ref: ec4b2742e7b6d7a4532bf12f1255cc0b90bafc04
dir: /vp9/common/vp9_loopfilter.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "vp9/common/vp9_loopfilter.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/common/vp9_reconinter.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_seg_common.h" struct loop_filter_info { const uint8_t *mblim; const uint8_t *lim; const uint8_t *hev_thr; }; static void lf_init_lut(loop_filter_info_n *lfi) { lfi->mode_lf_lut[DC_PRED] = 0; lfi->mode_lf_lut[D45_PRED] = 0; lfi->mode_lf_lut[D135_PRED] = 0; lfi->mode_lf_lut[D117_PRED] = 0; lfi->mode_lf_lut[D153_PRED] = 0; lfi->mode_lf_lut[D207_PRED] = 0; lfi->mode_lf_lut[D63_PRED] = 0; lfi->mode_lf_lut[V_PRED] = 0; lfi->mode_lf_lut[H_PRED] = 0; lfi->mode_lf_lut[TM_PRED] = 0; lfi->mode_lf_lut[ZEROMV] = 0; lfi->mode_lf_lut[NEARESTMV] = 1; lfi->mode_lf_lut[NEARMV] = 1; lfi->mode_lf_lut[NEWMV] = 1; } static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { int lvl; // For each possible value for the loop filter fill out limits for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { // Set loop filter paramaeters that control sharpness. int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); if (sharpness_lvl > 0) { if (block_inside_limit > (9 - sharpness_lvl)) block_inside_limit = (9 - sharpness_lvl); } if (block_inside_limit < 1) block_inside_limit = 1; vpx_memset(lfi->lim[lvl], block_inside_limit, SIMD_WIDTH); vpx_memset(lfi->mblim[lvl], (2 * (lvl + 2) + block_inside_limit), SIMD_WIDTH); } } void vp9_loop_filter_init(VP9_COMMON *cm) { loop_filter_info_n *lfi = &cm->lf_info; struct loopfilter *lf = &cm->lf; int i; // init limits for given sharpness update_sharpness(lfi, lf->sharpness_level); lf->last_sharpness_level = lf->sharpness_level; // init LUT for lvl and hev thr picking lf_init_lut(lfi); // init hev threshold const vectors for (i = 0; i < 4; i++) vpx_memset(lfi->hev_thr[i], i, SIMD_WIDTH); } void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) { int seg_id; // n_shift is the a multiplier for lf_deltas // the multiplier is 1 for when filter_lvl is between 0 and 31; // 2 when filter_lvl is between 32 and 63 const int n_shift = default_filt_lvl >> 5; loop_filter_info_n *const lfi = &cm->lf_info; struct loopfilter *const lf = &cm->lf; struct segmentation *const seg = &cm->seg; // update limits if sharpness has changed if (lf->last_sharpness_level != lf->sharpness_level) { update_sharpness(lfi, lf->sharpness_level); lf->last_sharpness_level = lf->sharpness_level; } for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { int lvl_seg = default_filt_lvl, ref, mode, intra_lvl; // Set the baseline filter values for each segment if (vp9_segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) { const int data = vp9_get_segdata(seg, seg_id, SEG_LVL_ALT_LF); lvl_seg = seg->abs_delta == SEGMENT_ABSDATA ? data : clamp(default_filt_lvl + data, 0, MAX_LOOP_FILTER); } if (!lf->mode_ref_delta_enabled) { // we could get rid of this if we assume that deltas are set to // zero when not in use; encoder always uses deltas vpx_memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id])); continue; } intra_lvl = lvl_seg + (lf->ref_deltas[INTRA_FRAME] << n_shift); lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { const int inter_lvl = lvl_seg + (lf->ref_deltas[ref] << n_shift) + (lf->mode_deltas[mode] << n_shift); lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); } } } static int build_lfi(const loop_filter_info_n *lfi_n, const MB_MODE_INFO *mbmi, struct loop_filter_info *lfi) { const int seg = mbmi->segment_id; const int ref = mbmi->ref_frame[0]; const int mode = lfi_n->mode_lf_lut[mbmi->mode]; const int filter_level = lfi_n->lvl[seg][ref][mode]; if (filter_level > 0) { lfi->mblim = lfi_n->mblim[filter_level]; lfi->lim = lfi_n->lim[filter_level]; lfi->hev_thr = lfi_n->hev_thr[filter_level >> 4]; return 1; } else { return 0; } } static void filter_selectively_vert(uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, const struct loop_filter_info *lfi) { unsigned int mask; for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= 1) { if (mask & 1) { if (mask_16x16 & 1) { vp9_mb_lpf_vertical_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); assert(!(mask_8x8 & 1)); assert(!(mask_4x4 & 1)); assert(!(mask_4x4_int & 1)); } else if (mask_8x8 & 1) { vp9_mbloop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_4x4 & 1)); } else if (mask_4x4 & 1) { vp9_loop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_8x8 & 1)); } } if (mask_4x4_int & 1) vp9_loop_filter_vertical_edge(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); s += 8; lfi++; mask_16x16 >>= 1; mask_8x8 >>= 1; mask_4x4 >>= 1; mask_4x4_int >>= 1; } } static void filter_selectively_horiz(uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, int only_4x4_1, const struct loop_filter_info *lfi) { unsigned int mask; int count; for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= count) { count = 1; if (mask & 1) { if (!only_4x4_1) { if (mask_16x16 & 1) { if ((mask_16x16 & 3) == 3) { vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 2); count = 2; } else { vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); } assert(!(mask_8x8 & 1)); assert(!(mask_4x4 & 1)); assert(!