ref: ea55e4d26a68ee00da3c798ab85073ac4144b399
dir: /vp9/decoder/vp9_decodeframe.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <stdlib.h> // qsort() #include "./vp9_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem_ops.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_thread.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/decoder/vp9_decodeframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decoder.h" #include "vp9/decoder/vp9_dsubexp.h" #include "vp9/decoder/vp9_dthread.h" #include "vp9/decoder/vp9_read_bit_buffer.h" #include "vp9/decoder/vp9_reader.h" #define MAX_VP9_HEADER_SIZE 80 static int is_compound_reference_allowed(const VP9_COMMON *cm) { int i; for (i = 1; i < REFS_PER_FRAME; ++i) if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; return 0; } static void setup_compound_reference_mode(VP9_COMMON *cm) { if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } } static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return len != 0 && len <= (size_t)(end - start); } static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) { const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(vp9_reader *r) { TX_MODE tx_mode = vp9_read_literal(r, 2); if (tx_mode == ALLOW_32X32) tx_mode += vp9_read_bit(r); return tx_mode; } static void read_tx_mode_probs(struct tx_probs *tx_probs, vp9_reader *r) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 3; ++j) vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 2; ++j) vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 1; ++j) vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm, vp9_reader *r) { if (is_compound_reference_allowed(cm)) { return vp9_read_bit(r) ? (vp9_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE) : SINGLE_REFERENCE; } else { return SINGLE_REFERENCE; } } static void read_frame_reference_mode_probs(VP9_COMMON *cm, vp9_reader *r) { FRAME_CONTEXT *const fc = &cm->fc; int i; if (cm->reference_mode == REFERENCE_MODE_SELECT) for (i = 0; i < COMP_INTER_CONTEXTS; ++i) vp9_diff_update_prob(r, &fc->comp_inter_prob[i]); if (cm->reference_mode != COMPOUND_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) { vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]); vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]); } if (cm->reference_mode != SINGLE_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) vp9_diff_update_prob(r, &fc->comp_ref_prob[i]); } static void update_mv_probs(vp9_prob *p, int n, vp9_reader *r) { int i; for (i = 0; i < n; ++i) if (vp9_read(r, MV_UPDATE_PROB)) p[i] = (vp9_read_literal(r, 7) << 1) | 1; } static void read_mv_probs(nmv_context *ctx, int allow_hp, vp9_reader *r) { int i, j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); update_mv_probs(comp_ctx->fp, 3, r); } if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) { int i; xd->plane[0].dequant = cm->y_dequant[q_index]; for (i = 1; i < MAX_MB_PLANE; i++) xd->plane[i].dequant = cm->uv_dequant[q_index]; } static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block, TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; if (eob > 0) { TX_TYPE tx_type = DCT_DCT; int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); if (xd->lossless) { tx_type = DCT_DCT; vp9_iwht4x4_add(dqcoeff, dst, stride, eob); } else { const PLANE_TYPE plane_type = pd->plane_type; switch (tx_size) { case TX_4X4: tx_type = get_tx_type_4x4(plane_type, xd, block); vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_8X8: tx_type = get_tx_type(plane_type, xd); vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: tx_type = get_tx_type(plane_type, xd); vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: tx_type = DCT_DCT; vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); } } if (eob == 1) { vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0])); } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } } } struct intra_args { VP9_COMMON *cm; MACROBLOCKD *xd; vp9_reader *r; }; static void predict_and_reconstruct_intra_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct intra_args *const args = (struct intra_args *)arg; VP9_COMMON *const cm = args->cm; MACROBLOCKD *const xd = args->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi[0]; const PREDICTION_MODE mode = (plane == 0) ? get_y_mode(mi, block) : mi->mbmi.uv_mode; int x, y; uint8_t *dst; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x]; vp9_predict_intra_block(xd, block >> (tx_size << 1), b_width_log2(plane_bsize), tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride, x, y, plane); if (!mi->mbmi.skip) { const int eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r); inverse_transform_block(xd, plane, block, tx_size, dst, pd->dst.stride, eob); } } struct inter_args { VP9_COMMON *cm; MACROBLOCKD *xd; vp9_reader *r; int *eobtotal; }; static void reconstruct_inter_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct inter_args *args = (struct inter_args *)arg; VP9_COMMON *const cm = args->cm; MACROBLOCKD *const xd = args->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; int x, y, eob; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r); inverse_transform_block(xd, plane, block, tx_size, &pd->dst.buf[4 * y * pd->dst.stride + 4 * x], pd->dst.stride, eob); *args->eobtotal += eob; } static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int x_mis = MIN(bw, cm->mi_cols - mi_col); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int offset = mi_row * cm->mi_stride + mi_col; int x, y; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = &cm->mi[offset]; xd->mi[0]->mbmi.sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; set_skip_context(xd, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); return &xd->mi[0]->mbmi; } static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd, int idx, int mi_row, int mi_col) { MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME]; xd->block_refs[idx] = ref_buffer; if (!vp9_is_valid_scale(&ref_buffer->sf)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid scale factors"); vp9_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col, &ref_buffer->sf); xd->corrupted |= ref_buffer->buf->corrupted; } static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE bsize) { const int less8x8 = bsize < BLOCK_8X8; MB_MODE_INFO *mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col); vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r); if (less8x8) bsize = BLOCK_8X8; if (mbmi->skip) { reset_skip_context(xd, bsize); } else { if (cm->seg.enabled) setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id, cm->base_qindex)); } if (!is_inter_block(mbmi)) { struct intra_args arg = { cm, xd, r }; vp9_foreach_transformed_block(xd, bsize, predict_and_reconstruct_intra_block, &arg); } else { // Setup set_ref(cm, xd, 0, mi_row, mi_col); if (has_second_ref(mbmi)) set_ref(cm, xd, 1, mi_row, mi_col); // Prediction vp9_dec_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); // Reconstruction if (!mbmi->skip) { int eobtotal = 0; struct inter_args arg = { cm, xd, r, &eobtotal }; vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg); if (!less8x8 && eobtotal == 0) mbmi->skip = 1; // skip loopfilter } } xd->corrupted |= vp9_reader_has_error(r); } static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs, int mi_row, int mi_col, BLOCK_SIZE bsize, vp9_reader *r) { const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); const vp9_prob *const probs = get_partition_probs(cm, ctx); const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; PARTITION_TYPE p; if (has_rows && has_cols) p = (PARTITION_TYPE)vp9_read_tree(r, vp9_partition_tree, probs); else if (!has_rows && has_cols) p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; else if (has_rows && !has_cols) p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; else p = PARTITION_SPLIT; if (!cm->frame_parallel_decoding_mode) ++cm->counts.partition[ctx][p]; return p; } static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, vp9_reader* r, BLOCK_SIZE bsize) { const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; PARTITION_TYPE partition; BLOCK_SIZE subsize, uv_subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r); subsize = get_subsize(bsize, partition); uv_subsize = ss_size_lookup[subsize][cm->subsampling_x][cm->subsampling_y]; if (subsize >= BLOCK_8X8 && uv_subsize == BLOCK_INVALID) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid block size."); if (subsize < BLOCK_8X8) { decode_block(cm, xd, tile, mi_row, mi_col, r, subsize); } else { switch (partition) { case PARTITION_NONE: decode_block(cm, xd, tile, mi_row, mi_col, r, subsize); break; case PARTITION_HORZ: decode_block(cm, xd, tile, mi_row, mi_col, r, subsize); if (mi_row + hbs < cm->mi_rows) decode_block(cm, xd, tile, mi_row + hbs, mi_col, r, subsize); break; case PARTITION_VERT: decode_block(cm, xd, tile, mi_row, mi_col, r, subsize); if (mi_col + hbs < cm->mi_cols) decode_block(cm, xd, tile, mi_row, mi_col + hbs, r, subsize); break; case PARTITION_SPLIT: decode_partition(cm, xd, tile, mi_row, mi_col, r, subsize); decode_partition(cm, xd, tile, mi_row, mi_col + hbs, r, subsize); decode_partition(cm, xd, tile, mi_row + hbs, mi_col, r, subsize); decode_partition(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize); break; default: assert(0 && "Invalid partition type"); } } // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, size_t read_size, struct vpx_internal_error_info *error_info, vp9_reader *r, vpx_decrypt_cb decrypt_cb, void *decrypt_state) { // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (vp9_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs, vp9_reader *r) { int i, j, k, l, m; if (vp9_read_bit(r)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) for (m = 0; m < UNCONSTRAINED_NODES; ++m) vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]); } static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vp9_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); } static void setup_segmentation(struct segmentation *seg, struct vp9_read_bit_buffer *rb) { int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = vp9_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update seg->update_map = vp9_rb_read_bit(rb); if (seg->update_map) { for (i = 0; i < SEG_TREE_PROBS; i++) seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; seg->temporal_update = vp9_rb_read_bit(rb); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB; } } // Segmentation data update seg->update_data = vp9_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = vp9_rb_read_bit(rb); vp9_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = vp9_rb_read_bit(rb); if (feature_enabled) { vp9_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); if (vp9_is_segfeature_signed(j)) data = vp9_rb_read_bit(rb) ? -data : data; } vp9_set_segdata(seg, i, j, data); } } } } static void setup_loopfilter(struct loopfilter *lf, struct vp9_read_bit_buffer *rb) { lf->filter_level = vp9_rb_read_literal(rb, 6); lf->sharpness_level = vp9_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = vp9_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < MAX_REF_LF_DELTAS; i++) if (vp9_rb_read_bit(rb)) lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (vp9_rb_read_bit(rb)) lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6); } } } static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) { const int old = *delta_q; *delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0; return old != *delta_q; } static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd, struct vp9_read_bit_buffer *rb) { int update = 0; cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS); update |= read_delta_q(rb, &cm->y_dc_delta_q); update |= read_delta_q(rb, &cm->uv_dc_delta_q); update |= read_delta_q(rb, &cm->uv_ac_delta_q); if (update) vp9_init_dequantizer(cm); xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; } static INTERP_FILTER read_interp_filter(struct vp9_read_bit_buffer *rb) { const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR }; return vp9_rb_read_bit(rb) ? SWITCHABLE : literal_to_filter[vp9_rb_read_literal(rb, 2)]; } void vp9_read_frame_size(struct vp9_read_bit_buffer *rb, int *width, int *height) { const int w = vp9_rb_read_literal(rb, 16) + 1; const int h = vp9_rb_read_literal(rb, 16) + 1; *width = w; *height = h; } static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { cm->display_width = cm->width; cm->display_height = cm->height; if (vp9_rb_read_bit(rb)) vp9_read_frame_size(rb, &cm->display_width, &cm->display_height); } static void resize_context_buffers(VP9_COMMON *cm, int width, int height) { #if CONFIG_SIZE_LIMIT if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Width and height beyond allowed size."); #endif if (cm->width != width || cm->height != height) { const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2); const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2); // Change in frame size (assumption: color format does not change). if (cm->width == 0 || cm->height == 0 || aligned_width > cm->width || aligned_width * aligned_height > cm->width * cm->height) { if (vp9_alloc_context_buffers(cm, width, height)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } else { vp9_set_mb_mi(cm, width, height); } vp9_init_context_buffers(cm); cm->width = width; cm->height = height; } } static void setup_frame_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { int width, height; vp9_read_frame_size(rb, &width, &height); resize_context_buffers(cm, width, height); setup_display_size(cm, rb); if (vp9_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_DEC_BORDER_IN_PIXELS, &cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb, cm->cb_priv)) { vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } } static void setup_frame_size_with_refs(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { int width, height; int found = 0, i; int has_valid_ref_frame = 0; for (i = 0; i < REFS_PER_FRAME; ++i) { if (vp9_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; width = buf->y_crop_width; height = buf->y_crop_height; found = 1; break; } } if (!found) vp9_read_frame_size(rb, &width, &height); if (width <=0 || height <= 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame size"); // Check to make sure at least one of frames that this frame references // has valid