stride, uint8_t *running_avg_y, int avg_y_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { int sum_diff_thresh; int r; int shift_inc = (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 1 : 0; unsigned char sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16]; __m128i acc_diff = _mm_setzero_si128(); const __m128i k_0 = _mm_setzero_si128(); const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); const __m128i k_8 = _mm_set1_epi8(8); const __m128i k_16 = _mm_set1_epi8(16); // Modify each level's adjustment according to motion_magnitude. const __m128i l3 = _mm_set1_epi8( (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6); // Difference between level 3 and level 2 is 2. const __m128i l32 = _mm_set1_epi8(2); // Difference between level 2 and level 1 is 1. const __m128i l21 = _mm_set1_epi8(1); int sum_diff = 0; for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> 1); ++r) { vpx_memcpy(sig_buffer[r], sig, 8); vpx_memcpy(sig_buffer[r] + 8, sig + sig_stride, 8); vpx_memcpy(mc_running_buffer[r], mc_running_avg_y, 8); vpx_memcpy(mc_running_buffer[r] + 8, mc_running_avg_y + mc_avg_y_stride, 8); vpx_memcpy(running_buffer[r], running_avg_y, 8); vpx_memcpy(running_buffer[r] + 8, running_avg_y + avg_y_stride, 8); acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0, k_4, k_8, k_16, l3, l32, l21, acc_diff); vpx_memcpy(running_avg_y, running_buffer[r], 8); vpx_memcpy(running_avg_y + avg_y_stride, running_buffer[r] + 8, 8); // Update pointers for next iteration. sig += (sig_stride << 1); mc_running_avg_y += (mc_avg_y_stride << 1); running_avg_y += (avg_y_stride << 1); } { sum_diff = sum_diff_16x1(acc_diff); sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); if (abs(sum_diff) > sum_diff_thresh) { // Before returning to copy the block (i.e., apply no denoising), // checK if we can still apply some (weaker) temporal filtering to // this block, that would otherwise not be denoised at all. Simplest // is to apply an additional adjustment to running_avg_y to bring it // closer to sig. The adjustment is capped by a maximum delta, and // chosen such that in most cases the resulting sum_diff will be // within the accceptable range given by sum_diff_thresh. // The delta is set by the excess of absolute pixel diff over the // threshold. int delta = ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; // Only apply the adjustment for max delta up to 3. if (delta < 4) { const __m128i k_delta = _mm_set1_epi8(delta); running_avg_y -= avg_y_stride * (4 << b_height_log2_lookup[bs]); for (r = 0; r < ((4 << b_height_log2_lookup[bs]) >> 1); ++r) { acc_diff = vp9_denoiser_adj_16x1_sse2( sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0, k_delta, acc_diff); vpx_memcpy(running_avg_y, running_buffer[r], 8); vpx_memcpy(running_avg_y + avg_y_stride, running_buffer[r] + 8, 8); // Update pointers for next iteration. running_avg_y += (avg_y_stride << 1); } sum_diff = sum_diff_16x1(acc_diff); if (abs(sum_diff) > sum_diff_thresh) { return COPY_BLOCK; } } else { return COPY_BLOCK; } } } return FILTER_BLOCK; } static int vp9_denoiser_64_32_16xM_sse2(const uint8_t *sig, int sig_stride, const uint8_t *mc_running_avg_y, int mc_avg_y_stride, uint8_t *running_avg_y, int avg_y_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { int sum_diff_thresh; int r, c; int shift_inc = (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 1 : 0; __m128i acc_diff[4][4]; const __m128i k_0 = _mm_setzero_si128(); const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); const __m128i k_8 = _mm_set1_epi8(8); const __m128i k_16 = _mm_set1_epi8(16); // Modify each level's adjustment according to motion_magnitude. const __m128i l3 = _mm_set1_epi8( (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6); // Difference between level 3 and level 2 is 2. const __m128i l32 = _mm_set1_epi8(2); // Difference between level 2 and level 1 is 1. const __m128i l21 = _mm_set1_epi8(1); int sum_diff = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { acc_diff[i][j] = _mm_setzero_si128(); } } for (r = 0; r < (4 << b_height_log2_lookup[bs]); r++) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) { acc_diff[c>>4][r>>4] = vp9_denoiser_16x1_sse2( sig, mc_running_avg_y, running_avg_y, k_0, k_4, k_8, k_16, l3, l32, l21, acc_diff[c>>4][r>>4]); // Update pointers for next iteration. sig += 16; mc_running_avg_y += 16; running_avg_y += 16; } if ((r + 1) % 16 == 0 || (bs == BLOCK_16X8 && r == 7)) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) { sum_diff += sum_diff_16x1(acc_diff[c>>4][r>>4]); } } // Update pointers for next iteration. sig = sig - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + sig_stride; mc_running_avg_y = mc_running_avg_y - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + mc_avg_y_stride; running_avg_y = running_avg_y - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + avg_y_stride; } { sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); if (abs(sum_diff) > sum_diff_thresh) { int delta = ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; // Only apply the adjustment for max delta up to 3. if (delta < 4) { const __m128i k_delta = _mm_set1_epi8(delta); sig -= sig_stride * (4 << b_height_log2_lookup[bs]); mc_running_avg_y -= mc_avg_y_stride * (4 << b_height_log2_lookup[bs]); running_avg_y -= avg_y_stride * (4 << b_height_log2_lookup[bs]); sum_diff = 0; for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) { acc_diff[c>>4][r>>4] = vp9_denoiser_adj_16x1_sse2( sig, mc_running_avg_y, running_avg_y, k_0, k_delta, acc_diff[c>>4][r>>4]); // Update pointers for next iteration. sig += 16; mc_running_avg_y += 16; running_avg_y += 16; } if ((r + 1) % 16 == 0 || (bs == BLOCK_16X8 && r == 7)) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); c += 16) { sum_diff += sum_diff_16x1(acc_diff[c>>4][r>>4]); } } sig = sig - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + sig_stride; mc_running_avg_y = mc_running_avg_y - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + mc_avg_y_stride; running_avg_y = running_avg_y - 16 * ((4 << b_width_log2_lookup[bs]) >> 4) + avg_y_stride; } if (abs(sum_diff) > sum_diff_thresh) { return COPY_BLOCK; } } else { return COPY_BLOCK; } } } return FILTER_BLOCK; } int vp9_denoiser_filter_sse2(const uint8_t *sig, int sig_stride, const uint8_t *mc_avg, int mc_avg_stride, uint8_t *avg, int avg_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { if (bs == BLOCK_4X4 || bs == BLOCK_4X8) { return vp9_denoiser_4xM_sse2(sig, sig_stride, mc_avg, mc_avg_stride, avg, avg_stride, increase_denoising, bs, motion_magnitude); } else if (bs == BLOCK_8X4 || bs == BLOCK_8X8 || bs == BLOCK_8X16) { return vp9_denoiser_8xM_sse2(sig, sig_stride, mc_avg, mc_avg_stride, avg, avg_stride, increase_denoising, bs, motion_magnitude); } else if (bs == BLOCK_16X8 || bs == BLOCK_16X16 || bs == BLOCK_16X32 || bs == BLOCK_32X16|| bs == BLOCK_32X32 || bs == BLOCK_32X64 || bs == BLOCK_64X32 || bs == BLOCK_64X64) { return vp9_denoiser_64_32_16xM_sse2(sig, sig_stride, mc_avg, mc_avg_stride, avg, avg_stride, increase_denoising, bs, motion_magnitude); } else { return COPY_BLOCK; } }