(mask_4x4_int & 1)); } else if (mask_8x8 & 1) { vp9_mbloop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_4x4 & 1)); } else if (mask_4x4 & 1) { vp9_loop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_8x8 & 1)); } } if (mask_4x4_int & 1) vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); } s += 8 * count; lfi += count; mask_16x16 >>= count; mask_8x8 >>= count; mask_4x4 >>= count; mask_4x4_int >>= count; } } static void filter_block_plane(VP9_COMMON *cm, struct macroblockd_plane *plane, const MODE_INFO *mi, int mi_row, int mi_col) { const int ss_x = plane->subsampling_x; const int ss_y = plane->subsampling_y; const int row_step = 1 << ss_x; const int col_step = 1 << ss_y; const int row_step_stride = cm->mode_info_stride * row_step; struct buf_2d *const dst = &plane->dst; uint8_t* const dst0 = dst->buf; unsigned int mask_16x16[MI_BLOCK_SIZE] = {0}; unsigned int mask_8x8[MI_BLOCK_SIZE] = {0}; unsigned int mask_4x4[MI_BLOCK_SIZE] = {0}; unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0}; struct loop_filter_info lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE]; int r, c; for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { unsigned int mask_16x16_c = 0; unsigned int mask_8x8_c = 0; unsigned int mask_4x4_c = 0; unsigned int border_mask; // Determine the vertical edges that need filtering for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { const int skip_this = mi[c].mbmi.skip_coeff && is_inter_block(&mi[c].mbmi); // left edge of current unit is block/partition edge -> no skip const int block_edge_left = b_width_log2(mi[c].mbmi.sb_type) ? !(c & ((1 << (b_width_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1; const int skip_this_c = skip_this && !block_edge_left; // top edge of current unit is block/partition edge -> no skip const int block_edge_above = b_height_log2(mi[c].mbmi.sb_type) ? !(r & ((1 << (b_height_log2(mi[c].mbmi.sb_type)-1)) - 1)) : 1; const int skip_this_r = skip_this && !block_edge_above; const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV) ? get_uv_tx_size(&mi[c].mbmi) : mi[c].mbmi.tx_size; const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1; const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; // Filter level can vary per MI if (!build_lfi(&cm->lf_info, &mi[c].mbmi, lfi[r] + (c >> ss_x))) continue; // Build masks based on the transform size of each block if (tx_size == TX_32X32) { if (!skip_this_c && ((c >> ss_x) & 3) == 0) { if (!skip_border_4x4_c) mask_16x16_c |= 1 << (c >> ss_x); else mask_8x8_c |= 1 << (c >> ss_x); } if (!skip_this_r && ((r >> ss_y) & 3) == 0) { if (!skip_border_4x4_r) mask_16x16[r] |= 1 << (c >> ss_x); else mask_8x8[r] |= 1 << (c >> ss_x); } } else if (tx_size == TX_16X16) { if (!skip_this_c && ((c >> ss_x) & 1) == 0) { if (!skip_border_4x4_c) mask_16x16_c |= 1 << (c >> ss_x); else mask_8x8_c |= 1 << (c >> ss_x); } if (!skip_this_r && ((r >> ss_y) & 1) == 0) { if (!skip_border_4x4_r) mask_16x16[r] |= 1 << (c >> ss_x); else mask_8x8[r] |= 1 << (c >> ss_x); } } else { // force 8x8 filtering on 32x32 boundaries if (!skip_this_c) { if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0) mask_8x8_c |= 1 << (c >> ss_x); else mask_4x4_c |= 1 << (c >> ss_x); } if (!skip_this_r) { if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0) mask_8x8[r] |= 1 << (c >> ss_x); else mask_4x4[r] |= 1 << (c >> ss_x); } if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c) mask_4x4_int[r] |= 1 << (c >> ss_x); } } // Disable filtering on the leftmost column border_mask = ~(mi_col == 0); filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask, mask_8x8_c & border_mask, mask_4x4_c & border_mask, mask_4x4_int[r], lfi[r]); dst->buf += 8 * dst->stride; mi += row_step_stride; } // Now do horizontal pass dst->buf = dst0; for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; filter_selectively_horiz(dst->buf, dst->stride, mask_16x16[r], mask_8x8[r], mask_4x4[r], mask_4x4_int_r, mi_row + r == 0, lfi[r]); dst->buf += 8 * dst->stride; } } void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm, MACROBLOCKD *xd, int start, int stop, int y_only) { const int num_planes = y_only ? 1 : MAX_MB_PLANE; int mi_row, mi_col; for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) { MODE_INFO* const mi = cm->mi + mi_row * cm->mode_info_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { int plane; setup_dst_planes(xd, frame_buffer, mi_row, mi_col); for (plane = 0; plane < num_planes; ++plane) { filter_block_plane(cm, &xd->plane[plane], mi + mi_col, mi_row, mi_col); } } } } void vp9_loop_filter_frame(VP9_COMMON *cm, MACROBLOCKD *xd, int frame_filter_level, int y_only, int partial) { int start_mi_row, end_mi_row, mi_rows_to_filter; if (!frame_filter_level) return; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = MAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; vp9_loop_filter_frame_init(cm, frame_filter_level); vp9_loop_filter_rows(cm->frame_to_show, cm, xd, start_mi_row, end_mi_row, y_only); } int vp9_loop_filter_worker(void *arg1, void *arg2) { LFWorkerData *const lf_data = (LFWorkerData*)arg1; (void)arg2; vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, &lf_data->xd, lf_data->start, lf_data->stop, lf_data->y_only); return 1; }