dimensions. for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width, ref_frame->buf->y_crop_height, width, height); } if (!has_valid_ref_frame) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame has invalid size"); resize_context_buffers(cm, width, height); setup_display_size(cm, rb); if (vp9_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_DEC_BORDER_IN_PIXELS, &cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb, cm->cb_priv)) { vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } } static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { int min_log2_tile_cols, max_log2_tile_cols, max_ones; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns max_ones = max_log2_tile_cols - min_log2_tile_cols; cm->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && vp9_rb_read_bit(rb)) cm->log2_tile_cols++; if (cm->log2_tile_cols > 6) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid number of tile columns"); // rows cm->log2_tile_rows = vp9_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += vp9_rb_read_bit(rb); } typedef struct TileBuffer { const uint8_t *data; size_t size; int col; // only used with multi-threaded decoding } TileBuffer; // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, int is_last, struct vpx_internal_error_info *error_info, const uint8_t **data, vpx_decrypt_cb decrypt_cb, void *decrypt_state, TileBuffer *buf) { size_t size; if (!is_last) { if (!read_is_valid(*data, 4, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, 4); size = mem_get_be32(be_data); } else { size = mem_get_be32(*data); } *data += 4; if (size > (size_t)(data_end - *data)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); } else { size = data_end - *data; } buf->data = *data; buf->size = size; *data += size; } static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end, int tile_cols, int tile_rows, TileBuffer (*tile_buffers)[1 << 6]) { int r, c; for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c) { const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); TileBuffer *const buf = &tile_buffers[r][c]; buf->col = c; get_tile_buffer(data_end, is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); } } } static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const cm = &pbi->common; const VP9WorkerInterface *const winterface = vp9_get_worker_interface(); const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; TileBuffer tile_buffers[4][1 << 6]; int tile_row, tile_col; int mi_row, mi_col; TileData *tile_data = NULL; if (cm->lf.filter_level && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, vpx_memalign(32, sizeof(LFWorkerData))); pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker; if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Loop filter thread creation failed"); } } if (cm->lf.filter_level) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; lf_data->frame_buffer = get_frame_new_buffer(cm); lf_data->cm = cm; vp9_copy(lf_data->planes, pbi->mb.plane); lf_data->stop = 0; lf_data->y_only = 0; vp9_loop_filter_frame_init(cm, cm->lf.filter_level); } assert(tile_rows <= 4); assert(tile_cols <= (1 << 6)); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_cols); get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); if (pbi->tile_data == NULL || (tile_cols * tile_rows) != pbi->total_tiles) { vpx_free(pbi->tile_data); CHECK_MEM_ERROR( cm, pbi->tile_data, vpx_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data)))); pbi->total_tiles = tile_rows * tile_cols; } // Load all tile information into tile_data. for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileInfo tile; const TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; tile_data = pbi->tile_data + tile_cols * tile_row + tile_col; tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; vp9_tile_init(&tile, tile_data->cm, tile_row, tile_col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); init_macroblockd(cm, &tile_data->xd); vp9_zero(tile_data->xd.dqcoeff); } } for (tile_row = 0; tile_row < tile_rows; ++tile_row) { TileInfo tile; vp9_tile_set_row(&tile, cm, tile_row); for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const int col = pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col; tile_data = pbi->tile_data + tile_cols * tile_row + col; vp9_tile_set_col(&tile, tile_data->cm, col); vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_partition(tile_data->cm, &tile_data->xd, &tile, mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64); } pbi->mb.corrupted |= tile_data->xd.corrupted; } // Loopfilter one row. if (cm->lf.filter_level) { const int lf_start = mi_row - MI_BLOCK_SIZE; LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; // delay the loopfilter by 1 macroblock row. if (lf_start < 0) continue; // decoding has completed: finish up the loop filter in this thread. if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue; winterface->sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = mi_row; if (pbi->max_threads > 1) { winterface->launch(&pbi->lf_worker); } else { winterface->execute(&pbi->lf_worker); } } } } // Loopfilter remaining rows in the frame. if (cm->lf.filter_level) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } // Get last tile data. tile_data = pbi->tile_data + tile_cols * tile_rows - 1; return vp9_reader_find_end(&tile_data->bit_reader); } static int tile_worker_hook(void *arg1, void *arg2) { TileWorkerData *const tile_data = (TileWorkerData*)arg1; const TileInfo *const tile = (TileInfo*)arg2; int mi_row, mi_col; for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_partition(tile_data->cm, &tile_data->xd, tile, mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64); } } return !tile_data->xd.corrupted; } // sorts in descending order static int compare_tile_buffers(const void *a, const void *b) { const TileBuffer *const buf1 = (const TileBuffer*)a; const TileBuffer *const buf2 = (const TileBuffer*)b; if (buf1->size < buf2->size) { return 1; } else if (buf1->size == buf2->size) { return 0; } else { return -1; } } static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const cm = &pbi->common; const VP9WorkerInterface *const winterface = vp9_get_worker_interface(); const uint8_t *bit_reader_end = NULL; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; const int num_workers = MIN(pbi->max_threads & ~1, tile_cols); TileBuffer tile_buffers[1][1 << 6]; int n; int final_worker = -1; assert(tile_cols <= (1 << 6)); assert(tile_rows == 1); (void)tile_rows; // TODO(jzern): See if we can remove the restriction of passing in max // threads to the decoder. if (pbi->num_tile_workers == 0) { const int num_threads = pbi->max_threads & ~1; int i; // TODO(jzern): Allocate one less worker, as in the current code we only // use num_threads - 1 workers. CHECK_MEM_ERROR(cm, pbi->tile_workers, vpx_malloc(num_threads * sizeof(*pbi->tile_workers))); for (i = 0; i < num_threads; ++i) { VP9Worker *const worker = &pbi->tile_workers[i]; ++pbi->num_tile_workers; winterface->init(worker); CHECK_MEM_ERROR(cm, worker->data1, vpx_memalign(32, sizeof(TileWorkerData))); CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo))); if (i < num_threads - 1 && !winterface->reset(worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Reset tile decoding hook for (n = 0; n < num_workers; ++n) { pbi->tile_workers[n].hook = (VP9WorkerHook)tile_worker_hook; } // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols); vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_mi_cols); // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); // Sort the buffers based on size in descending order. qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]), compare_tile_buffers); // Rearrange the tile buffers such that per-tile group the largest, and // presumably the most difficult, tile will be decoded in the main thread. // This should help minimize the number of instances where the main thread is // waiting for a worker to complete. { int group_start = 0; while (group_start < tile_cols) { const TileBuffer largest = tile_buffers[0][group_start]; const int group_end = MIN(group_start + num_workers, tile_cols) - 1; memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1, (group_end - group_start) * sizeof(tile_buffers[0][0])); tile_buffers[0][group_end] = largest; group_start = group_end + 1; } } n = 0; while (n < tile_cols) { int i; for (i = 0; i < num_workers && n < tile_cols; ++i) { VP9Worker *const worker = &pbi->tile_workers[i]; TileWorkerData *const tile_data = (TileWorkerData*)worker->data1; TileInfo *const tile = (TileInfo*)worker->data2; TileBuffer *const buf = &tile_buffers[0][n]; tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; vp9_tile_init(tile, tile_data->cm, 0, buf->col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); init_macroblockd(cm, &tile_data->xd); vp9_zero(tile_data->xd.dqcoeff); worker->had_error = 0; if (i == num_workers - 1 || n == tile_cols - 1) { winterface->execute(worker); } else { winterface->launch(worker); } if (buf->col == tile_cols - 1) { final_worker = i; } ++n; } for (; i > 0; --i) { VP9Worker *const worker = &pbi->tile_workers[i - 1]; pbi->mb.corrupted |= !winterface->sync(worker); } if (final_worker > -1) { TileWorkerData *const tile_data = (TileWorkerData*)pbi->tile_workers[final_worker].data1; bit_reader_end = vp9_reader_find_end(&tile_data->bit_reader); final_worker = -1; } } return bit_reader_end; } static void error_handler(void *data) { VP9_COMMON *const cm = (VP9_COMMON *)data; vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } int vp9_read_sync_code(struct vp9_read_bit_buffer *const rb) { return vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 && vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 && vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2; } BITSTREAM_PROFILE vp9_read_profile(struct vp9_read_bit_buffer *rb) { int profile = vp9_rb_read_bit(rb); profile |= vp9_rb_read_bit(rb) << 1; if (profile > 2) profile += vp9_rb_read_bit(rb); return (BITSTREAM_PROFILE) profile; } static void read_bitdepth_colorspace_sampling( VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { if (cm->profile >= PROFILE_2) cm->bit_depth = vp9_rb_read_bit(rb) ? BITS_12 : BITS_10; cm->color_space = (COLOR_SPACE)vp9_rb_read_literal(rb, 3); if (cm->color_space != SRGB) { vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { cm->subsampling_x = vp9_rb_read_bit(rb); cm->subsampling_y = vp9_rb_read_bit(rb); if (cm->subsampling_x == 1 && cm->subsampling_y == 1) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:2:0 color not supported in profile 1 or 3"); if (vp9_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. // 4:2:2 or 4:4:0 chroma sampling is not allowed. cm->subsampling_y = cm->subsampling_x = 0; if (vp9_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:4:4 color not supported in profile 0 or 2"); } } } static size_t read_uncompressed_header(VP9Decoder *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; size_t sz; int i; cm->last_frame_type = cm->frame_type; if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->profile = vp9_read_profile(rb); if (cm->profile >= MAX_PROFILES) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); cm->show_existing_frame = vp9_rb_read_bit(rb); if (cm->show_existing_frame) { // Show an existing frame directly. const int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)]; if (frame_to_show < 0 || cm->frame_bufs[frame_to_show].ref_count < 1) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Buffer %d does not contain a decoded frame", frame_to_show); ref_cnt_fb(cm->frame_bufs, &cm->new_fb_idx, frame_to_show); pbi->refresh_frame_flags = 0; cm->lf.filter_level = 0; cm->show_frame = 1; return 0; } cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb); cm->show_frame = vp9_rb_read_bit(rb); cm->error_resilient_mode = vp9_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { if (!vp9_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; for (i = 0; i < REFS_PER_FRAME; ++i) { cm->frame_refs[i].idx = -1; cm->frame_refs[i].buf = NULL; } setup_frame_size(cm, rb); } else { cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb); cm->reset_frame_context = cm->error_resilient_mode ? 0 : vp9_rb_read_literal(rb, 2); if (cm->intra_only) { if (!vp9_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); if (cm->profile > PROFILE_0) { read_bitdepth_colorspace_sampling(cm, rb); } else { // NOTE: The intra-only frame header does not include the specification // of either the color format or color sub-sampling in profile 0. VP9 // specifies that the default color space should be YUV 4:2:0 in this // case (normative). cm->color_space = BT_601; cm->subsampling_y = cm->subsampling_x = 1; } pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES); setup_frame_size(cm, rb); } else { pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES); for (i = 0; i < REFS_PER_FRAME; ++i) { const int ref = vp9_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &cm->frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb); } setup_frame_size_with_refs(cm, rb); cm->allow_high_precision_mv = vp9_rb_read_bit(rb); cm->interp_filter = read_interp_filter(rb); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; vp9_setup_scale_factors_for_frame(&ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); if (vp9_is_scaled(&ref_buf->sf)) vp9_extend_frame_borders(ref_buf->buf); } } } if (!cm->error_resilient_mode) { cm->refresh_frame_context = vp9_rb_read_bit(rb); cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb); } else { cm->refresh_frame_context = 0; cm->frame_parallel_decoding_mode = 1; } // This flag will be overridden by the call to vp9_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = vp9_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); if (frame_is_intra_only(cm) || cm->error_resilient_mode) vp9_setup_past_independence(cm); setup_loopfilter(&cm->lf, rb); setup_quantization(cm, &pbi->mb, rb); setup_segmentation(&cm->seg, rb); setup_tile_info(cm, rb); sz = vp9_rb_read_literal(rb, 16); if (sz == 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data, size_t partition_size) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; FRAME_CONTEXT *const fc = &cm->fc; vp9_reader r; int k; if (vp9_reader_init(&r, data, partition_size, pbi->decrypt_cb, pbi->decrypt_state)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r); read_coef_probs(fc, cm->tx_mode, &r); for (k = 0; k < SKIP_CONTEXTS; ++k) vp9_diff_update_prob(&r, &fc->skip_probs[k]); if (!frame_is_intra_only(cm)) { nmv_context *const nmvc = &fc->nmvc; int i, j; read_inter_mode_probs(fc, &r); if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]); cm->reference_mode = read_frame_reference_mode(cm, &r); if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm); read_frame_reference_mode_probs(cm, &r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]); for (j = 0; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); } return vp9_reader_has_error(&r); } void vp9_init_dequantizer(VP9_COMMON *cm) { int q; for (q = 0; q < QINDEX_RANGE; q++) { cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q); cm->y_dequant[q][1] = vp9_ac_quant(q, 0); cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q); cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q); } } #ifdef NDEBUG #define debug_check_frame_counts(cm) (void)0 #else // !NDEBUG // Counts should only be incremented when frame_parallel_decoding_mode and // error_resilient_mode are disabled. static void debug_check_frame_counts(const VP9_COMMON *const cm) { FRAME_COUNTS zero_counts; vp9_zero(zero_counts); assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode); assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, sizeof(cm->counts.y_mode))); assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, sizeof(cm->counts.uv_mode))); assert(!memcmp(cm->counts.partition, zero_counts.partition, sizeof(cm->counts.partition))); assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, sizeof(cm->counts.eob_branch))); assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, sizeof(cm->counts.switchable_interp))); assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, sizeof(cm->counts.inter_mode))); assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, sizeof(cm->counts.intra_inter))); assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, sizeof(cm->counts.comp_inter))); assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, sizeof(cm->counts.single_ref))); assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, sizeof(cm->counts.comp_ref))); assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx))); assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); } #endif // NDEBUG static struct vp9_read_bit_buffer* init_read_bit_buffer( VP9Decoder *pbi, struct vp9_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t *clear_data /* buffer size MAX_VP9_HEADER_SIZE */) { rb->bit_offset = 0; rb->error_handler = error_handler; rb->error_handler_data = &pbi->common; if (pbi->decrypt_cb) { const int n = (int)MIN(MAX_VP9_HEADER_SIZE, data_end - data); pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); rb->bit_buffer = clear_data; rb->bit_buffer_end = clear_data + n; } else { rb->bit_buffer = data; rb->bit_buffer_end = data_end; } return rb; } void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct vp9_read_bit_buffer rb = { NULL, NULL, 0, NULL, 0}; uint8_t clear_data[MAX_VP9_HEADER_SIZE]; const size_t first_partition_size = read_uncompressed_header(pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); const int tile_rows = 1 << cm->log2_tile_rows; const int tile_cols = 1 << cm->log2_tile_cols; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); xd->cur_buf = new_fb; if (!first_partition_size) { // showing a frame directly *p_data_end = data + 1; return; } data += vp9_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); init_macroblockd(cm, &pbi->mb); if (!cm->error_resilient_mode) set_prev_mi(cm); else cm->prev_mi = NULL; setup_plane_dequants(cm, xd, cm->base_qindex); vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); cm->fc = cm->frame_contexts[cm->frame_context_idx]; vp9_zero(cm->counts); vp9_zero(xd->dqcoeff); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); // TODO(jzern): remove frame_parallel_decoding_mode restriction for // single-frame tile decoding. if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1 && cm->frame_parallel_decoding_mode) { *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); // If multiple threads are used to decode tiles, then we use those threads // to do parallel loopfiltering. vp9_loop_filter_frame_mt(new_fb, pbi, cm, cm->lf.filter_level, 0); } else { *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); } new_fb->corrupted |= xd->corrupted; if (!new_fb->corrupted) { if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(cm); if (!frame_is_intra_only(cm)) { vp9_adapt_mode_probs(cm); vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } else { debug_check_frame_counts(cm); } } else { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } if (cm->refresh_frame_context) cm->frame_contexts[cm->frame_context_idx] = cm->fc; }